JPH09156317A - Pneumatic radial tire - Google Patents

Pneumatic radial tire

Info

Publication number
JPH09156317A
JPH09156317A JP7320489A JP32048995A JPH09156317A JP H09156317 A JPH09156317 A JP H09156317A JP 7320489 A JP7320489 A JP 7320489A JP 32048995 A JP32048995 A JP 32048995A JP H09156317 A JPH09156317 A JP H09156317A
Authority
JP
Japan
Prior art keywords
tread
width
tire
length
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7320489A
Other languages
Japanese (ja)
Other versions
JP3554423B2 (en
Inventor
Takeshi Watanabe
剛 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP32048995A priority Critical patent/JP3554423B2/en
Publication of JPH09156317A publication Critical patent/JPH09156317A/en
Application granted granted Critical
Publication of JP3554423B2 publication Critical patent/JP3554423B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0327Tread patterns characterised by special properties of the tread pattern
    • B60C11/0332Tread patterns characterised by special properties of the tread pattern by the footprint-ground contacting area of the tyre tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0374Slant grooves, i.e. having an angle of about 5 to 35 degrees to the equatorial plane

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To hold high-degree wet performance related to hydroplaning as well as to achieve further noise reduction. SOLUTION: Related to a ground length L (mm) and a maximum ground width W (mm) at the tread-width center of the outside contour of the ground tread of a tire having numerous pairs of diverging main grooves inclined in the same direction, each being open at an edge and having a deflected part, a length L1 (mm) obtained when a line dividing the width of the inclined main groove into two from the tread-width center to the deflected part is projected onto the equatorial plane of the tire is L1>=L. Also, with the use of a ground length L0.8 (mm) at a position of 0.8 times the maximum ground width W (mm), the length La (mm) of an arc extending in the cross direction of the tread between the tread-width center and the deflected part on the groove-width dividing line equals α×(W/2)±5mm, with α=-0.175+0.875 (L0.8 /L). The inclination angle 61 of the groove-width dividing line to the circumference of the tread, within the arc length La (mm), is 0 deg.<θ1<=tan<-1> (La/L), and the inclination angle θ2 of the groove-width dividing line to the circumference of the tread, from the deflected part to the edge, is tan<-1> (La/L)<θ2<=θ1+45 deg..

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、一対のビード部
及び一対のサイドウォール部と、両サイドウォール部に
トロイダルに連なるトレッド部とからなり、これら各部
を補強するラジアルカーカスと、該カーカスの外周でト
レッド部を強化するベルトとを備える空気入りラジアル
タイヤに関し、特に高度な耐ハイドロプレーニング性
と、優れた低騒音特性とを兼ね備えた空気入りラジアル
タイヤに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises a pair of beads, a pair of sidewalls, and a tread portion continuous toroidally on both sidewalls, and a radial carcass for reinforcing these parts, and an outer periphery of the carcass. The present invention relates to a pneumatic radial tire having a belt for reinforcing the tread portion, and more particularly to a pneumatic radial tire having both high hydroplaning resistance and excellent low noise characteristics.

【0002】[0002]

【従来の技術】比較的高速で走行する車両の使途に供す
る空気入りタイヤの踏面に設けるトレッドパターンの主
要機能の一つは、ウエット路面転動時における排水機能
であり、この機能はハイドロプレーニング現象を左右す
るので車両の安全走行を確保する点で重要である。もと
よりパターンは商品性の点でも重要な要素であり、よっ
て排水機能と外観性とを合せ考慮した種々のパターンが
開発されている。なかでもトレッド部に踏面円周に沿う
直状溝を設けたパターンが主流を占め、なおかつ有利な
排水性実現のため、直状溝の溝容積を増加させたパター
ンが典型となっている。
2. Description of the Related Art One of the main functions of a tread pattern provided on the tread surface of a pneumatic tire used for a vehicle traveling at a relatively high speed is a drainage function when rolling on a wet road surface. This function is a hydroplaning phenomenon. It is important to secure the safe running of the vehicle as it affects the vehicle. Naturally, the pattern is also an important factor in terms of commerciality, and therefore various patterns have been developed in consideration of both drainage function and appearance. Among them, a pattern in which a straight groove is provided in the tread portion along the circumference of the tread occupies the mainstream, and a pattern in which the groove volume of the straight groove is increased is typical in order to realize an advantageous drainage property.

【0003】[0003]

【発明が解決しようとする課題】トレッドパターンによ
り排水性の向上を目指すとき、たしかに直状溝とした上
で、さらにこの溝容積を増加させることは有効な手段で
ある反面、元来騒音発生に対し不利な直状溝の溝内部を
通る空気の量も増加するため溝内空気の振動エネルギが
増加し、その結果騒音レベルが劣化するのは不可避であ
る。
When it is desired to improve the drainage performance by using the tread pattern, it is effective to make the groove straight and further increase the volume of the groove, but on the other hand, noise is originally generated. On the other hand, since the amount of air passing through the inside of the disadvantageous straight groove also increases, it is inevitable that the vibration energy of the air in the groove increases and, as a result, the noise level deteriorates.

【0004】従ってこの発明の目的は、十分な排水性を
確保することによる優れた耐ハイドロプレーニング性
と、より一層の低騒音特性との両立を実現し得るトレッ
ドパターンを備える空気入りラジアルタイヤを提供する
ことにある。
Therefore, an object of the present invention is to provide a pneumatic radial tire having a tread pattern which can achieve both excellent hydroplaning resistance by ensuring sufficient drainage and further low noise characteristics. To do.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、この発明による空気入りラジアルタイヤは、冒頭に
記載したタイヤにおいて、トレッド部は、その踏面の幅
中央より両側端縁に向い対をなして末広がりに途中で一
旦屈折して延び、端縁に開口する多数対の同方向傾斜主
溝を有し、タイヤを適合リムに組付けて正規内圧を充て
んしたタイヤに正規荷重を負荷して得られる接地踏面外
側輪郭の、タイヤ赤道面上の接地長さL(mm)及び最大接
地幅W(mm)に関し、踏面幅中央から屈折部までの傾斜主
溝の幅2分線をタイヤ赤道面へ投影した長さL1(mm)
は、L1≧Lを満たし、踏面幅中央と上記溝幅2分線上
での屈折部との間の踏面幅方向の弧の長さLa(mm)は、
最大接地幅W(mm)の0.8倍をタイヤ赤道面から両側に
等分に振り分けた位置の接地長さL0.8(mm) を用い、α
=−0.175+0.875(L0.8 /L)として、L
a=α×(W/2)±5mmを満たし、弧の長さLa内
の溝幅2分線の踏面円周に対する傾斜角度θ1は、0°
<θ1≦tan-1(La/L)を満たし、屈折部から端
縁までの溝幅2分線の踏面円周に対する傾斜角度θ2
は、tan-1(La/L)<θ2≦θ1+45°を満た
すことを特徴とする。
In order to achieve the above-mentioned object, the pneumatic radial tire according to the present invention is the pneumatic tire described in the beginning, wherein the tread portions are paired from the width center of the tread to both side edges. It has a large number of pairs of same-direction tilted main grooves that open at the edges and bend and expand in the middle toward the end, and are obtained by mounting a tire on a compatible rim and applying a normal load to a tire filled with normal internal pressure. Regarding the contact length L (mm) and maximum contact width W (mm) of the outer contour of the contact tread surface on the tire equatorial surface, the width bisecting line of the inclined main groove from the center of the tread width to the bend is to the tire equatorial surface. Projected length L1 (mm)
Satisfies L1 ≧ L, and the arc length La (mm) in the tread width direction between the center of the tread width and the bent portion on the groove width bisector is:
Using the contact length L 0.8 (mm) at a position where 0.8 times the maximum contact width W (mm) is evenly distributed from the tire equatorial plane to both sides, α
= -0.175 + 0.875 (L 0.8 / L), L
a = α × (W / 2) ± 5 mm is satisfied, and the inclination angle θ1 of the groove width bisecting line within the arc length La with respect to the tread circumference is 0 °.
<Θ1 ≦ tan −1 (La / L) is satisfied, and the inclination angle θ2 of the groove width bisector from the refraction portion to the end edge with respect to the tread circumference.
Is characterized in that tan −1 (La / L) <θ2 ≦ θ1 + 45 ° is satisfied.

【0006】[0006]

【発明の実施の形態】この発明を図1に示す一実施例に
基づき以下詳細に説明する。図1は一実施例タイヤの踏
面展開図であり、慣例に従い踏面端縁の円周に沿う長さ
を幅中央の円周長さに合せて示す。図1において、符号
2、3はタイヤ赤道面Eに対し直状で傾斜する傾斜主溝
であり、傾斜主溝2、3はトレッド部(図示省略)の踏
面1にて、その幅中央E、すなわちタイヤ赤道面Eより
両側端縁TEに向い対をなして末広がりに延び、延びる
途中の位置Pで一旦屈折した後もやはり末広がり状をな
したまま延び、端縁TEにてショルダ部(図示省略)又
はバットレス部(図示省略)に開口する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below based on an embodiment shown in FIG. FIG. 1 is a development view of a tread surface of an example tire, and shows the length along the circumference of the tread edge according to the convention in accordance with the circumference length of the width center. In FIG. 1, reference numerals 2 and 3 denote inclined main grooves that are straight and inclined with respect to the tire equatorial plane E, and the inclined main grooves 2 and 3 are treads 1 of a tread portion (not shown) and have a width center E thereof. That is, the tire equatorial plane E forms a pair toward both end edges TE and extends divergently toward the end, and even after once refracting at a position P during the extension, the tire also extends in a divergent shape, and a shoulder portion (not shown) at the edge TE. ) Or a buttress portion (not shown).

【0007】互いに対をなす傾斜主溝2、3の多数対を
同方向傾斜の向きで踏面1に配置する。図示例の多数対
の傾斜主溝2、3はタイヤ赤道面E上にて互い違いの交
互配列になる。この種のトレッドパターンを備えるタイ
ヤは車両装着時に回転方向を指定する表示を設けるのが
常であり、図1ではこの回転方向を印Xにて示す。
A large number of pairs of inclined main grooves 2 and 3 which are paired with each other are arranged on the tread surface 1 in the same inclined direction. On the tire equatorial plane E, a large number of pairs of inclined main grooves 2 and 3 in the illustrated example are staggered alternately. A tire provided with this kind of tread pattern is usually provided with an indication for designating a rotation direction when mounted on a vehicle, and this rotation direction is indicated by a mark X in FIG.

【0008】多数対の傾斜主溝2、3を備えるタイヤを
その適合リムに組付けて正規内圧を充てんした後、必要
に応じこのタイヤに正規荷重を負荷して踏面の接地形状
を得る。このとき格別の理由がない限り慣例としてタイ
ヤにはキャンバ角度などを付さず定盤に垂直にタイヤに
荷重を負荷する。なお適合リム、正規内圧及び正規荷重
はJATMA YEAR BOOK又はTRA又はET
RTOに記載した該当タイヤの適用リム、適用内圧及び
この内圧に見合う荷重とする。
After assembling a tire having a large number of pairs of inclined main grooves 2 and 3 to its compatible rim and filling the tire with a regular internal pressure, a regular load is applied to the tire as necessary to obtain the ground contact shape of the tread. At this time, unless there is a special reason, the tire is not provided with a camber angle or the like, and a load is applied to the tire perpendicular to the surface plate. The compatible rim, regular internal pressure and regular load are JATMA YEAR BOOK or TRA or ET.
The applicable rim of the corresponding tire described in RTO, the applied internal pressure, and the load commensurate with this internal pressure.

【0009】図2に上記接地形状のうち踏面外側輪郭
(溝部分は内挿した線であらわす)を示す。図2におい
て符号Wは最大接地幅を、符号Lはタイヤ赤道面E上の
接地長さをそれぞれ示す。そしてこの最大接地幅Wと接
地長さLとに関して、傾斜溝2、3は以下に述べる関係
を満たすものとする。ここに最大接地幅W、接地長さL
共にミリメートル(mm)を用いるものとし、後述の幅、長
さに関する単位は全てミリメートル(mm)とする。
FIG. 2 shows the outer contour of the tread surface (the groove portion is represented by an inserted line) in the above ground contact shape. In FIG. 2, the reference sign W indicates the maximum contact width, and the reference sign L indicates the contact length on the tire equatorial plane E. Then, regarding the maximum ground contact width W and the ground contact length L, the inclined grooves 2 and 3 satisfy the relationship described below. Maximum contact width W and contact length L here
Both use millimeters (mm), and all units for width and length described later are millimeters (mm).

【0010】まず、踏面幅中央Eから屈折部Pまでの傾
斜主溝2、3の幅2分線C2 、C3をタイヤ赤道面Eに
投影した長さL1は、L1≧Lを満たすものとする。傾
斜主溝2の幅2分線C2 の展開図を示す図3に長さL1
を記載した。勿論、図3に示す幅2分線C2 、長さL1
は弧の長さをあらわす。傾斜主溝3の幅2分線C3 は同
様なため図示を省略したが、傾斜主溝2につき述べると
ころは傾斜主溝3にも適用する。屈折部Pは便宜上幅2
分線C2 、C3 上の屈折点Pとして扱う。
First, the length L1 obtained by projecting the width bisecting lines C 2 and C 3 of the inclined main grooves 2 and 3 from the tread width center E to the bending portion P on the tire equatorial plane E satisfies L1 ≧ L. And The length L1 is shown in FIG. 3 which is a development view of the width bisector C 2 of the inclined main groove 2.
Was described. Of course, the width bisector C 2 and the length L 1 shown in FIG.
Represents the length of the arc. Although the width bisector C 3 of the inclined main groove 3 is similar, the illustration thereof is omitted, but the description about the inclined main groove 2 also applies to the inclined main groove 3. The width of the bending portion P is 2 for convenience.
It is treated as a refraction point P on the line segments C 2 and C 3 .

【0011】次に、踏面幅中央Eと屈折点Pとの間の踏
面1幅方向の弧の長さLaは、La=α×(W/2)±
5mmを満たすものとする。ただし係数αは、α=−
0.175+0.875(L0.8 /L)とし、長さL
0.8 は図2に示すように、最大接地幅Wの0.8倍をタ
イヤ赤道面Eから両側に等分に振り分けた位置の端部接
地長さとする。
Next, the arc length La in the width direction of the tread 1 between the center E of the tread width and the inflection point P is La = α × (W / 2) ±
It should satisfy 5 mm. However, the coefficient α is α =-
0.175 + 0.875 (L 0.8 / L), length L
As shown in FIG. 2, 0.8 is the end contact length at a position where 0.8 times the maximum contact width W is equally distributed from the tire equatorial plane E to both sides.

【0012】次に、幅2分線C2 とタイヤ赤道面Eとの
交点を点Qとし、幅2分線C2 と端縁延長線との交点を
点Rとしたとき、点Qと点Pとの間に挟まれる幅2分線
2の踏面1の円周に対する傾斜角度θ1は、0°<θ
1≦tan-1(La/L)を満たすこと、そして点Pと
点Rとの間に挟まれる幅2分線C2 −1の踏面1の円周
に対する傾斜角度θ2は、tan-1(La/L)<θ2
≦θ1+45°を満たすことが必要である。
Next, when the intersection of the width bisector C 2 and the tire equatorial plane E is designated as point Q and the intersection of the width bisector C 2 and the edge extension line is designated as point R, points Q and The inclination angle θ1 with respect to the circumference of the tread 1 of the width bisecting line C 2 sandwiched between P and 0 is 0 ° <θ
1 ≦ tan −1 (La / L) is satisfied, and the inclination angle θ2 of the width bisecting line C 2 −1 sandwiched between the points P and R with respect to the circumference of the tread 1 is tan −1 ( La / L) <θ2
It is necessary to satisfy ≦ θ1 + 45 °.

【0013】図3に示す例は幅2分線C2 、C2 −1が
直状をなし、それ故点Q、点Pそれぞれの位置にて傾斜
角度θ1、θ2をあらわしたが、これら幅2分線は必ず
しも直状である必要はなく湾曲することを可とし、その
場合、傾斜角度θ1、θ2は各箇所にて異なる。これは
幅2分線C3 、C3 −1も同じである。
[0013] example shown in FIG. 3 forms a width-half line C 2, C 2 -1 is straight, therefore point Q, the inclination angle θ1 at the point P each position, but represents .theta.2, these widths The bisector does not necessarily have to be straight and can be curved. In that case, the inclination angles θ1 and θ2 are different at each position. This is the same width half line C 3, C 3 -1.

【0014】さて、ハイドロプレーニングとは、或る厚
さの水膜で覆われたウエト路面をタイヤが相当な速度で
転動するとき、タイヤの接地踏面下の動水圧(流体力学
的な圧力)が高くなり、その結果接地踏面内、特に動水
圧が最も高い踏面幅中央領域内にタイヤ進行方向から水
が楔状に入り込み、この楔状の水がタイヤを浮き上がら
せる現象をいう。そこでタイヤのウエット性能を論ずる
際にはこのハイドロプレーニング現象の発生速度を採り
上げる必要がある。
Hydroplaning means that when a tire rolls on a wet road surface covered with a water film of a certain thickness at a considerable speed, the hydrodynamic pressure (hydrodynamic pressure) under the ground contact tread of the tire. This is a phenomenon in which water enters a wedge shape from the tire traveling direction in the ground contact tread, particularly in the central area of the tread width where the dynamic water pressure is highest, and this wedge-shaped water lifts the tire. Therefore, when discussing the wet performance of tires, it is necessary to take up the rate of occurrence of this hydroplaning phenomenon.

【0015】この発生速度に影響を与える要素のうち、
制御可能で寄与する度合いが最も大きい要素はトレッド
パターンであり、パターンによる排水性の良否がハイド
ロプレーニング性を左右すると言っても過言ではない。
そこで傾斜主溝2、3の幅2分線C2 、C3 の投影長さ
L1を接地長さL以上とすることにより、転動するタイ
ヤ踏面1の踏込み端に傾斜主溝2、3の中央側端部(点
Q)が位置したとき、この傾斜主溝2、3は、踏込み端
から蹴出し端まで接地面内を一様に貫通し、踏込み端か
ら流れ込む水に大きな背圧を作用させる屈折部(屈折
点)Pが接地面外に位置するので、水膜の厚さ(水深の
深さ)いかんにかかわらず溝2、3内の水を効率良く排
水することができる。
Among the factors that affect the generation speed,
It is no exaggeration to say that the element that is controllable and that contributes the most is the tread pattern, and that the drainage performance of the pattern determines the hydroplaning performance.
Therefore, by setting the projected length L1 of the width bisectors C 2 and C 3 of the inclined main grooves 2 and 3 to be the ground contact length L or more, the inclined main grooves 2 and 3 are formed at the stepping end of the rolling tire tread 1. When the central end (point Q) is located, the inclined main grooves 2 and 3 uniformly penetrate the ground contact surface from the stepping end to the kicking end, and exert a large back pressure on the water flowing from the stepping end. Since the refraction portion (refraction point) P to be caused is located outside the ground plane, the water in the grooves 2 and 3 can be efficiently drained regardless of the thickness of the water film (depth of water).

【0016】またウエット路面を転動するタイヤが水か
ら受ける圧力は、動水圧が高い踏面中央領域と、動水圧
が低い両側領域とに大別される。この動水圧の高低の分
岐位置は踏面の接地形状により変化し、接地長さLに対
する端部接地長さL0.8 の比L0.8 /Lの値と、最大接
地幅Wとに依存する。そこで点Pを通る踏面1の円周に
てこの分岐位置をあらわし、この円周と踏面1の幅中央
Eとの間の弧の長さLaを先に述べた比L0.8 /Lの値
と最大接地幅Wとの関数として設定すれば、動水圧の高
低に対応する高い効率の排水が可能となる。
Further, the pressure applied to the tire rolling on the wet road surface from water is roughly classified into a tread central area where the hydraulic pressure is high and both side areas where the dynamic pressure is low. The branching position of the dynamic water pressure changes depending on the ground contact shape of the tread, and depends on the value of the ratio L 0.8 / L of the end ground contact length L 0.8 to the ground contact length L and the maximum ground contact width W. Therefore, this branch position is represented by the circumference of the tread 1 passing through the point P, and the arc length La between this circumference and the width center E of the tread 1 is set to the value of the ratio L 0.8 / L described above. If set as a function of the maximum ground contact width W, highly efficient drainage corresponding to high and low dynamic water pressure becomes possible.

【0017】傾斜角度θ1については、角度θ1が0°
を超える傾斜主溝2、3として騒音レベルの向上を図る
一方、角度θ1の上限をtan-1(La/L)とするこ
とにより、踏面1の両側領域内に存在する幅2分線C2
−1、C3 −1の主溝部分を流れる水が中央領域の幅2
分線C2 、C3 の主溝部分に流入して、該溝部分が排水
すべき水量が増加するのを抑止することができ、このこ
とと、傾斜主溝2、3の幅2分線C2 、C3 の長さL1
≧Lとが連係して排水性の向上を図ることができる。仮
に角度θ1がtan-1(La/L)を超えると、両側領
域内に存在する主溝部分を流れる水を動水圧が高い中央
領域の主溝部分に引き込む現象が生じるので不可であ
る。
Regarding the tilt angle θ1, the angle θ1 is 0 °.
While increasing the noise level by making the inclined main grooves 2 and 3 exceeding the upper limit, the upper limit of the angle θ1 is set to tan −1 (La / L), so that the width bisecting line C 2 existing in both side regions of the tread 1 is
-1, the water flowing in the main groove part of C 3 -1 is the width 2 of the central region
It is possible to prevent an increase in the amount of water that flows into the main groove portions of the dividing lines C 2 and C 3 to be drained, and this and the width 2 dividing lines of the inclined main grooves 2 and 3 Length L1 of C 2 and C 3
≧ L can be linked to improve drainage. If the angle θ1 exceeds tan −1 (La / L), a phenomenon occurs in which water flowing in the main groove portions existing in both side regions is drawn into the main groove portion in the central region where the hydrodynamic pressure is high, which is not possible.

【0018】傾斜角度θ2については、踏込み端側から
傾斜主溝2、3内に流れ込む水流経路を先に触れた分岐
位置にてtan-1(La/L)を超える角度θ2にて屈
折させることにより、主溝2、3内の水流を踏面1外に
排出する流れを強制的に作りだし、傾斜角度θ1の中央
領域の溝部分に流れ込む水量を抑えること、そして中央
領域の溝部分内の流水を速やかに踏面1外に排出するこ
とができる。このことは騒音に係わる空気の流れが円滑
となり、低騒音化の効果も同時に得ることができる。
Regarding the inclination angle θ2, refraction is performed at an angle θ2 exceeding tan −1 (La / L) at the branch position where the water flow path flowing into the inclined main grooves 2 and 3 from the stepped end side is touched first. By this, the flow of water in the main grooves 2 and 3 is forcibly created to be discharged to the outside of the tread 1, and the amount of water flowing into the groove portion in the central region of the inclination angle θ1 is suppressed, and the flowing water in the groove portion in the central region is suppressed. It can be quickly discharged to the outside of the tread 1. This means that the air flow related to noise becomes smooth and the effect of noise reduction can be obtained at the same time.

【0019】ここにθ2≦tan-1(La/L)では中
央領域の溝部分内の流水を速やかに踏面1外に排出する
ことができず、またθ2>θ1+45°では屈曲の度合
いが大き過ぎて分岐位置にて流水の円滑な流れが阻害さ
れ、同時にこれは空気の流れに対しても同様に作用する
ので騒音レベルの劣化をもたらすので不可である。
Here, when θ2 ≦ tan −1 (La / L), the running water in the groove portion in the central region cannot be quickly discharged to the outside of the tread 1, and when θ2> θ1 + 45 °, the degree of bending is too large. Therefore, the smooth flow of the flowing water is obstructed at the branch position, and at the same time, this also acts on the air flow, which causes deterioration of the noise level, which is not possible.

【0020】以上述べた弧の長さLa、傾斜角度θ1、
θ2それぞれの範囲は、実験計画法に基づくL9 直交配
列に従う実験により求めた。因子として長さLa、角度
θ1、角度θ2を採り上げ、それぞれ3水準とした。実
験に供したタイヤサイズは225/50R16である。
このタイヤの最大接地幅Wは180mm、接地長さLは
110mmであった。実験結果を整理した線図を図4〜
図6に示す。
The above-mentioned arc length La and inclination angle θ1,
Each range of θ2 was determined by an experiment according to the L 9 orthogonal array based on the experimental design method. As factors, the length La, the angle θ1, and the angle θ2 were taken and set to 3 levels respectively. The tire size used in the experiment is 225 / 50R16.
The maximum contact width W of this tire was 180 mm and the contact length L was 110 mm. Fig. 4 ~
As shown in FIG.

【0021】図4は、ハイドロプレーニング(HPと記
す)発生速度の指数値(縦軸)と、踏面1の幅中央より
の弧の長さ(横軸)との関係を示す線図であり、この実
験例では弧の長さが41.08〜51.08mmの範囲
(斜線部分)がHP発生速度を高度に保持する適合範囲
である。この斜線部分の中央値(46.08mm、HP
発生速度指数100)は係数αを用いて、一般式La′
=α×(W/2)であらわすことができ、斜線部分を包
含した弧の長さLaは、La=α×(W/2)±5mm
である。この斜線部分を包含するための±5mmは別の
実験で得られたサイズ相互間の僅かな差異と、実験誤差
とを吸収するための値である。係数αも一般式として、
接地長さL0.8 を導入することにより、α=−0.17
5+0.875(L0.8 /L)であらわすことができ
る。この実験でのL0.8 /Lの値は0.785であり、
従ってαの値は0.512となる。
FIG. 4 is a diagram showing the relationship between the index value of the hydroplaning (referred to as HP) generation speed (vertical axis) and the arc length from the width center of the tread 1 (horizontal axis). In this experimental example, the range where the arc length is 41.08 to 51.08 mm (hatched portion) is the suitable range for maintaining the HP generation rate at a high level. Median value of this shaded area (46.08 mm, HP
The generation rate index 100) is calculated by using the coefficient α by the general formula La ′.
= Α × (W / 2), the arc length La including the shaded portion is La = α × (W / 2) ± 5 mm
It is. The ± 5 mm for including the shaded portion is a value for absorbing a slight difference between sizes obtained in another experiment and an experimental error. The coefficient α is also a general expression,
By introducing the contact length L 0.8 , α = −0.17
It can be represented by 5 + 0.875 (L 0.8 / L). The value of L 0.8 / L in this experiment is 0.785,
Therefore, the value of α is 0.512.

【0022】図5は、HP発生速度の指数値(縦軸)
と、傾斜角度θ1(横軸)との関係を示す線図であり、
図5より、α×(W/2)±5mmで定まる弧の長さL
aとの関連で、HP発生速度の指数100前後以上を満
たす傾斜角度θ1は20〜24.4°以下である必要が
あり、この上限値は、θ1≦tan-1(La/L)の一
般式にてあらわすことができ、騒音レベル低減のため0
°<θ1を満足させなければならない。図5の斜線部分
は上記±5mmの範囲を示し、その意味は上記の通りで
ある。
FIG. 5 shows the index value of the HP generation rate (vertical axis).
And a tilt angle θ1 (horizontal axis).
From Fig. 5, the arc length L determined by α × (W / 2) ± 5 mm
In relation to a, the inclination angle θ1 that satisfies the HP generation rate index of around 100 or more needs to be 20 to 24.4 ° or less, and the upper limit value is generally θ1 ≦ tan −1 (La / L). It can be expressed by a formula, and it is 0 to reduce the noise level.
° <θ1 must be satisfied. The shaded area in FIG. 5 indicates the range of ± 5 mm, and its meaning is as described above.

【0023】図6は、HP発生速度の指数値(縦軸)
と、傾斜角度θ2(横軸)との関係を示す線図であり、
図6より、α×(W/2)±5mmで定まる弧の長さL
aとの関連で、HP発生速度の指数100前後以上を満
たす傾斜角度θ2は20〜24.4°を超え、かつ65
〜69.4°以下である必要があることがわかり、この
ことを一般式としてあらわせば、tan-1(La/L)
<θ2≦θ1+45°にてあらわすことができ、斜線部
分は上記±5mmの範囲を示し、その意味は前述の通り
である。
FIG. 6 shows the index value of the HP generation rate (vertical axis).
And a tilt angle θ2 (horizontal axis).
From Fig. 6, the arc length L determined by α × (W / 2) ± 5 mm
In relation to a, the inclination angle θ2 that satisfies the HP generation rate index of about 100 or more exceeds 20 to 24.4 °, and 65
It was found that it was necessary to be ˜69.4 ° or less, and if this is expressed as a general formula, tan −1 (La / L)
It can be represented by <θ2 ≦ θ1 + 45 °, and the shaded portion indicates the range of ± 5 mm, and the meaning is as described above.

【0024】以上述べた弧の長さLa、傾斜角度θ1、
θ2に設定すれば、タイヤ種類又はサイズのいかんにか
かわらず、タイヤ踏面の円周に沿う直状溝を適用せずと
も、また騒音レベルを損なうほど溝容積を増加せずと
も、低騒音性能と優れたウエット性能とを同時に実現す
ることができる。
The above-mentioned arc length La and inclination angle θ1,
When set to θ2, low noise performance is achieved regardless of the tire type or size, without applying straight grooves along the circumference of the tire tread and without increasing groove volume so as to impair the noise level. Excellent wet performance can be realized at the same time.

【0025】[0025]

【実施例】【Example】

[実施例1]乗用車用ラジアルプライタイヤでサイズが
225/50R16であり、ラジアルカーカスは2プラ
イの1500D/2のポリエステルコードプライのから
なり、ベルトは2層の撚り構造1×5のスチールコード
交差層と、その外周に広幅キャップ層として1層の12
60D/2のナイロンコード巻回層と、キャップ層の両
側端部を覆う狭幅レイヤ層として1層の1260D/2
のナイロンコード巻回層とを備える。
[Example 1] A radial ply tire for passenger cars having a size of 225 / 50R16, a radial carcass made of two plies of 1500D / 2 polyester cord plies, and a belt having two layers of twisted structure 1x5 steel cord intersections. Layer, and one layer of 12 as a wide cap layer around the layer
Nylon cord winding layer of 60D / 2 and 1 layer of 1260D / 2 as a narrow layer layer covering both end portions of the cap layer.
And a nylon cord winding layer.

【0026】トレッドパターンは図1に従い、その諸元
を表1に示す。実施例1の性能評価のため図8に図1同
様に踏面展開図を示すトレッドパターンを備える従来例
のタイヤを準備した。このタイヤは踏面11に6本の直
状溝12、13、14を備える他は全てを実施例1に合
せた。なお表1の項目に記載したネガティブ比率とは、
実際の踏面展開における踏面1の全表面積に対する溝の
面積の比率(%)をいう。
The tread pattern is shown in Table 1 according to FIG. For the performance evaluation of Example 1, a conventional tire having a tread pattern whose tread pattern is shown in FIG. 8 as in FIG. 1 was prepared. This tire was the same as that of Example 1 except that the tread 11 had six straight grooves 12, 13, and 14. In addition, the negative ratio described in the item of Table 1 is
The ratio (%) of the groove area to the total surface area of the tread 1 in the actual development of the tread.

【0027】[0027]

【表1】 [Table 1]

【0028】まず耐ウエット性については、両タイヤを
適合リム7.5JJ×16に組み込んだ後、正規内圧
2.2kgf/cm2 を充てんし、それぞれを別個に装着した
乗用車が水深10mmのテスト路面上を直進走行したと
きのハイドロプレーニング発生速度を測定して優劣を評
価した。測定結果は従来例を100とする指数にてあら
わし、値が大なるほど良いとした。次に騒音レベル(d
B・A)は上記タイヤ及びリム組立体を、台上騒音計測
用ドラムにより評価し、測定結果は従来例を100とす
る指数にてあらわし、値が小なるほど良いとした。結果
をまとめて表1の下段に示す。
First of all, regarding the wet resistance, after both tires were installed in a compatible rim 7.5JJ × 16, the tires were filled with a normal internal pressure of 2.2 kgf / cm 2 and each of them was separately mounted on a test road surface with a water depth of 10 mm. The superiority or inferiority was evaluated by measuring the hydroplaning generation speed when traveling straight on. The measurement result is represented by an index with the conventional example being 100, and the larger the value, the better. Next, the noise level (d
In B / A), the above tire and rim assembly was evaluated by a tabletop noise measuring drum, and the measurement result is represented by an index with the conventional example being 100, and the smaller the value, the better. The results are summarized in the lower part of Table 1.

【0029】[実施例2]実施例2は、実施例1と同サ
イズ、同構成で図7に示すトレッドパターンを備えるタ
イヤとし、このパターンは傾斜主溝2、3それぞれの屈
折部P近傍から端縁TEに延びて開口する両側傾斜溝
4、5を有する。実施例2に対する比較例タイヤのパタ
ーンを図8、9に示す。比較例1、2は、踏面21、3
1に実施例2と類似する傾斜主溝22、23、32、3
3を備え、また同様に両側傾斜溝24、25、34、3
5を有し、このパターンを除いて他を実施例2に合せた
タイヤである。これらタイヤのパターンの諸元を表2に
示し、実施例1及び従来例のタイヤと同じ条件にて比較
試験を実施し、試験結果も実施例1及び従来例と同じ方
法でまとめて表2の下段に示し、合せて試験結果のプロ
ット図を図10に示す。
[Embodiment 2] Embodiment 2 is a tire having the same size and structure as Embodiment 1 and having the tread pattern shown in FIG. 7, and this pattern is formed in the vicinity of the bending portion P of each of the inclined main grooves 2 and 3. It has both side inclined grooves 4 and 5 extending to the edge TE and opening. The patterns of comparative tires for Example 2 are shown in FIGS. Comparative Examples 1 and 2 have treads 21, 3
1, the inclined main grooves 22, 23, 32, 3 similar to those of the second embodiment
3 as well as the both side inclined grooves 24, 25, 34, 3 similarly.
The tire having No. 5 and the other parts except this pattern is matched with the second embodiment. The specifications of the patterns of these tires are shown in Table 2, a comparative test was conducted under the same conditions as the tires of Example 1 and the conventional example, and the test results are summarized in the same manner as in Example 1 and the conventional example. It is shown in the lower part and the plot of the test results is also shown in FIG.

【0030】[0030]

【表2】 [Table 2]

【0031】表1、2に示すウエット性能及び騒音レベ
ルの結果から、実施例1は、ネガティブ比率を合わせて
溝内空気容積を同等にした従来タイヤに比し、ハイドロ
プレーニングに係わるウエット性能は同等に保持して騒
音レベルが格段に向上していることがわかり、実施例2
は、この発明の特徴要件から外れた比較例1、2に対
し、ウエット性能と騒音レベルとの両性能が共に優位な
位置を占めていることがわかる。
From the results of the wet performance and the noise level shown in Tables 1 and 2, Example 1 has the same wet performance related to hydroplaning as compared with the conventional tire having the same air volume in the groove by adjusting the negative ratio. It was found that the noise level was remarkably improved by maintaining
In comparison with Comparative Examples 1 and 2 which deviate from the characteristic requirements of the present invention, both of the wet performance and the noise level occupy a superior position.

【0032】[0032]

【発明の効果】この発明によれば、従来は耐ハイドロプ
レーニング性が左右する耐ウエット性能と、低騒音性能
との両立が困難とされていた重要課題を解決することが
でき、これによりウエット路面での安全な走行と、静粛
で快適な走行とを確保することが可能な空気入りラジア
ルタイヤを提供することができる。
According to the present invention, it is possible to solve the important problem that it has been difficult to achieve both the anti-wetting performance, which depends on the hydroplaning resistance, and the low noise performance, thereby making it possible to solve the wet road surface. It is possible to provide a pneumatic radial tire capable of ensuring safe running in a quiet environment and quiet and comfortable running.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明による一実施例のパターン展開図であ
る。
FIG. 1 is a pattern development view of an embodiment according to the present invention.

【図2】この発明によるタイヤ踏面の接地外側輪郭の説
明図である。
FIG. 2 is an explanatory diagram of a ground contact outer contour of a tire tread according to the present invention.

【図3】図1に示す傾斜主溝の幅2分線の展開図であ
る。
FIG. 3 is a development view of a width bisector of the inclined main groove shown in FIG.

【図4】屈折部までの弧の長さとHP発生速度との関係
を説明する線図である。
FIG. 4 is a diagram illustrating the relationship between the arc length to the refraction portion and the HP generation rate.

【図5】傾斜角度θ1とHP発生速度との関係を説明す
る線図である。
FIG. 5 is a diagram illustrating a relationship between a tilt angle θ1 and an HP generation speed.

【図6】傾斜角度θ2とHP発生速度との関係を説明す
る線図である。
FIG. 6 is a diagram illustrating a relationship between a tilt angle θ2 and an HP generation speed.

【図7】この発明による他の実施例のパターン展開図で
ある。
FIG. 7 is a pattern development view of another embodiment according to the present invention.

【図8】従来パターンの展開図である。FIG. 8 is a development view of a conventional pattern.

【図9】図7に示すパターンに対する比較例パターンの
展開図である。
9 is a development view of a comparative example pattern with respect to the pattern shown in FIG. 7. FIG.

【図10】図7に示すパターンに対する他の比較例パタ
ーンの展開図である。
FIG. 10 is a development view of another comparative example pattern with respect to the pattern shown in FIG. 7.

【図11】ウエット性と騒音レベルとの関係を説明する
プロット図である。
FIG. 11 is a plot diagram illustrating the relationship between wettability and noise level.

【符号の説明】[Explanation of symbols]

1 踏面 2、3 傾斜主溝 4、5 傾斜溝 C2 、C3 、C2 −1、C3 −1 溝幅2分線 P 屈折部(屈折点) TE 踏面端縁 E タイヤ赤道面 W 最大接地幅 L 接地長さ L0.8 0.8W位置の接地長さ L1 溝幅2分線C2 、C3 のタイヤ赤道面への投影長
さ θ1、θ2 溝幅2分線の踏面円周に対する傾斜角度 X 回転方向
1 tread 2,3 inclined main grooves 4 and 5 inclined grooves C 2, C 3, C 2 -1, the maximum C 3 -1 groove width half line P refracting portion (inflection point) TE tread edge E tire equatorial plane W contact width L ground length L 0.8 0.8 W position of the ground length L1 groove width half line C 2, C 3 of the projection length θ1 of the tire equatorial plane, .theta.2 inclined relative to the tread surface circumferential groove width 2 Bunsen Angle X Rotation direction

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一対のビード部及び一対のサイドウォー
ル部と、両サイドウォール部にトロイダルに連なるトレ
ッド部とからなり、これら各部を補強するラジアルカー
カスと、該カーカスの外周でトレッド部を強化するベル
トとを備える空気入りラジアルタイヤにおいて、 トレッド部は、その踏面の幅中央より両側端縁に向い対
をなして末広がりに途中で一旦屈折して延び、端縁に開
口する多数対の同方向傾斜主溝を有し、 タイヤを適合リムに組付けて正規内圧を充てんしたタイ
ヤに正規荷重を負荷して得られる接地踏面外側輪郭の、
タイヤ赤道面上の接地長さ(L(mm))及び最大接地幅
(W(mm))に関し、 踏面幅中央から屈折部までの傾斜主溝の幅2分線をタイ
ヤ赤道面へ投影した長さ(L1(mm))は、 L1≧Lを満たし、 踏面幅中央と上記溝幅2分線上での屈折部との間の踏面
幅方向の弧の長さ(La(mm))は、最大接地幅(W(m
m))の0.8倍をタイヤ赤道面から両側に等分に振り分
けた位置の接地長さ(L0.8(mm) )を用い、 α=−0.175+0.875(L0.8 /L)として、 La=α×(W/2)±5mmを満たし、 弧の長さ(La(mm))内の溝幅2分線の踏面円周に対す
る傾斜角度(θ1)は、 0°<θ1≦tan-1(La/L)を満たし、 屈折部から端縁までの溝幅2分線の踏面円周に対する傾
斜角度(θ2)は、 tan-1(La/L)<θ2≦θ1+45°を満たすこ
とを特徴とする空気入りラジアルタイヤ。
1. A radial carcass comprising a pair of beads and a pair of sidewalls, and a tread part continuous toroidally on both sidewalls, and a radial carcass that reinforces these parts, and the tread part is reinforced at the outer periphery of the carcass. In a pneumatic radial tire equipped with a belt, the treads form a pair facing the end edges on both sides from the width center of the tread, and bend and extend once in the middle toward the end of the tread. The outer contour of the ground contact tread obtained by applying a regular load to a tire that has a main groove and is assembled to a compatible rim and filled with regular internal pressure.
Regarding the ground contact length (L (mm)) and maximum ground contact width (W (mm)) on the tire equatorial plane, the length of the sloping main groove width bisector from the center of the tread width to the bend is projected on the tire equatorial plane. (L1 (mm)) satisfies L1 ≧ L, and the arc length (La (mm)) in the tread width direction between the center of the tread width and the bent portion on the groove width bisector is the maximum. Ground width (W (m
m)) 0.8 times the tire equatorial plane to both sides, and using the contact length (L 0.8 (mm)) at the position, α = -0.175 + 0.875 (L 0.8 / L) , La = α × (W / 2) ± 5 mm, and the inclination angle (θ1) of the groove width bisector with respect to the tread circumference within the arc length (La (mm)) is 0 ° <θ1 ≦ tan -1 (La / L) and the inclination angle (θ2) of the groove width bisector from the refraction part to the edge with respect to the tread circumference should satisfy tan -1 (La / L) <θ2 ≦ θ1 + 45 ° Pneumatic radial tire featuring.
JP32048995A 1995-12-08 1995-12-08 Pneumatic radial tire Expired - Fee Related JP3554423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32048995A JP3554423B2 (en) 1995-12-08 1995-12-08 Pneumatic radial tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32048995A JP3554423B2 (en) 1995-12-08 1995-12-08 Pneumatic radial tire

Publications (2)

Publication Number Publication Date
JPH09156317A true JPH09156317A (en) 1997-06-17
JP3554423B2 JP3554423B2 (en) 2004-08-18

Family

ID=18122022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32048995A Expired - Fee Related JP3554423B2 (en) 1995-12-08 1995-12-08 Pneumatic radial tire

Country Status (1)

Country Link
JP (1) JP3554423B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000030874A3 (en) * 1998-11-19 2000-08-31 Pirelli Tyre for vehicle wheels
JP2002144816A (en) * 2000-11-06 2002-05-22 Sumitomo Rubber Ind Ltd Tire tread profile developing method and pneumatic tire determined by this method
JP2004224249A (en) * 2003-01-24 2004-08-12 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2004237941A (en) * 2003-02-10 2004-08-26 Yokohama Rubber Co Ltd:The Pneumatic tire
EP2428370A1 (en) * 2010-09-09 2012-03-14 Sumitomo Rubber Industries, Ltd. Motorcycle tire
WO2013014897A1 (en) * 2011-07-22 2013-01-31 株式会社ブリヂストン Pneumatic tire
CN108602387A (en) * 2015-12-28 2018-09-28 米其林集团总公司 Heavy truck tires tyre surface and heavy truck tires

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000030874A3 (en) * 1998-11-19 2000-08-31 Pirelli Tyre for vehicle wheels
JP2002144816A (en) * 2000-11-06 2002-05-22 Sumitomo Rubber Ind Ltd Tire tread profile developing method and pneumatic tire determined by this method
JP4580086B2 (en) * 2000-11-06 2010-11-10 住友ゴム工業株式会社 Tire tread profile deployment method
JP2004224249A (en) * 2003-01-24 2004-08-12 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2004237941A (en) * 2003-02-10 2004-08-26 Yokohama Rubber Co Ltd:The Pneumatic tire
EP2428370A1 (en) * 2010-09-09 2012-03-14 Sumitomo Rubber Industries, Ltd. Motorcycle tire
WO2013014897A1 (en) * 2011-07-22 2013-01-31 株式会社ブリヂストン Pneumatic tire
CN103596776A (en) * 2011-07-22 2014-02-19 株式会社普利司通 Pneumatic tire
JPWO2013014897A1 (en) * 2011-07-22 2015-02-23 株式会社ブリヂストン Pneumatic tire
CN108602387A (en) * 2015-12-28 2018-09-28 米其林集团总公司 Heavy truck tires tyre surface and heavy truck tires

Also Published As

Publication number Publication date
JP3554423B2 (en) 2004-08-18

Similar Documents

Publication Publication Date Title
US5435365A (en) Pneumatic tire
JP4785490B2 (en) Inclined groove structure of tire tread
JP6992533B2 (en) Pneumatic tires
JPH08337101A (en) Pneumatic tire
CN107949490B (en) Pneumatic tire
JP4202824B2 (en) Pneumatic tire
WO2018235400A1 (en) Pneumatic tire
CN107531105B (en) Pneumatic tire
US5837074A (en) Pneumatic tire
RU2245257C2 (en) High-efficiency type for automobile
CN109153293B (en) Pneumatic tire
EP0728599B1 (en) Pneumatic tyre
JPH09156317A (en) Pneumatic radial tire
JPH069921B2 (en) Radial tires for high-speed running on heavy roads
JP3332358B2 (en) Pneumatic tire
JP2966759B2 (en) Pneumatic tire
JP6780687B2 (en) Pneumatic tires
CN107531107B (en) Pneumatic tire
JPH06191226A (en) Pneumatic tire
JP7013765B2 (en) Pneumatic tires
JPS6226105A (en) Pneumatic radial tire for passenger car
WO2020008699A1 (en) Pneumatic tire
JPH07276915A (en) Pneumatic tire
WO2022025172A1 (en) Tire
JP7196588B2 (en) pneumatic tire

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees