JPH09155519A - Temperature control method and temperature control apparatus for half-molten metal slurry - Google Patents

Temperature control method and temperature control apparatus for half-molten metal slurry

Info

Publication number
JPH09155519A
JPH09155519A JP7320650A JP32065095A JPH09155519A JP H09155519 A JPH09155519 A JP H09155519A JP 7320650 A JP7320650 A JP 7320650A JP 32065095 A JP32065095 A JP 32065095A JP H09155519 A JPH09155519 A JP H09155519A
Authority
JP
Japan
Prior art keywords
molten metal
semi
container
temperature
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7320650A
Other languages
Japanese (ja)
Other versions
JP3536491B2 (en
Inventor
Atsushi Yoshida
淳 吉田
Mitsuru Adachi
充 安達
Tatsuo Sakamoto
達雄 阪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP32065095A priority Critical patent/JP3536491B2/en
Priority to CA002177455A priority patent/CA2177455C/en
Priority to EP96108499A priority patent/EP0745694B1/en
Priority to EP02028272A priority patent/EP1331279A3/en
Publication of JPH09155519A publication Critical patent/JPH09155519A/en
Priority to US09/490,983 priority patent/US6769473B1/en
Priority to US10/852,952 priority patent/US6851466B2/en
Application granted granted Critical
Publication of JP3536491B2 publication Critical patent/JP3536491B2/en
Priority to US11/008,749 priority patent/US7121320B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To maintain molten metal contg. many crystal nuchei at a half-molten metal slurry by previously holding a vessel for holding the molten metal at a prescribed temp., and putting the molten metal therein, then executing temp. control in such a manner that the molten metal is cooled at a prescribed cooling rate. SOLUTION: The vessel 102 which exists in a heating vessel placing position A and is previously heated to the prescribed temp. is transported by a robot 180 to a position B where the molten metal contg. the many crystal nuclei held in a holding furnace 10 is packed therein. This vessel 102 is transported to a position C where the vessel is passed through the inside of a half-molten metal cooling furnace 120 and is cooled. The vessel is thereafter transported to a position D. If the injection sleeve 202 of a molding machine 200 is ready to accept, the vessel is moved to a position E and the half-molten metal slurry in the container 102 is poured into the injection sleeve 202. The empty vessel 102 with which the pouring ends is transported to a position F and after the vessel is cooled for the prescribed time in a vessel cooling furnace 150, the vessel is further passed through a vessel holding furnace 160 and is held at a suitable temp. The vessel is again returned to the position A. As a result, the molten metal maintains the many crystal nuclei as they are and has good characteristics. The simple, easy, continuous and automatic pouring is thus made possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、レオキャスト法ま
たはチクソキャスト法に使用される半溶融金属スラリの
温度管理方法および温度管装置に関するものであり、特
に、多数の結晶核を含み容器内で冷却された半溶融金属
スラリを連続的に得る半溶融金属スラリの温度管理方法
および温度管理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature control method for a semi-molten metal slurry used in a rheocast method or a thixocast method and a temperature tube device, and particularly to a method for controlling the temperature in a container containing a large number of crystal nuclei. The present invention relates to a temperature control method and a temperature control device for a semi-molten metal slurry that continuously obtains a cooled semi-molten metal slurry.

【0002】[0002]

【従来の技術】チクソキャスト法は、従来の鋳造法に比
べて鋳造欠陥や偏析が少なく、金属組織が均一で、金型
寿命が長いことや成形サイクルが短いなどの利点があ
り、最近注目されている技術である。この成形法におい
て使用されるビレットは、半溶融温度領域で機械撹拌や
電磁撹拌を実施するか、あるいは加工後の再結晶を利用
することによって得られた球状化組織を特徴とするもの
である。
2. Description of the Related Art Thixocasting has attracted attention recently because it has fewer casting defects and segregation than conventional casting methods, has a uniform metal structure, has a long mold life, and has a short molding cycle. Technology. The billet used in this molding method is characterized by a spheroidized structure obtained by performing mechanical stirring or electromagnetic stirring in a semi-melting temperature range or utilizing recrystallization after processing.

【0003】これに対して、従来鋳造法による素材を用
いて半溶融成形する方法も知られている。これは、たと
えば、等軸晶組織を発生しやすいマグネシウム合金にお
いてさらに微細な結晶を生じせしめるためにZrを添加
する方法や炭素系微細化剤を使用する方法であり、また
アルミニウム合金において微細化剤としてAl−5%T
i−1%B母合金を従来の2倍〜10倍程度添加する方
法であり、これら方法により得られた素材を半溶融温度
域に加熱し初晶を球状化させ成形する方法である。ま
た、固溶限以内の合金に対して、固相線近くの温度まで
比較的急速に加熱した後、素材全体の温度を均一にし局
部的な溶融を防ぐために、固相線を超えて材料が柔らか
くなる適当な温度まで緩やかに加熱して成形する方法が
知られている。また、固相率が70〜80%の半溶融金
属をコンテナに挿入し、押出成形することが知られてい
る。
On the other hand, a method of semi-melt molding using a raw material by a conventional casting method is also known. This is, for example, a method of adding Zr or a method of using a carbon-based refiner in order to generate finer crystals in a magnesium alloy that is likely to generate an equiaxed crystal structure, and a refiner for aluminum alloys. As Al-5% T
This is a method in which an i-1% B mother alloy is added about 2 to 10 times that of the conventional method, and the raw material obtained by these methods is heated to a semi-melting temperature range to form primary crystals into a spherical shape and then molded. In addition, for alloys within the solid solution limit, after heating relatively quickly to a temperature near the solidus line, the temperature of the entire material is made uniform, and in order to prevent local melting, the material is exceeded above the solidus line. There is known a method of gently heating to an appropriate temperature for softening and molding. It is also known to insert a semi-molten metal having a solid fraction of 70 to 80% into a container and perform extrusion molding.

【0004】一方、ビレットを半溶融温度領域まで昇温
し成形する方法と異なり、球状の初晶を含む融液を連続
的に生成し、ビレットとして一旦固化することなく、そ
のままそれを成形するレオキャスト法が最近注目される
ようになった。
On the other hand, unlike the method in which the billet is heated to a semi-melting temperature region and molded, a melt containing spherical primary crystals is continuously produced, and the billet is molded as it is without solidifying once. The cast method has recently come to the fore.

【0005】このようなチクソキャスト法やレオキャス
ト法で、半溶融金属スラリを成形した利点は下記のとお
りである。 (1)マクロ偏析が軽減され、均一な材質が得られる。 (2)成形開始時、すでに一部固相が晶出しており、凝
固収縮量が減少するため鋳巣の少ない製品が得られる。 (3)成形までに一部凝固潜熱を放出しているので、金
型の熱負荷が軽減される。 (4)成形時放出する潜熱量が少ないので、加圧時間が
短縮でき生産性が向上する。 (5)溶湯と比べて高粘度なので、高速射出しても層流
充填挙動を示し空気の巻き込みが少ない。
The advantages of molding a semi-molten metal slurry by such a thixocasting method or a rheocasting method are as follows. (1) Macro segregation is reduced and a uniform material is obtained. (2) At the start of molding, a part of the solid phase has already crystallized out, and the amount of solidification shrinkage decreases, so that a product with few cavities can be obtained. (3) Since the latent heat of solidification is partially released before molding, the heat load on the mold is reduced. (4) Since the amount of latent heat released during molding is small, the pressurizing time can be shortened and the productivity is improved. (5) Since the viscosity is higher than that of the molten metal, even if it is injected at high speed, it exhibits a laminar flow filling behavior and little air entrapment.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、これら
の利点を十分享受するためには、半溶融金属スラリが高
固相率であるとともに、低粘度であることが必要であ
る。このため、従来から機械攪拌や電磁攪拌により、良
好な性状の半溶融金属スラリ(スラリ中に含まれる固相
が微細で、球形状に近いものほど、同じ固相率でも低粘
度となり、「良好な性状」となる)とする方法が実施さ
れてきた。しかし、これらの方法の難点は、大懸かりな
設備と複雑な工程を必要とし、「製品の製造コストが高
くなる」という欠点をもっていた。金属学的手法を用い
て多数の結晶核を含有する溶湯を容器に保持して良好な
性状の半溶融金属スラリを得る方法が過去に提案されて
いる。しかしながら、これらの方法の大量生産的連続操
業を実現するためには、具体的には、下記に示すような
課題を抱えていた。 (1)冷却速度が速すぎると、容器内壁面に凝固相が生
成したり固相粒子が球形状でなく花弁状に成長する。特
に、注湯直後の冷却速度が速すぎると、良好な性状の半
溶融金属スラリを得ることが難しい。一方、遅すぎると
固相粒子は粗大化してしまう。このように、良好な性状
の半溶融金属スラリを得るためには、容器内における冷
却過程で、実情に即した正確な温度管理が要求される。 (2)さらに、実操業における生産性を考慮すると、工
程時間の短縮が要求され、半溶融金属スラリの冷却過程
は、「良好な性状の半溶融金属スラリを最短時間で確実
に生成する」ことが必要となる。このため、温度管理装
置は、次の条件を満たさなければならない。 半溶融金属の冷却工程における冷却能力が、注湯し
てからの時間経過にともない可変に制御できること。 溶湯の注湯をうける容器温度も、あらかじめ毎回所
定の温度になるように調整し制御できること(容器を連
続使用すると、熱履歴により容器温度は毎回異なる温度
となる)。
However, in order to fully enjoy these advantages, it is necessary for the semi-molten metal slurry to have a high solid phase ratio and a low viscosity. For this reason, semi-molten metal slurries with good properties have been conventionally obtained by mechanical stirring or electromagnetic stirring (the finer the solid phase contained in the slurry, the closer it is to the spherical shape, the lower the viscosity even with the same solid phase ratio. However, it has been implemented. However, the drawback of these methods is that they require large-scale equipment and complicated steps, and "the manufacturing cost of the product is high". There has been proposed in the past a method of obtaining a semi-molten metal slurry having good properties by holding a molten metal containing a large number of crystal nuclei in a container by using a metallurgical technique. However, in order to realize the mass-production continuous operation of these methods, specifically, there were the following problems. (1) If the cooling rate is too fast, a solidified phase is generated on the inner wall surface of the container or solid phase particles grow in a petal shape instead of a spherical shape. In particular, if the cooling rate immediately after pouring is too fast, it is difficult to obtain a semi-molten metal slurry having good properties. On the other hand, if it is too slow, the solid phase particles will become coarse. As described above, in order to obtain a semi-molten metal slurry having good properties, accurate temperature control according to the actual situation is required during the cooling process in the container. (2) Further, considering the productivity in actual operation, it is required to shorten the process time, and the cooling process of the semi-molten metal slurry is "to surely generate the semi-molten metal slurry of good properties in the shortest time". Is required. Therefore, the temperature management device must satisfy the following conditions. The cooling capacity in the cooling process of semi-molten metal should be variably controlled with the lapse of time after pouring. The temperature of the container that receives the pouring of the molten metal can also be adjusted and controlled so as to reach a predetermined temperature each time in advance (if the container is continuously used, the temperature of the container will be different each time due to heat history).

【0007】(3)本発明の装置で製造した半溶融金属
スラリをすぐに成形するレオキャスト法の場合、「成形
機のサイクルのばらつきに対応して半溶融金属スラリを
供給する」という苛酷な要求にも答えなければならな
い。このため、半溶融金属を成形できる温度領域では、
なるべく長時間に亘って半溶融金属の温度をこの温度領
域内の一定の温度に維持することが要求される。 (4)半溶融金属の冷却過程では、高さ方向に長い容器
(たとえば、成形機の射出スリーブ等へ供給するとき)
を使用する場合、上下端の表層部の温度が中央部に比べ
て低下し、中央部や内部で良好な粘性を保有していても
上下端の表層部は高粘性であったり、すでに凝固してし
まっていたりするので、半溶融金属スラリ全体で均一な
粘性を持ち得ない(この上下表層部における温度低下の
傾向は、1回に製造する半溶融金属スラリ量が多量にな
るほど著しい)。このように、レオキャスト法の場合、
スラリ内の温度分布が、特に問題となり、高粘性のスラ
リや凝固相がスラリ取り出し作業を困難にすると同時
に、成形過程における充填不良等の悪影響を惹起する。 (5)マグネシウム合金等のように活性の高い金属スラ
リの場合、半溶融金属冷却部における冷却期間中の酸
化、燃焼を防止しなければならない。しかし、酸化防止
に最も効果のあるSF6 ガスは金属を腐食させやすい特
性があり、作業環境に好ましくない影響を及ぼす。 本発明は、上記の課題を解決するとともに、簡便でコン
パクトな設備で、しかも連続的に操業できる半溶融金属
スラリの製造装置を提供することを目的としている。
(3) In the case of the rheocast method in which the semi-molten metal slurry produced by the apparatus of the present invention is immediately molded, it is harsh that "the semi-molten metal slurry is supplied corresponding to the variation of the cycle of the molding machine". You have to answer the request. Therefore, in the temperature range where semi-molten metal can be formed,
It is required to maintain the temperature of the semi-molten metal at a constant temperature within this temperature range for as long as possible. (4) In the process of cooling the semi-molten metal, a container long in the height direction (for example, when supplying to an injection sleeve of a molding machine)
When using, the temperature of the surface layer of the upper and lower ends is lower than that of the central part, and even if it has good viscosity in the central part and inside, the surface part of the upper and lower ends is highly viscous or has already solidified. Therefore, the semi-molten metal slurry cannot have a uniform viscosity as a whole (the tendency of temperature decrease in the upper and lower surface layer portions is remarkable as the amount of the semi-molten metal slurry produced at one time increases). Thus, in the case of the rheocast method,
The temperature distribution in the slurry becomes a particular problem, and the highly viscous slurry and the solidified phase make it difficult to take out the slurry and, at the same time, cause adverse effects such as defective filling in the molding process. (5) In the case of a highly active metal slurry such as a magnesium alloy, it is necessary to prevent oxidation and combustion during the cooling period in the semi-molten metal cooling section. However, SF 6 gas, which is most effective in preventing oxidation, has the property of easily corroding metals, which adversely affects the working environment. SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems and to provide a semi-molten metal slurry manufacturing apparatus which is simple and compact and can be continuously operated.

【0008】[0008]

【課題を解決するための手段】以上の課題を解決すると
ともに、設備費の安価な半溶融金属スラリの製造装置を
提供するために、本発明においては、第1の発明では、
多数の結晶核を含む溶湯を容器内に入れて冷却し、所定
の固相量と液相量とが共存する半溶融金属スラリを得た
後に、該半溶融金属スラリを成形機に供給して加圧成形
する成形設備に使用される該半溶融金属スラリを温度管
理する方法において、あるいは、加熱して半溶融金属ス
ラリにした後に成形機に供給して加圧成形されるビレッ
トの製造に際して該ビレットの素材となる多数の結晶核
を含む溶湯を容器内に入れて冷却し、所定の固相量と液
相量とが共存する半溶融金属スラリを得た後に、該半溶
融金属スラリを冷却固化して前記ビレットにするときの
半溶融金属スラリの温度管理方法において、該溶湯を保
持する容器を、該溶湯を入れる前にあらかじめ設定した
所望の温度になるように温度管理し、該溶湯を該容器内
に入れた後は、該溶湯があらかじめ意図した冷却速度で
冷却するように該容器を温度管理することとした。ま
た、第2の発明では、多数の結晶核を含む溶湯を溶湯保
持炉より容器内に入れて冷却し、所定の固相量と液相量
とが共存する半溶融金属スラリを得た後に直接、あるい
は、一旦冷却固化してビレットにした後に再度加熱して
半溶融金属スラリとし、該半溶融金属スラリを成形機に
供給して加圧成形する成形設備に使用される該半溶融金
属スラリの温度管理装置であって、該溶湯を保持する容
器と、該容器を温度管理する容器温度制御部と、該容器
内へ入れられた該溶湯があらかじめ意図した冷却速度で
冷却するように温度管理する半溶融金属冷却部と、該容
器を把持して移動搬送するロボットおよび該容器を積載
して移動搬送するコンベヤ等の容器搬送装置とで構成さ
れたものとした。そして、第3の発明では、第2の発明
の半溶融金属スラリの温度管理装置における容器温度制
御部は、容器の目標温度以下の雰囲気温度で冷却する容
器冷却炉と、該容器目標温度の雰囲気温度で容器温度を
保持する容器保温炉とで構成されたものとした。第4の
発明では、容器冷却炉は、該容器冷却炉内に容器目標温
度以下の雰囲気温度の空気を循環させる空気循環手段
と、該空気の循環風量ならびに該空気温度を制御する制
御手段とを備えた構成とした。さらに、第5の発明の方
法では、アルミニウム金属もしくはアルミニウム合金よ
りなる半溶融金属を入れる容器の温度管理を行なう場合
に、第3の発明の容器制御部の容器冷却炉の炉内温度を
室温〜300℃に保持し、容器保温炉の炉内温度を50
℃〜350℃に保持するようにした。一方、第6の発明
の方法では、マグネシウム金属もしくはマグネシウム合
金よりなる半溶融金属を入れる容器の温度管理を行なう
場合に、第3の発明の容器制御部の容器冷却炉の炉内温
度を室温〜350℃に保持し、容器保温炉の炉内温度を
200℃〜450℃に保持するようにした。第7の発明
では、第2の発明における半溶融金属冷却部を、半溶融
金属冷却炉と該半溶融金属冷却炉の炉内温度に比べて高
温に炉内温度を温度管理する半溶融金属徐冷炉とで構成
した。第8の発明では、第7の発明の半溶融金属冷却部
において、半溶融金属冷却炉は、炉内を通過移動するコ
ンベヤ装置の上に載置された容器の側面部を左右上下2
対の断熱板で上部側面部、中央側面部ならびに下部側面
部の3つの領域に区画形成するとともに、該上部側面部
と該下部側面部に、該中央側面部に通気する熱風温度よ
りも高温に加熱するヒータを設置した構成とした。ま
た、第9の発明では、第7の発明の半溶融金属冷却部に
おいて、半溶融金属冷却炉における容器内の半溶融金属
スラリをあらかじめ設定した一定時間冷却した後、成形
機の射出スリーブが容器内の半溶融金属スラリを受入れ
られる態勢にあるときは、受入れ態勢完了の伝達信号を
半溶融金属冷却炉以降の容器搬送装置に発して該容器内
の半溶融金属スラリを前記射出スリーブへ供給し、該射
出スリーブが容器内の半溶融金属スラリを受入れられる
態勢にないときは、該半溶融金属冷却炉以降の容器搬送
装置に動作指令を発して該容器を半溶融金属徐冷炉へ移
動させるとともに、該半溶融金属徐冷炉で前記受入れ態
勢が整うまで該半溶融金属スラリを冷却保持することと
した。そして、第10の発明では、第7の発明の半溶融
金属徐冷炉の炉内を500℃以上に保持するようにし
た。また、第11の発明では、第8の発明の半溶融金属
冷却炉における上部側面部と下部側面部のうちいずれか
を、中央側面部に通気する雰囲気温度よりも高温に保持
するか、もしくは、上部側面部と下部側面部の両方を、
中央側面部に通気する雰囲気温度よりも高温に保持する
こととした。
In order to solve the above problems and to provide an apparatus for producing a semi-molten metal slurry which is inexpensive in equipment cost, in the present invention, in the first invention,
After a molten metal containing a large number of crystal nuclei is placed in a container and cooled to obtain a semi-molten metal slurry in which a predetermined solid phase amount and a liquid phase amount coexist, the semi-molten metal slurry is supplied to a molding machine. In a method of controlling the temperature of the semi-molten metal slurry used in a molding facility for pressure molding, or in the production of a billet to be pressure-molded by heating the semi-molten metal slurry and then supplying it to a molding machine. A molten metal containing a large number of crystal nuclei, which is the material of the billet, is placed in a container and cooled to obtain a semi-molten metal slurry in which a predetermined solid phase amount and a liquid phase amount coexist, and then the semi-molten metal slurry is cooled. In the method for controlling the temperature of a semi-molten metal slurry when solidifying into the billet, the temperature of the container holding the molten metal is controlled to a desired temperature set before the molten metal is charged, and the molten metal is After putting in the container, Hot water was decided to temperature control the container to cool in advance intended cooling rate. Further, in the second invention, a molten metal containing a large number of crystal nuclei is put into a container from a molten metal holding furnace and cooled to obtain a semi-molten metal slurry in which a predetermined solid phase amount and a liquid phase amount coexist, and then directly. Alternatively, once cooled and solidified into a billet, the billet is heated again to form a semi-molten metal slurry, and the semi-molten metal slurry is supplied to a molding machine to perform pressure molding. A temperature control device, a container for holding the molten metal, a container temperature control unit for temperature controlling the container, and temperature control so that the molten metal put in the container is cooled at an intended cooling rate in advance. A semi-molten metal cooling unit, a robot for holding and moving the container, and a container transfer device such as a conveyor for loading and moving the container for transfer. Further, in the third invention, the container temperature control unit in the temperature management device for semi-molten metal slurry of the second invention comprises a container cooling furnace for cooling at an atmospheric temperature equal to or lower than the target temperature of the container, and an atmosphere of the container target temperature. It was configured with a container heat-retaining furnace that holds the container temperature at a temperature. In the fourth invention, the container cooling furnace includes an air circulating means for circulating air having an ambient temperature equal to or lower than the container target temperature in the container cooling furnace, and a control means for controlling the circulating air volume of the air and the air temperature. It was a prepared structure. Furthermore, in the method of the fifth aspect of the invention, when the temperature of the vessel containing the semi-molten metal made of aluminum metal or aluminum alloy is controlled, the temperature in the vessel of the vessel cooling furnace of the vessel control unit of the third aspect of the invention ranges from room temperature to room temperature. Keep the temperature inside the container heat-retaining furnace at 300 ° C.
The temperature was kept at ℃ to 350 ℃. On the other hand, in the method of the sixth invention, when the temperature of the container containing the semi-molten metal made of magnesium metal or magnesium alloy is controlled, the temperature in the container cooling furnace of the container control unit of the third invention is set to room temperature to The temperature was kept at 350 ° C., and the temperature inside the container keeping furnace was kept at 200 ° C. to 450 ° C. In a seventh invention, the semi-molten metal cooling unit in the second invention is a semi-molten metal cooling furnace and a semi-molten metal slow cooling furnace for controlling the temperature of the semi-molten metal to a higher temperature than the temperature of the semi-molten metal cooling furnace. It consisted of and. In an eighth invention, in the semi-molten metal cooling part of the seventh invention, the semi-molten metal cooling furnace is arranged so that the side surface part of the container placed on the conveyor device passing through the furnace moves up and down in left, right, up and down directions.
A pair of heat insulating plates are used to partition and form three regions of the upper side surface portion, the central side surface portion, and the lower side surface portion, and the upper side surface portion and the lower side surface portion are heated to a temperature higher than the hot air temperature vented to the central side surface portion. A heater for heating was installed. Further, in the ninth invention, in the semi-molten metal cooling section of the seventh invention, after cooling the semi-molten metal slurry in the container in the semi-molten metal cooling furnace for a preset period of time, the injection sleeve of the molding machine is When the semi-molten metal slurry in the container is ready to be received, a transmission signal indicating that the acceptance condition is completed is sent to the container conveying device after the semi-molten metal cooling furnace to supply the semi-molten metal slurry in the container to the injection sleeve. When the injection sleeve is not ready to receive the semi-molten metal slurry in the container, an operation command is issued to the container conveying device after the semi-molten metal cooling furnace to move the container to the semi-molten metal annealing furnace, The semi-molten metal slurry was cooled and held in the semi-molten metal slow cooling furnace until the receiving condition was prepared. In the tenth invention, the inside of the semi-molten metal annealing furnace of the seventh invention is kept at 500 ° C or higher. Further, in the eleventh invention, either the upper side surface portion or the lower side surface portion of the semi-molten metal cooling furnace of the eighth invention is kept at a temperature higher than an atmospheric temperature for venting to the central side surface portion, or Both the upper side part and the lower side part,
It was decided to keep the temperature higher than the ambient temperature for ventilating the central side surface.

【0009】[0009]

【発明の実施の態様】本発明においては、第1の発明で
ある半溶融金属スラリの温度管理方法を採用することに
よって、多数の結晶核を含む溶湯を容器内に入れて冷却
し、所定の固相量と液相量とが共存する半溶融金属スラ
リを得た後に、該半溶融金属スラリを成形機に供給して
加圧成形する成形設備に使用される該半溶融金属スラリ
を温度管理する方法において、あるいは、加熱して半溶
融金属スラリにした後に成形機に供給して加圧成形され
るビレットの製造に際して該ビレットの素材となる多数
の結晶核を含む溶湯を容器内に入れて冷却し、所定の固
相量と液相量とが共存する半溶融金属スラリを得た後
に、該半溶融金属スラリを冷却固化して前記ビレットに
するときの半溶融金属スラリの温度管理方法において、
該溶湯を保持する容器を、該溶湯を入れる前にあらかじ
め設定した所望の温度になるように温度管理し、該溶湯
を該容器内に入れた後は、該溶湯があらかじめ意図した
冷却速度で冷却するように該容器を温度管理することに
よって、多数の結晶核を含む半溶融金属スラリを成形機
の射出スリーブ内へ容器を介して簡便容易に、かつ、円
滑に供給できるから、加圧成形における良好な材料の供
給が確保された安定した連続操業が達成される。また、
第2、第3、第4、第7、第8の装置発明では、それぞ
れ、半溶融金属スラリの温度管理上必要、かつ、適切な
装置構成を形成することによって、多数の結晶核を含む
半溶融金属スラリを成形機の射出スリーブ内へ容器を介
して簡便容易に、かつ、円滑に供給できるようにした。
上部側面部と下部側面部のうちいずれかを、中央側面部
に通気する雰囲気温度よりも高温に保持するか、もしく
は、上部側面部と下部側面部の両方を、中央側面部に通
気する雰囲気温度よりも高温に保持することとした。す
なわち、第2の発明では、半溶融金属スラリの温度管理
装置は、半溶融金属スラリを入れる容器と、該容器を温
度管理する容器温度制御部と、該容器内へ入れられた該
溶湯があらかじめ設定した温度降下曲線にしたがって冷
却するように温度管理する半溶融金属冷却部とで構成し
て、自動的に所望の冷却速度で冷却させるようにして、
半溶融金属スラリを冷却保持する。第3の発明では、半
溶融金属スラリの温度管理装置における容器温度制御部
は、容器の目標温度以下の雰囲気温度で冷却する容器冷
却炉と、該容器目標温度の雰囲気温度で容器温度を保持
する容器保温炉とで構成して、半溶融金属スラリを所望
の温度に冷却保持する。第4の発明では、容器冷却炉
は、該容器冷却炉内に容器目標温度以下の雰囲気温度の
空気を循環させる空気循環手段と、該空気の循環風量な
らびに該空気温度を制御する制御手段とを備えたものと
し、温度管理の自動化を一層強化した。第7の発明は、
半溶融金属冷却部を、半溶融金属冷却炉と該半溶融金属
冷却炉の炉内温度に比べて高温に炉内温度を温度管理す
る半溶融金属徐冷炉と容器の搬送装置とで構成し、第8
の発明は半溶融金属冷却炉の炉内を通過移動するコンベ
ヤ装置の上に載置された容器の側面部を左右上下2対の
断熱板で上部側面部、中央側面部ならびに下部側面部の
3つの領域に区画形成するとともに、該上部側面部と該
下部側面部に、該中央側面部に通気する熱風温度よりも
高温に加熱するヒータを設置して、比較的熱放散の大き
い容器上部側面部と容器下部側面部を中央側面部に比べ
て高温に保持できるから、容器内溶湯の温度均一化が促
進される。すなわち、容器内溶湯の上下間の温度落差を
無くし、溶湯温度の均一化を図った。そして、第9の発
明の方法のように、半溶融金属冷却炉における容器内の
半溶融金属スラリをあらかじめ設定した一定時間冷却し
た後、成形機の射出スリーブが容器内の半溶融金属スラ
リを受入れられる態勢にあるときは、受入れ態勢完了の
伝達信号を半溶融金属冷却炉以降の容器搬送装置に発し
て該容器内の半溶融金属スラリを前記射出スリーブへ供
給し、該射出スリーブが容器内の半溶融金属スラリを受
入れられる態勢にないときは、該半溶融金属冷却炉以降
の容器搬送装置に動作指令を発して該容器を半溶融金属
徐冷炉へ移動させるとともに、該半溶融金属徐冷炉で前
記受入れ態勢が整うまで該半溶融金属スラリを冷却保持
することにして、供給態勢の状況に応じて臨機応変に半
溶融金属スラリを半溶融金属徐冷炉へ通したり、半溶融
金属徐冷炉へ通さず直接成形機へ供給したりして半溶融
金属スラリの温度を所望の温度となるよう温度管理する
こととした。さらに、第5、第6の発明の方法発明で
は、それぞれ、アルミニウム系やマグネシウム系の金属
または合金の実情にマッチした具体的な温度範囲に、容
器冷却炉や容器保温炉の炉内を温度管理するようにした
ので、良好な成形品が得られることになる。そして、第
10の方法発明では、半溶融金属徐冷炉の炉内を500
℃以上に保持するようにして、急激な半溶融金属スラリ
の冷却による固相率の増加を防止したものである。ま
た、第11の方法発明では、半溶融金属冷却炉の上部側
面部と下部側面部のうちいずれかを、中央側面部に通気
する雰囲気温度よりも高温に保持するか、もしくは、上
部側面部と下部側面部の両方を、中央側面部に通気する
雰囲気温度よりも高温に保持することにより、中央側面
部に比べて比較的冷却の速い上部側面部や下部側面部を
高温に保つことによって、容器全体の冷却速度の均一化
を図るようにした。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, by adopting the temperature control method for a semi-molten metal slurry according to the first invention, a molten metal containing a large number of crystal nuclei is placed in a container and cooled to a predetermined temperature. After obtaining a semi-molten metal slurry in which a solid phase amount and a liquid phase amount coexist, the temperature control is performed on the semi-molten metal slurry used in a molding facility for supplying the semi-molten metal slurry to a molding machine for pressure molding. In the method described above, or when a semi-molten metal slurry is heated and supplied to a molding machine and then pressure-molded to produce a billet, a molten metal containing a large number of crystal nuclei, which is a raw material of the billet, is placed in a container. In a method for controlling the temperature of a semi-molten metal slurry when the semi-molten metal slurry is cooled to obtain a semi-molten metal slurry in which a predetermined solid phase amount and a liquid phase amount coexist, and the semi-molten metal slurry is cooled and solidified into the billet. ,
The container holding the molten metal is temperature-controlled so as to reach a desired temperature set in advance before the molten metal is put therein, and after the molten metal is put into the container, the molten metal is cooled at an intended cooling rate in advance. By controlling the temperature of the container as described above, the semi-molten metal slurry containing a large number of crystal nuclei can be simply and easily supplied into the injection sleeve of the molding machine through the container easily and smoothly. Stable continuous operation with good material supply is achieved. Also,
In the second, third, fourth, seventh and eighth apparatus inventions, a semi-molten metal slurry containing a large number of crystal nuclei is formed by forming an apparatus configuration which is necessary and appropriate for temperature control of the molten metal slurry. The molten metal slurry can be easily and smoothly supplied into the injection sleeve of the molding machine through the container.
Either one of the upper and lower side surfaces is kept at a temperature higher than the ambient temperature for venting to the central side surface, or both the upper and lower side surfaces are ventilated to the central side surface. It was decided to keep the temperature higher than that. That is, in the second invention, the temperature control device for the semi-molten metal slurry has a container for containing the semi-molten metal slurry, a container temperature control unit for controlling the temperature of the container, and the molten metal contained in the container in advance. Configured with a semi-molten metal cooling unit that controls the temperature to cool according to the set temperature drop curve, and automatically cools at a desired cooling rate,
The semi-molten metal slurry is kept cold. In the third invention, the container temperature control unit in the temperature control device for the semi-molten metal slurry holds a container cooling furnace that cools the container at an atmospheric temperature equal to or lower than the target temperature of the container and the container temperature at the atmospheric temperature of the target temperature of the container. It is composed of a container warming furnace to cool and hold the semi-molten metal slurry at a desired temperature. In the fourth invention, the container cooling furnace includes an air circulating means for circulating air having an ambient temperature equal to or lower than the container target temperature in the container cooling furnace, and a control means for controlling the circulating air volume of the air and the air temperature. As a result, the automation of temperature control was further enhanced. The seventh invention is
The semi-molten metal cooling unit comprises a semi-molten metal cooling furnace, a semi-molten metal slow cooling furnace for controlling the temperature in the furnace to a temperature higher than the temperature in the semi-molten metal cooling furnace, and a container conveying device. 8
Of the invention, the side surface portion of the container placed on the conveyor device that moves through the inside of the semi-molten metal cooling furnace is provided with two pairs of left and right upper and lower heat insulating plates, which are the upper side surface portion, the central side surface portion and the lower side surface portion. In addition to partitioning and forming into two regions, a heater for heating to a temperature higher than the hot air temperature ventilated to the central side surface portion is installed on the upper side surface portion and the lower side surface portion, and the container upper side surface portion having a relatively large heat dissipation. Since the side surface of the lower portion of the container can be kept at a higher temperature than the side surface of the central portion, uniform temperature of the molten metal in the container is promoted. That is, the temperature difference between the top and bottom of the molten metal in the container was eliminated, and the molten metal temperature was made uniform. Then, as in the method of the ninth invention, after cooling the semi-molten metal slurry in the container in the semi-molten metal cooling furnace for a preset period of time, the injection sleeve of the molding machine receives the semi-molten metal slurry in the container. When it is in a ready state, a transmission signal indicating the completion of the acceptance state is sent to the container conveying device after the semi-molten metal cooling furnace to supply the semi-molten metal slurry in the container to the injection sleeve, and the injection sleeve When the semi-molten metal slurry is not ready to be received, an operation command is issued to the container conveying device after the semi-molten metal cooling furnace to move the container to the semi-molten metal annealing furnace, and the semi-molten metal annealing furnace receives the semi-molten metal slurry. The semi-molten metal slurry is cooled and held until the condition is adjusted, and the semi-molten metal slurry is passed through the semi-molten metal slow cooling furnace or semi-molten metal depending on the situation of the supply situation. Or fed directly to a molding machine without going through the ShokuJo cooling furnace the temperature of the semi-molten metal slurry was decided to temperature control to a desired temperature. Further, in the method inventions of the fifth and sixth inventions, temperature control of the inside of the container cooling furnace or the container heat-retaining furnace is performed within a specific temperature range that matches the actual conditions of the aluminum-based or magnesium-based metal or alloy, respectively. As a result, a good molded product can be obtained. In the tenth method invention, the inside of the semi-molten metal annealing furnace is set to 500
By keeping the temperature above ℃, the solid fraction is prevented from increasing due to the rapid cooling of the semi-molten metal slurry. Further, in the eleventh method invention, either the upper side surface portion or the lower side surface portion of the semi-molten metal cooling furnace is maintained at a temperature higher than the atmospheric temperature for ventilating to the central side surface portion, or By keeping both of the lower side surface parts at a temperature higher than the atmospheric temperature for venting to the central side surface part, by keeping the upper side surface part and the lower side surface part that cool relatively faster than the central side surface part, The cooling rate was made uniform throughout.

【0010】[0010]

【実施例】以下、図面に基づいて本発明の実施例の詳細
について説明する。図1〜図16は本発明の実施例に係
り、図1は成形設備(第1実施例)の全体配置平面図、
図2は温度管理装置(第1実施例)の平面図、図3は容
器の温度計測位置の詳細を示す縦断面図、図4、図5、
図6は、それぞれ容器の冷却温度履歴を示すグラフ、図
7は半溶融金属冷却炉の縦断面図、図8は他の実施例を
示す温度管理装置(第2実施例)の平面図、図9は図8
のA−A視の側面断面図、図10は断熱材を装着した容
器の温度分布を示す比較図、図11は他の実施例を示す
温度管理装置(第3実施例)の平面図、図12は半溶融
金属冷却炉の温度制御装置(第1実施例)の概略構成
図、図13は他の実施例を示す半溶融金属冷却炉の温度
制御装置(第2実施例)の概略構成図、図14はSF6
切替装置の概略構成図、図15は容器回転装置の縦断面
図、図16は他の実施例を示す容器振動装置の縦断面図
である。
Embodiments of the present invention will be described below in detail with reference to the drawings. 1 to 16 relate to an embodiment of the present invention, and FIG. 1 is a plan view of the entire arrangement of molding equipment (first embodiment).
2 is a plan view of the temperature control device (first embodiment), FIG. 3 is a vertical sectional view showing details of the temperature measurement position of the container, FIG. 4, FIG.
6 is a graph showing the cooling temperature history of each container, FIG. 7 is a vertical cross-sectional view of a semi-molten metal cooling furnace, and FIG. 8 is a plan view of a temperature control device (second embodiment) showing another embodiment. 9 is shown in FIG.
FIG. 10 is a side sectional view taken along line AA of FIG. 10, FIG. 10 is a comparative view showing a temperature distribution of a container equipped with a heat insulating material, and FIG. 11 is a plan view of a temperature control device (third embodiment) showing another embodiment. 12 is a schematic configuration diagram of a temperature control device for a semi-molten metal cooling furnace (first embodiment), and FIG. 13 is a schematic configuration diagram of a temperature control device for a semi-molten metal cooling furnace (second embodiment) showing another embodiment. , FIG. 14 shows SF 6
FIG. 15 is a schematic sectional view of a switching device, FIG. 15 is a vertical sectional view of a container rotating device, and FIG. 16 is a vertical sectional view of a container vibrating device showing another embodiment.

【0011】図1に示すように、成形設備300は、成
形材料である溶湯(多数の結晶核を含む)を供給する溶
湯保持炉10と成形機200へ供給するまでの溶湯の温
度管理を司る温度管理装置100と成形機200とで構
成される。溶湯保持炉10内の溶湯は、多数の結晶核を
保有した状態で保持される。温度管理装置100は、図
1に示すように、コンベヤ170等の搬送装置で略矩形
状に接続配置された半溶融金属冷却炉120と半溶融金
属徐冷炉130からなる半溶融金属冷却部110と、容
器冷却炉150と容器保温炉160からなる容器温度制
御部140とで構成される。また、温度管理装置100
には、容器102を把持して各位置(後述する位置A〜
位置F)へ移動搬送するロボット180が備えられる。
As shown in FIG. 1, a molding facility 300 controls the temperature of the molten metal until it is supplied to a molten metal holding furnace 10 that supplies a molten metal (including a large number of crystal nuclei) that is a molding material and a molding machine 200. It is composed of a temperature control device 100 and a molding machine 200. The molten metal in the molten metal holding furnace 10 is held in a state of holding a large number of crystal nuclei. As shown in FIG. 1, the temperature control device 100 includes a semi-molten metal cooling furnace 120 and a semi-molten metal slow cooling furnace 130, which are connected and arranged in a substantially rectangular shape by a conveyor device such as a conveyor 170, and a semi-molten metal cooling unit 110. It is composed of a container cooling furnace 150 and a container temperature control unit 140 composed of a container warming furnace 160. In addition, the temperature management device 100
The container 102 is held at each position (position A to be described later).
A robot 180 for moving and transporting to position F) is provided.

【0012】このように構成された温度管理装置100
において、最初、加熱容器取り位置Aに置かれた空の容
器102は、ロボット180により溶湯保持炉10の給
湯位置Bへ移動され、溶湯保持炉10から規定量の溶湯
が充填される。充填後、注湯容器置き位置Cへロボット
180で搬送され、その後、所定時間コンベヤ170に
より半溶融金属冷却炉120内を通過し冷却されつつ移
動する。半溶融金属冷却炉120を出た容器102はス
ラリ容器置き位置Dへ達し、成形機200の射出スリー
ブ202の受入れ態勢が整っている場合は直ちにロボッ
ト180でスリーブ位置Eに移され、射出スリーブ20
2へ容器内の半溶融金属スラリを給湯する。容器102
がスラリ容器置き位置Dへ達したときに射出スリーブ2
02の受入れ態勢が整っていないとき(成形機が加圧成
形稼働中のとき)には、スラリ容器置き位置Dにおける
手待ち時間中に容器内の半溶融金属スラリの冷却固化が
進み、容器内の全量の排出が不可能となったり、半溶融
金属スラリ内の結晶核の消失が起こって成形品の品質の
劣化を招来するのでこれを防ぐため、半溶融金属徐冷炉
130へ送り、ここで急激な冷却を防止しつつ成形機2
00の受入れ態勢完了を待つようにした。このようにし
て、良好な性状の半溶融金属スラリを射出スリーブ20
2へ給湯し終えた空の容器102は、ロボット180に
より空容器置き位置Fへ移され、コンベヤ170によっ
て移動し容器冷却炉150で所定時間冷却され、さらに
容器保温炉160を通過して適当な温度に保持された
後、加熱容器取り位置Aに戻される。
The temperature control device 100 configured as described above
At first, the empty container 102 placed at the heating container taking position A is first moved to the molten metal supply position B of the molten metal holding furnace 10 by the robot 180, and the molten metal holding furnace 10 is filled with a prescribed amount of molten metal. After the filling, the robot 180 conveys it to the pouring container placement position C, and then it passes through the semi-molten metal cooling furnace 120 by the conveyor 170 for a predetermined time and moves while being cooled. The container 102 exiting the semi-molten metal cooling furnace 120 reaches the slurry container placement position D, and when the injection sleeve 202 of the molding machine 200 is ready to receive, the robot 180 immediately moves the sleeve position E to the injection sleeve 20.
2. Heat the semi-molten metal slurry in the container to hot water. Container 102
When the sleeve reaches the slurry container placement position D, the injection sleeve 2
02 is not ready (when the molding machine is in pressure molding operation), the semi-molten metal slurry in the container is cooled and solidified during the waiting time at the slurry container placement position D, and It becomes impossible to discharge all of the above, and the crystal nuclei in the semi-molten metal slurry disappear, resulting in deterioration of the quality of the molded product. Forming machine 2 while preventing excessive cooling
We waited for the completion of acceptance of 00. In this way, the semi-molten metal slurry having good properties is injected into the injection sleeve 20.
The empty container 102 that has been heated to 2 is moved to the empty container placement position F by the robot 180, moved by the conveyor 170, cooled in the container cooling furnace 150 for a predetermined time, and further passed through the container heat-retaining furnace 160 to an appropriate position. After the temperature is maintained, it is returned to the heating container taking position A.

【0013】図2に示すものは、温度管理装置(第1実
施例)100の具体的実施例を示し、たとえば、給湯量
10kg以下の比較的小規模のアルミニウム合金を対象
としたもので、成形機200の成形サイクルは約75秒
であり、半溶融金属冷却炉120や容器温度制御部14
0(容器冷却炉150および容器保温炉160)のつう
か時間は全体で600秒となるシステム構成となってい
る。通過時間をこれ以上長くすると、設備として大規模
になり過ぎると同時に、たとえば、成形機のトラブルに
よって生じた排気せざるを得ない、つくりかけのスラリ
量が多くなり、生産設備として好ましくない。これらの
ことを考慮して、少量の良好な性状のスラリを安定して
温度管理するため、容器102の材質は、熱伝導率に小
さいAl 2 3 ・SiO2 の複合体(熱伝導率0.3k
cal/m・hr・℃)を採用した。その結果、容器温
度さえ一定温度(設定温度120℃)の熱風循環で保持
できれば、良好な性状の半溶融金属スラリを得ることが
できる。
FIG. 2 shows a temperature control device (first actual device).
Example) A specific example of 100 is shown.
Targets relatively small-scale aluminum alloys of 10 kg or less
The molding cycle of the molding machine 200 is about 75 seconds.
And the semi-molten metal cooling furnace 120 and the container temperature control unit 14
0 (container cooling furnace 150 and container warming furnace 160)
The total system time is 600 seconds.
You. If the transit time is made longer than this, it will become a large-scale facility.
At the same time, it may cause problems with the molding machine.
The resulting slurry that must be exhausted
The amount is large, which is not preferable for production equipment. these
In consideration of this, stabilize a small amount of slurry with good properties.
In order to control the temperature, the material of the container 102 has a low thermal conductivity.
Sai Al TwoOThree・ SiOTwoComposite (thermal conductivity 0.3k
cal / m · hr · ° C) is adopted. As a result, the container temperature
Maintained by hot air circulation at a constant temperature (set temperature 120 ° C)
If possible, obtain a semi-molten metal slurry with good properties.
it can.

【0014】図2に示すものと図1と異なる点について
説明すると、容器102の材質にAl2 3 ・SiO2
の複合体を採用している関係上、容器102の熱伝導率
が小さいので、設定温度が200℃である半溶融金属冷
却炉120の炉内には熱風発生炉122により供給され
る一定温度の熱風を循環するだけでこと足り、また半溶
融金属徐冷炉130(設定温度550℃)や容器保温炉
160(設定温度100℃)も各々ヒータ132、16
2を設置するだけで十分であり、容器102の温度を正
確に温度管理することが出来て、比較的温度管理が安定
した良好な性状の半溶融金属スラリを短時間で得ること
が出来る。容器温度は70℃が最適であるが、最適温度
である70℃に容器温度を安定管理するため、容器冷却
炉150で十分に排熱してやらないと、容器102が高
温になり過ぎ好ましくない。このため、容器冷却炉15
0にはブロワ152、ブローノズル152aを設置し、
高速の室温空気を吹き付け、強制冷却する。
The difference from the one shown in FIG. 2 and that shown in FIG. 1 will be explained. The material of the container 102 is made of Al 2 O 3 .SiO 2
Since the heat conductivity of the container 102 is small due to the use of the composite body, the temperature of the constant temperature supplied by the hot air generating furnace 122 is maintained in the furnace of the semi-molten metal cooling furnace 120 whose set temperature is 200 ° C. It is sufficient to circulate hot air, and the semi-molten metal annealing furnace 130 (set temperature 550 ° C.) and the container heating furnace 160 (set temperature 100 ° C.) have heaters 132 and 16 respectively.
It is sufficient to install No. 2 and the temperature of the container 102 can be accurately controlled, and a semi-molten metal slurry having good properties and relatively stable temperature control can be obtained in a short time. The optimum container temperature is 70 ° C. However, in order to stably manage the container temperature at 70 ° C., which is the optimum temperature, the container 102 becomes too high in temperature unless heat is sufficiently exhausted in the container cooling furnace 150, which is not preferable. Therefore, the container cooling furnace 15
No. 0 is equipped with a blower 152 and a blow nozzle 152a,
Blow with room temperature air at high speed to force cooling.

【0015】容器温度管理に関しては、容器102にシ
ース熱電対をセットして、種々の条件で温度データをと
ってシステムを検討した。図3は容器102の温度計測
位置を示したもので、図のように(イ)〜(ホ)の5点
を計測点とし、1.0mmのシース熱電対を挿入した。
図4に第1条件における容器温度履歴を示す。第1条件
とは、容器温度制御部140を、敢えて容器冷却炉15
0と容器保温炉160に分けることはせず、一体的に形
成された容器温度制御部140全体で容器目標温度であ
る70℃の熱風を風速5m/sec程度で循環させた。
このため、容器温度は200℃程度までしか下がらず、
目標温度を達成できなかった。図5は第2条件における
容器温度履歴を示す。この条件は、温度70℃の熱風
を、風速30m/sec程度まで上げて循環させた。そ
の結果、容器温度は降温したものの目標の70℃までは
下がらなかった。図6は第3条件における容器温度履歴
を示す。この条件では、容器温度制御部140を、容器
冷却炉150と容器保温炉160とに区分けし、容器冷
却炉150では常温の空気を風速30m/secで循環
させ、容器保温炉160ではヒータで雰囲気温度を70
℃に加熱した。このシステムにより漸く容器温度を所望
の70℃に安定管理することが出来た。
Regarding the container temperature control, a system was examined by setting a sheath thermocouple in the container 102 and collecting temperature data under various conditions. FIG. 3 shows the temperature measurement position of the container 102. As shown in the figure, five points (a) to (e) were used as measurement points, and a 1.0 mm sheath thermocouple was inserted.
FIG. 4 shows the container temperature history under the first condition. The first condition is that the container temperature control unit 140 intentionally causes the container cooling furnace 15 to
No. 0 and the container warming furnace 160 are not divided, and hot air of 70 ° C. which is the target temperature of the container is circulated at a wind speed of about 5 m / sec throughout the container temperature control unit 140 formed integrally.
For this reason, the container temperature drops only to about 200 ℃,
The target temperature could not be reached. FIG. 5 shows a history of container temperatures under the second condition. Under this condition, hot air having a temperature of 70 ° C. was circulated by increasing the wind speed to about 30 m / sec. As a result, although the temperature of the container was lowered, it did not decrease to the target value of 70 ° C. FIG. 6 shows a container temperature history under the third condition. Under this condition, the vessel temperature control unit 140 is divided into a vessel cooling furnace 150 and a vessel warming furnace 160. In the vessel cooling furnace 150, normal temperature air is circulated at a wind speed of 30 m / sec, and in the vessel warming furnace 160, an atmosphere is generated by a heater. Temperature 70
Heated to ° C. With this system, the container temperature could finally be stably controlled at the desired 70 ° C.

【0016】これに対して、大規模のアルミニウム合金
を処理する場合は、容器材質に熱伝導率が1kcal/
sec・m以下のセラミックスを使用すると、半溶融金
属スラリの冷却時間が極めて長くなり不適当である。し
たがって、たとえば、給湯量20kg以上の比較的大容
量のアルミニウム合金に対応するような大容量向けの温
度管理装置(第2実施例)100は、図8に示すよう
に、図2の第1実施例の温度管理装置100のように、
容器102の材質を冷却時間の長くなるセラミックスと
せず、SUS304製とした。このため、第1実施例
(図2)と比べて下記の点が異なる。 容器102から半溶融金属スラリを取り出し容易と
するため、容器内面に水溶性(ガスの発生を防ぐため水
溶性が望ましい)のスプレイ(潤滑剤)を塗布しておく
必要があり、容器冷却炉150と容器保温炉160との
間にスプレイ位置(スプレイ設備)を設けた。 それに伴い、容器冷却炉150を出て来た容器10
2は、スプレイ液が付着する程度の温度(200℃)に
保温する必要が生じたので、200℃の熱風をブローノ
ズルで吹き付けるようにした。 水溶性のスプレイを吹き付けられて部分的に温度の
低下した容器102は、全体が均一の温度(200℃)
になるように、容器保温炉160内に200℃の熱風を
循環させるとともに、ファンの回転駆動によりなる温度
の均一化を図った。 SUS304製容器を使用したため、容器102を
通って熱が拡散するので半溶融金属を図7に示す構造に
しても、高温領域(容器上部および下部)と低温領域
(容器中央部)の明確な境界を形成することが出来な
い。したがって、これを改善するため、付帯設備として
予熱炉190を半溶融金属冷却炉120の側面に設置
し、図9に示すように、セラミックス(Al2 3 ・S
iO2 の複合体)製の蓋102aと敷台102bを使用
して容器102の上部と下部を保温するようにしてか
ら、予熱炉190で加熱した後、半溶融金属冷却炉12
0へ入れる。 半溶融金属冷却炉120内では、熱風発生炉に接続
された上下2組のブローノズル124で熱風を炉内に取
り込み、入口側で220℃、5m/sec、出口側で1
80℃、20m/secの熱風を炉内に循環させること
によって、冷却初期は比較的ゆっくりと冷やし、後半で
は早く冷却するようにした。
On the other hand, when processing a large-scale aluminum alloy, the container material has a thermal conductivity of 1 kcal /
If ceramics of sec.m or less are used, the cooling time of the semi-molten metal slurry becomes extremely long, which is inappropriate. Therefore, for example, as shown in FIG. 8, a temperature control device 100 for a large capacity (second embodiment) corresponding to a relatively large capacity aluminum alloy having a hot water supply amount of 20 kg or more, as shown in FIG. Like the temperature control device 100 in the example,
The material of the container 102 was made of SUS304, not ceramics that would increase the cooling time. For this reason, the following points are different from the first embodiment (FIG. 2). In order to make it easy to take out the semi-molten metal slurry from the container 102, it is necessary to apply a water-soluble (preferably water-soluble to prevent gas generation) spray (lubricant) to the inner surface of the container. A spray position (spray equipment) was provided between the container and the container warming furnace 160. Along with that, the container 10 that came out of the container cooling furnace 150
In No. 2, it was necessary to keep the temperature at a temperature (200 ° C.) at which the spray liquid adheres, so hot air at 200 ° C. was blown by the blow nozzle. The container 102, which has been partially sprayed with a water-soluble spray and whose temperature has dropped, has a uniform temperature (200 ° C.) as a whole.
As described above, hot air of 200 ° C. was circulated in the container warming furnace 160, and the temperature was made uniform by rotating the fan. Since the SUS304 container is used, heat diffuses through the container 102. Therefore, even if the semi-molten metal has the structure shown in FIG. 7, there is a clear boundary between the high temperature region (upper and lower parts of the container) and the low temperature region (central part of the container). Cannot be formed. Therefore, in order to improve this, a preheating furnace 190 is installed as an auxiliary equipment on the side surface of the semi-molten metal cooling furnace 120, and as shown in FIG. 9, ceramics (Al 2 O 3 .S
A container 102 made of a complex of iO 2 ) and a bed 102b are used to keep the upper and lower parts of the container 102 warm, and after being heated in a preheating furnace 190, a semi-molten metal cooling furnace 12
Enter 0. In the semi-molten metal cooling furnace 120, hot air is taken into the furnace by two sets of upper and lower blow nozzles 124 connected to the hot air generating furnace, 220 ° C. at the inlet side, 5 m / sec, and 1 at the outlet side.
By circulating hot air at 80 ° C. and 20 m / sec in the furnace, the cooling was performed relatively slowly in the initial stage of cooling and early in the latter half.

【0017】以上述べたように、本発明においては、溶
湯を入れる容器102をあらかじめ溶湯注湯前に適性な
温度に温度管理する工程と、溶湯を容器102に注湯し
た後に溶湯が所望の適性な冷却速度で冷却できるように
温度制御する工程とをはっきりと分離した温度管理方法
ならびにこれら工程を能率良く連続自動的に操業する温
度管理装置100を発案した。さらに、それぞれの工程
を、各々容器温度制御部140と半溶融金属冷却部11
0とで実施するシステム構成とした。
As described above, in the present invention, the temperature of the container 102 in which the molten metal is put is controlled in advance to a suitable temperature before pouring the molten metal, and after the molten metal is poured into the container 102, the molten metal has a desired suitability. The present invention has devised a temperature control method which is clearly separated from the step of controlling the temperature so that it can be cooled at a cooling rate, and a temperature control device 100 which operates these steps efficiently and continuously and automatically. Further, the respective steps are performed by the container temperature control unit 140 and the semi-molten metal cooling unit 11 respectively.
The system configuration is set to 0.

【0018】さらに、具体的には、容器温度制御部14
0においては、炉内を通る空気の温度と風速を制御する
適性な冷却能力を付与した熱風循環強制冷却式の容器冷
却炉150と、容器102の目標温度に雰囲気温度を制
御し、この雰囲気温度下で容器102を保持する容器保
温炉160により構成した。なお、容器冷却炉150と
容器保温炉160の制御温度は、アルミニウム合金とマ
グネシウム合金とでは異なり、アルミニウム合金の場合
は、容器冷却炉150の炉内を室温〜300℃、容器保
温炉160の炉内を50℃〜350℃の温度範囲とし、
一方マグネシウム合金の場合は、容器冷却炉150の炉
内を室温〜350℃、容器保温炉160の炉内を200
℃〜450℃の温度範囲とする。
More specifically, the container temperature control unit 14
At 0, the hot-air circulation forced cooling type container cooling furnace 150 is provided with a suitable cooling capacity for controlling the temperature and the air velocity of the air passing through the furnace, and the atmospheric temperature is controlled to the target temperature of the container 102. It was constituted by a container heat insulation furnace 160 which holds the container 102 below. The control temperatures of the container cooling furnace 150 and the container heat-retaining furnace 160 are different between aluminum alloys and magnesium alloys. In the case of an aluminum alloy, the temperature inside the furnace of the container cooling furnace 150 is room temperature to 300 ° C. The inside is a temperature range of 50 ° C to 350 ° C,
On the other hand, in the case of a magnesium alloy, the temperature inside the container cooling furnace 150 is room temperature to 350 ° C., and the temperature inside the container heat-retaining furnace 160 is 200.
C. to 450.degree. C. temperature range.

【0019】本発明の半溶融金属冷却部110において
は、良好な性状の半溶融金属スラリを得られる最短時間
で冷却できるように、適当な温度の熱風を循環させるよ
うにした半溶融金属冷却炉120と、成形機200の成
形サイクルの都合の対応できるようにするため、半溶融
金属スラリが成形に適した温度領域で2分ないし5分間
維持されるよう装備された半溶融金属徐冷炉130とで
構成される。ただし、半溶融金属冷却炉120はの制御
温度は、アルミニウム合金とマグネシウム合金とで異な
り、アルミニウム合金の場合は、150℃〜350℃の
温度範囲とし、マグネシウム合金では200℃〜450
℃の温度範囲に温度制御する。一方、半溶融金属徐冷炉
130では、いずれの場合も500℃以上の温度とす
る。溶湯を入れた容器102が半溶融金属冷却炉120
を出たとき丁度、成形機200の射出スリーブ202が
溶湯受入れ態勢にあるときは、半溶融金属徐冷炉130
へ向かうことなく直ちに溶湯は成形機200へ供給(給
湯)される。これとは反対に、成形機200が稼働中で
射出スリーブ202が受入れ態勢にないときは、容器1
02は半溶融金属冷却炉120を出た後、半溶融金属徐
冷炉130へ送られる。
In the semi-molten metal cooling section 110 of the present invention, a semi-molten metal cooling furnace is provided which circulates hot air at an appropriate temperature so that the semi-molten metal slurry having good properties can be cooled in the shortest time. 120 and a semi-molten metal annealing furnace 130 equipped to maintain the semi-molten metal slurry in a temperature range suitable for molding for 2 to 5 minutes in order to accommodate the molding cycle of the molding machine 200. Composed. However, the control temperature of the semi-molten metal cooling furnace 120 is different between the aluminum alloy and the magnesium alloy. In the case of the aluminum alloy, the temperature range is 150 ° C to 350 ° C, and in the magnesium alloy, the temperature is 200 ° C to 450 ° C.
Control the temperature in the temperature range of ℃. On the other hand, in the semi-molten metal annealing furnace 130, the temperature is 500 ° C. or higher in any case. The container 102 containing the molten metal is a semi-molten metal cooling furnace 120.
When the injection sleeve 202 of the molding machine 200 is ready to receive the molten metal, the semi-molten metal annealing furnace 130
The molten metal is immediately supplied (hot water supply) to the molding machine 200 without moving to the molding machine 200. Contrary to this, when the molding machine 200 is in operation and the injection sleeve 202 is not ready to receive, the container 1
After leaving the semi-molten metal cooling furnace 120, 02 is sent to the semi-molten metal slow cooling furnace 130.

【0020】半溶融金属冷却炉120は、図2や図7に
示すように、コンベヤ170上に断熱板120cを介し
て容器102を積載し、高さ中央部の側面を上下に突出
した断熱板120b,120bで区画して前記した適正
温度に加熱した熱風(設定温度120℃)を循環させて
低温領域とするとともに、上部側面および下部側面をヒ
ータ120a(設定温度500℃)で500℃程度に加
熱して高温領域とし、容器102内の溶湯が均一な温度
になるように意図したものである。
In the semi-molten metal cooling furnace 120, as shown in FIG. 2 and FIG. 7, the containers 102 are stacked on the conveyor 170 via the heat insulating plate 120c, and the heat insulating plate is formed by vertically projecting the side surface at the center of the height. The hot air (set temperature 120 ° C.) divided to 120 b and 120 b and heated to the appropriate temperature is circulated to form a low temperature region, and the upper and lower side surfaces are heated to about 500 ° C. by the heater 120 a (set temperature 500 ° C.). It is intended that the molten metal in the container 102 is heated to a high temperature region so as to have a uniform temperature.

【0021】本発明の半溶融金属冷却炉120の加熱装
置の第1の形式は、循環させる熱風の温度、風速のどち
らかを時間の経過とともに適宜変化させるように制御す
るか、または、温度と風速の両方を同時に時間の経過と
ともに適宜変化させるように制御する。そして、この加
熱装置の詳細な第1の構成は、図12に示すように、半
溶融金属冷却炉120に熱風を送る熱風ラインと、この
熱風ラインに合流させて降温を図る常温空気空気ライン
と、この空気ラインの風量制御用のダンパとダンパ開度
制御器とを備えた。また、この加熱装置の詳細な第2の
構成は、図13に示すように、炉内に設置した温度セン
サと、炉内に熱風を送る熱風ラインと、この熱風ライン
に合流する空気ラインと、この空気ラインに設置した自
動ダンパと、温度センサの計測データで開度をフィード
バック制御するダンパ開度制御器とを備えたものであ
る。そして、炉内温度のデータに基づいて自動ダンパの
開度を制御し、熱風に適量の空気を混合して炉内送るこ
とにより、溶湯が希望の降下温度で冷却するよう循環す
る熱風の温度と風速を制御する。図14は、SF6 ガス
と空気の切替え装置を示したものである。すなわち、容
器102の直径が150mmを越える大型になると、空
気と接触する表面積が増加するので、これをパージする
ためSF6 ガスを流すようにした。
The first type of the heating device of the semi-molten metal cooling furnace 120 of the present invention controls either the temperature or the wind speed of the hot air to be circulated appropriately so as to change with time, or the temperature and Both of the wind speeds are controlled so as to be appropriately changed simultaneously with the passage of time. Then, as shown in FIG. 12, the detailed first configuration of the heating device is a hot air line for sending hot air to the semi-molten metal cooling furnace 120, and a room temperature air air line for joining the hot air line to lower the temperature. A damper for controlling the air volume of the air line and a damper opening controller are provided. Further, the detailed second configuration of this heating device is, as shown in FIG. 13, a temperature sensor installed in the furnace, a hot air line for sending hot air into the furnace, and an air line which joins the hot air line. An automatic damper installed on this air line and a damper opening controller that feedback-controls the opening based on the measurement data of the temperature sensor are provided. Then, by controlling the opening of the automatic damper based on the data of the temperature inside the furnace, and mixing the hot air with an appropriate amount of air and sending it into the furnace, the temperature of the hot air that circulates so that the molten metal cools at the desired drop temperature and Control the wind speed. FIG. 14 shows a switching device for SF 6 gas and air. That is, when the diameter of the container 102 becomes larger than 150 mm, the surface area in contact with air increases, so that SF 6 gas was made to flow to purge this.

【0022】[0022]

【発明の効果】以上説明した本発明の半溶融金属スラリ
の温度管理方法や半溶融金属スラリの温度管理装置にお
いては、容器温度制御部で溶湯を成形器の注湯する前
に、あらかじめ溶湯を入れる容器を好ましい温度に予熱
するために温度制御するとともに、これに後続する半溶
融金属冷却部で容器に入れられた溶湯中の半溶融金属を
所望の冷却速度で冷却して、多数の結晶核をそのまま維
持し良好な性状で、かつ、注湯に適した流動性をもつ半
溶融金属スラリを、簡便容易でかつ連続自動的に供給で
きることとなり、連続操業を容易に達成することができ
る。
INDUSTRIAL APPLICABILITY In the temperature control method for semi-molten metal slurry and the temperature control device for semi-molten metal slurry of the present invention described above, before the molten metal is poured into the molding machine by the container temperature control unit, the molten metal is preliminarily charged. While controlling the temperature of the container to be preheated to a preferable temperature, the semi-molten metal in the molten metal contained in the container is cooled at a desired cooling rate in the semi-molten metal cooling section following the container, and a large number of crystal nuclei are generated. The semi-molten metal slurry having good properties and fluidity suitable for pouring can be simply and easily continuously supplied automatically, and continuous operation can be easily achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係る成形設備(第1実施例)
の全体配置平面図である。
FIG. 1 is a molding equipment according to an embodiment of the present invention (first embodiment).
FIG.

【図2】本発明の実施例に係る温度管理装置(第1実施
例)の平面図である。
FIG. 2 is a plan view of a temperature control device (first embodiment) according to an embodiment of the present invention.

【図3】本発明の実施例に係る容器の温度計測位置の詳
細を示す縦断面図である。
FIG. 3 is a vertical cross-sectional view showing details of a temperature measurement position of the container according to the embodiment of the present invention.

【図4】本発明の実施例に係る容器の冷却温度履歴を示
すグラフである。
FIG. 4 is a graph showing a cooling temperature history of a container according to an example of the present invention.

【図5】本発明の実施例に係る容器の冷却温度履歴を示
すグラフである。
FIG. 5 is a graph showing a cooling temperature history of a container according to an example of the present invention.

【図6】本発明の実施例に係る容器の冷却温度履歴を示
すグラフである。
FIG. 6 is a graph showing a cooling temperature history of a container according to an example of the present invention.

【図7】本発明の他の実施例に係る半溶融金属冷却炉の
縦断面図である。
FIG. 7 is a vertical sectional view of a semi-molten metal cooling furnace according to another embodiment of the present invention.

【図8】本発明の他の実施例に係る温度管理装置(第2
実施例)の平面図である。
FIG. 8 is a temperature control device according to another embodiment of the present invention (second
It is a top view of an example.

【図9】図8のA−A視の縦断面図である。9 is a vertical cross-sectional view taken along the line AA of FIG.

【図10】本発明の実施例に係る断熱材を装着した容器
の温度分布を示す比較図である。
FIG. 10 is a comparative diagram showing a temperature distribution of a container equipped with a heat insulating material according to an example of the present invention.

【図11】本発明の他の実施例を示す温度管理装置(第
3実施例)の平面図である。
FIG. 11 is a plan view of a temperature control device (third embodiment) showing another embodiment of the present invention.

【図12】本発明の実施例を示す半溶融金属冷却炉の温
度制御装置(第1実施例)の概略構成図である。
FIG. 12 is a schematic configuration diagram of a temperature control device (first embodiment) of a semi-molten metal cooling furnace showing an embodiment of the present invention.

【図13】本発明の他の実施例を示す半溶融金属冷却炉
の温度制御装置(第2実施例)の概略構成図である。
FIG. 13 is a schematic configuration diagram of a temperature control device for a semi-molten metal cooling furnace (second embodiment) showing another embodiment of the present invention.

【図14】本発明の実施例を示すSF6 切替装置の概略
構成図である。
FIG. 14 is a schematic configuration diagram of an SF 6 switching device showing an embodiment of the present invention.

【図15】本発明の実施例を示す容器回転装置の縦断面
図である。
FIG. 15 is a vertical sectional view of a container rotating device showing an embodiment of the present invention.

【図16】本発明の他の実施例を示す容器振動装置の縦
断面図である。
FIG. 16 is a vertical sectional view of a container vibrating device according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 溶湯保持炉 100 温度管理装置 102 容器 102a 蓋 102b 敷台 110 半溶融金属冷却部 120 半溶融金属冷却炉 120a ヒータ 120b 断熱板 120c 断熱板 120d 排気ダクト 122 熱風発生炉 124 マルチボックス 126 ダンパ 130 半溶融金属徐冷炉 132 ヒータ 134 熱風発生炉 140 容器温度制御部 150 容器冷却炉 152 ブロワ 154 ブローノズル 160 容器保温炉 162 ヒータ 164 熱風発生炉 166 ファン 170 コンベヤ 180 ロボット 190 予熱炉 200 成形機 202 射出スリーブ 300 成形設備 A 加熱容器取り位置 B 給湯位置 C 注湯容器置き位置 D スラリ容器置き位置 E スリーブ位置 F 空容器置き位置 G スプレイ位置 10 molten metal holding furnace 100 temperature control device 102 container 102a lid 102b bed 110 semi-molten metal cooling part 120 semi-molten metal cooling furnace 120a heater 120b heat insulating plate 120c heat insulating plate 120d exhaust duct 122 hot air generating furnace 124 multi-box 126 damper 130 semi-molten Metal annealing furnace 132 Heater 134 Hot air generating furnace 140 Container temperature control unit 150 Container cooling furnace 152 Blower 154 Blow nozzle 160 Container warming furnace 162 Heater 164 Hot air generating furnace 166 Fan 170 Conveyor 180 Robot 190 Preheating furnace 200 Molding machine 202 Injection sleeve 300 Molding equipment A Heated container take-up position B Hot water supply position C Pouring container placement position D Slurry container placement position E Sleeve position F Empty container placement position G Spray position

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年6月24日[Submission date] June 24, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係る成形設備(第1実施例)
の全体配置平面図である。
FIG. 1 is a molding equipment according to an embodiment of the present invention (first embodiment).
FIG.

【図2】本発明の実施例に係る温度管理装置(第1実施
例)の平面図である。
FIG. 2 is a plan view of a temperature control device (first embodiment) according to an embodiment of the present invention.

【図3】本発明の実施例に係る容器の温度計測位置の詳
細を示す縦断面図である。
FIG. 3 is a vertical cross-sectional view showing details of a temperature measurement position of the container according to the embodiment of the present invention.

【図4】本発明の実施例に係る容器の冷却温度履歴を示
すグラフである。
FIG. 4 is a graph showing a cooling temperature history of a container according to an example of the present invention.

【図5】本発明の実施例に係る容器の冷却温度履歴を示
すグラフである。
FIG. 5 is a graph showing a cooling temperature history of a container according to an example of the present invention.

【図6】本発明の実施例に係る容器の冷却温度履歴を示
すグラフである。
FIG. 6 is a graph showing a cooling temperature history of a container according to an example of the present invention.

【図7】本発明の他の実施例に係る半溶融金属冷却炉の
縦断面図である。
FIG. 7 is a vertical sectional view of a semi-molten metal cooling furnace according to another embodiment of the present invention.

【図8】本発明の他の実施例に係る温度管理装置(第2
実施例)の平面図である。
FIG. 8 is a temperature control device according to another embodiment of the present invention (second
It is a top view of an example.

【図9】図8のA−A視の縦断面図である。9 is a vertical cross-sectional view taken along the line AA of FIG.

【図10】本発明の実施例に係る断熱材を装着した容器
の温度分布を示す比較図である。
FIG. 10 is a comparative diagram showing a temperature distribution of a container equipped with a heat insulating material according to an example of the present invention.

【図11】本発明の他の実施例を示す温度管理装置(第
3実施例)の平面図である。
FIG. 11 is a plan view of a temperature control device (third embodiment) showing another embodiment of the present invention.

【図12】本発明の実施例を示す半溶融金属冷却炉の温
度制御装置(第1実施例)の概略構成図である。
FIG. 12 is a schematic configuration diagram of a temperature control device (first embodiment) of a semi-molten metal cooling furnace showing an embodiment of the present invention.

【図13】本発明の他の実施例を示す半溶融金属冷却炉
の温度制御装置(第2実施例)の概略構成図である。
FIG. 13 is a schematic configuration diagram of a temperature control device for a semi-molten metal cooling furnace (second embodiment) showing another embodiment of the present invention.

【図14】本発明の実施例を示すSF6 切替装置の概略
構成図である。
FIG. 14 is a schematic configuration diagram of an SF 6 switching device showing an embodiment of the present invention.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図15[Correction target item name] FIG.

【補正方法】削除[Correction method] Deleted

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図16[Correction target item name] FIG.

【補正方法】削除[Correction method] Deleted

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阪本 達雄 山口県宇部市大字小串字沖の山1980番地 宇部興産株式会社機械・エンジニアリング 事業本部 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tatsuo Sakamoto 1980, Okiyama, Ogushi, Oji, Ube, Yamaguchi Prefecture Ube Industries, Ltd. Machinery & Engineering Business Headquarters

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 多数の結晶核を含む溶湯を容器内に入れ
て冷却し、所定の固相量と液相量とが共存する半溶融金
属スラリを得た後に、該半溶融金属スラリを成形機に供
給して加圧成形する成形設備に使用される該半溶融金属
スラリを温度管理する方法において、 あるいは、加熱して半溶融金属スラリにした後に成形機
に供給して加圧成形されるビレットの製造に際して該ビ
レットの素材となる多数の結晶核を含む溶湯を容器内に
入れて冷却し、所定の固相量と液相量とが共存する半溶
融金属スラリを得た後に、該半溶融金属スラリを冷却固
化して前記ビレットにするときの半溶融金属スラリの温
度管理方法において、 該溶湯を保持する容器を、該溶湯を入れる前にあらかじ
め設定した所望の温度になるように温度管理し、該溶湯
を該容器内に入れた後は、該溶湯があらかじめ意図した
冷却速度で冷却するように該容器を温度管理することを
特徴とする半溶融金属スラリの温度管理方法。
1. A molten metal containing a large number of crystal nuclei is placed in a container and cooled to obtain a semi-molten metal slurry in which a predetermined solid phase amount and a liquid phase amount coexist, and then the semi-molten metal slurry is formed. In a method for controlling the temperature of the semi-molten metal slurry used in a molding facility for supplying pressure to a molding machine, or by heating the semi-molten metal slurry to be supplied to a molding machine and pressure-molding. In producing a billet, a molten metal containing a large number of crystal nuclei, which is a raw material of the billet, is placed in a container and cooled to obtain a semi-molten metal slurry in which a predetermined solid phase amount and a liquid phase amount coexist, A method for controlling the temperature of a semi-molten metal slurry when the molten metal slurry is cooled and solidified to form the billet, in which the temperature of a container holding the molten metal is controlled to a desired temperature set in advance before the molten metal is charged. The molten metal in the container That is after, the temperature control method for semi-molten metal slurry, characterized by temperature control of the container so that solution water is cooled in advance it intended cooling rate.
【請求項2】 多数の結晶核を含む溶湯を溶湯保持炉よ
り容器内に入れて冷却し、所定の固相量と液相量とが共
存する半溶融金属スラリを得た後に直接、あるいは、一
旦冷却固化してビレットにした後に再度加熱して半溶融
金属スラリとし、該半溶融金属スラリを成形機に供給し
て加圧成形する成形設備に使用される該半溶融金属スラ
リの温度管理装置であって、 該溶湯を保持する容器と、該容器を温度管理する容器温
度制御部と、該容器内へ入れられた該溶湯があらかじめ
意図した冷却速度で冷却するように温度管理する半溶融
金属冷却部と、該容器を把持して移動搬送するロボット
および該容器を積載して移動搬送するコンベヤ等の容器
搬送装置とで構成されたことを特徴とする半溶融金属ス
ラリの温度管理装置。
2. A molten metal containing a large number of crystal nuclei is put into a vessel from a molten metal holding furnace and cooled to obtain a semi-molten metal slurry in which a predetermined solid phase amount and liquid phase amount coexist, or directly, or A temperature control device for the semi-molten metal slurry used in a molding facility that once cools and solidifies to form a billet, then heats again to form the semi-molten metal slurry, and supplies the semi-molten metal slurry to a molding machine for pressure molding. A container for holding the molten metal, a container temperature control unit for controlling the temperature of the container, and a semi-molten metal for controlling the temperature so that the molten metal placed in the container is cooled at an intended cooling rate in advance. A temperature control device for a semi-molten metal slurry, comprising a cooling unit, a robot for holding and moving the container, and a container transfer device such as a conveyor for loading and moving the container.
【請求項3】 容器温度制御部は、容器の目標温度以下
の雰囲気温度で冷却する容器冷却炉と、該容器目標温度
の雰囲気温度で容器温度を保持する容器保温炉とで構成
されたことを特徴とする請求項2記載の半溶融金属スラ
リの温度管理装置。
3. The container temperature control unit includes a container cooling furnace that cools the container at an ambient temperature equal to or lower than a target temperature, and a container heat-retaining furnace that maintains the container temperature at the ambient temperature of the container target temperature. The temperature control device for the semi-molten metal slurry according to claim 2.
【請求項4】 容器冷却炉は、該容器冷却炉内に容器目
標温度以下の雰囲気温度の空気を循環させる空気循環手
段と、該空気の循環風量ならびに該空気温度を制御する
制御手段とを備えたことを特徴とする請求項3記載の半
溶融金属スラリの温度管理装置。
4. The container cooling furnace comprises an air circulating means for circulating air having an atmospheric temperature equal to or lower than a container target temperature in the container cooling furnace, and a control means for controlling a circulating air volume of the air and the air temperature. The temperature control device for the semi-molten metal slurry according to claim 3, wherein
【請求項5】 アルミニウム金属もしくはアルミニウム
合金よりなる半溶融金属を入れる容器の温度管理を行な
う場合に、請求項3記載の容器制御部の容器冷却炉の炉
内温度を室温〜300℃に保持し、容器保温炉の炉内温
度を50℃〜350℃に保持することを特徴とする半溶
融金属スラリの温度管理方法。
5. When the temperature of a container containing a semi-molten metal made of aluminum metal or aluminum alloy is controlled, the temperature inside the container cooling furnace of the container control unit according to claim 3 is maintained at room temperature to 300 ° C. A method for controlling the temperature of a semi-molten metal slurry, characterized in that the temperature inside the container warming furnace is maintained at 50 ° C to 350 ° C.
【請求項6】 マグネシウム金属もしくはマグネシウム
合金よりなる半溶融金属を入れる容器の温度管理を行な
う場合に、請求項3記載の容器制御部の容器冷却炉の炉
内温度を室温〜350℃に保持し、容器保温炉の炉内温
度を200℃〜450℃に保持することを特徴とする半
溶融金属スラリの温度管理方法。
6. When controlling the temperature of a container containing a semi-molten metal made of magnesium metal or magnesium alloy, the temperature inside the container cooling furnace of the container control unit according to claim 3 is maintained at room temperature to 350 ° C. A method for controlling the temperature of a semi-molten metal slurry, characterized in that the temperature inside the container heat-retaining furnace is maintained at 200 ° C to 450 ° C.
【請求項7】 半溶融金属冷却部を、半溶融金属冷却炉
と、該半溶融金属冷却炉の炉内温度に比べて高温に炉内
温度を温度管理する半溶融金属徐冷炉とで構成した請求
項2記載の半溶融金属スラリの温度管理装置。
7. The semi-molten metal cooling unit comprises a semi-molten metal cooling furnace and a semi-molten metal slow cooling furnace for controlling the temperature of the semi-molten metal to a higher temperature than the temperature of the semi-molten metal cooling furnace. Item 2. A temperature control device for the semi-molten metal slurry according to Item 2.
【請求項8】 半溶融金属冷却炉は、炉内を通過移動す
るコンベヤ装置の上に載置された容器の側面部を左右上
下2対の断熱板で上部側面部、中央側面部ならびに下部
側面部の3つの領域に区画形成するとともに、該上部側
面部と該下部側面部に、該中央側面部に通気する熱風温
度よりも高温に加熱するヒータを設置した請求項7記載
の半溶融金属スラリの温度管理装置。
8. A semi-molten metal cooling furnace comprises a side wall of a container placed on a conveyor device that moves through the furnace, and is provided with two pairs of left, right, upper, and lower heat insulating plates for an upper side surface, a central side surface, and a lower side surface. 8. The semi-molten metal slurry according to claim 7, wherein the heater is installed on the upper side surface portion and the lower side surface portion so as to be heated to a temperature higher than the temperature of the hot air ventilated to the central side surface portion, while being divided into three regions. Temperature control device.
【請求項9】 請求項7記載の半溶融金属冷却部におい
て、半溶融金属冷却炉における容器内の半溶融金属スラ
リをあらかじめ設定した一定時間冷却した後、成形機の
射出スリーブが容器内の半溶融金属スラリを受入れられ
る態勢にあるときは、受入れ態勢完了の伝達信号を半溶
融金属冷却炉以降の容器搬送装置に発して該容器内の半
溶融金属スラリを前記射出スリーブへ供給し、該射出ス
リーブが容器内の半溶融金属スラリを受入れられる態勢
にないときは、該半溶融金属冷却炉以降の容器搬送装置
に動作指令を発して該容器を半溶融金属徐冷炉へ移動さ
せるとともに、該半溶融金属徐冷炉で前記受入れ態勢が
整うまで該半溶融金属スラリを冷却保持することを特徴
とする半溶融金属スラリの温度管理方法。
9. The semi-molten metal cooling part according to claim 7, wherein after cooling the semi-molten metal slurry in the container in the semi-molten metal cooling furnace for a preset period of time, the injection sleeve of the molding machine is When the molten metal slurry is ready to be received, a transmission signal indicating the completion of the receiving state is sent to the container conveying device after the semi-molten metal cooling furnace, the semi-molten metal slurry in the container is supplied to the injection sleeve, and the injection is performed. When the sleeve is not ready to receive the semi-molten metal slurry in the container, an operation command is issued to the container conveying device after the semi-molten metal cooling furnace to move the container to the semi-molten metal annealing furnace and A method of controlling the temperature of a semi-molten metal slurry, comprising cooling and holding the semi-molten metal slurry until the receiving condition is adjusted in a metal annealing furnace.
【請求項10】 請求項7記載の半溶融金属徐冷炉の炉
内を500℃以上に保持する半溶融金属スラリの温度管
理方法。
10. A method for controlling the temperature of a semi-molten metal slurry, wherein the inside of the semi-molten metal slow cooling furnace according to claim 7 is maintained at 500 ° C. or higher.
【請求項11】 請求項8記載の半溶融金属冷却炉にお
ける上部側面部と下部側面部のうちいずれかを、中央側
面部に通気する雰囲気温度よりも高温に保持するか、も
しくは、上部側面部と下部側面部の両方を、中央側面部
に通気する雰囲気温度よりも高温に保持する半溶融金属
スラリの温度管理方法。
11. The semi-molten metal cooling furnace according to claim 8, either one of the upper side surface portion and the lower side surface portion is kept at a temperature higher than an atmospheric temperature for ventilating the central side surface portion, or the upper side surface portion. A method for controlling the temperature of a semi-molten metal slurry in which both the lower side surface and the lower side surface are maintained at a temperature higher than the atmospheric temperature for venting to the central side surface.
JP32065095A 1995-05-29 1995-12-08 Temperature control method and temperature control device for semi-molten metal slurry Expired - Fee Related JP3536491B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP32065095A JP3536491B2 (en) 1995-12-08 1995-12-08 Temperature control method and temperature control device for semi-molten metal slurry
CA002177455A CA2177455C (en) 1995-05-29 1996-05-27 Method and apparatus for shaping semisolid metals
EP02028272A EP1331279A3 (en) 1995-05-29 1996-05-29 Method and apparatus for shaping semisolid metals
EP96108499A EP0745694B1 (en) 1995-05-29 1996-05-29 Method and apparatus for shaping semisolid metals
US09/490,983 US6769473B1 (en) 1995-05-29 2000-01-24 Method of shaping semisolid metals
US10/852,952 US6851466B2 (en) 1995-05-29 2004-05-24 Method and apparatus for shaping semisolid metals
US11/008,749 US7121320B2 (en) 1995-05-29 2004-12-09 Method for shaping semisolid metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32065095A JP3536491B2 (en) 1995-12-08 1995-12-08 Temperature control method and temperature control device for semi-molten metal slurry

Publications (2)

Publication Number Publication Date
JPH09155519A true JPH09155519A (en) 1997-06-17
JP3536491B2 JP3536491B2 (en) 2004-06-07

Family

ID=18123788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32065095A Expired - Fee Related JP3536491B2 (en) 1995-05-29 1995-12-08 Temperature control method and temperature control device for semi-molten metal slurry

Country Status (1)

Country Link
JP (1) JP3536491B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010179331A (en) * 2009-02-04 2010-08-19 Kochi Univ Of Technology Die casting device and die casting method
CN107952940A (en) * 2016-10-18 2018-04-24 福建省瑞奥麦特轻金属有限责任公司 A kind of continuous temperature control system for preparing aluminium alloy semi-solid slurry holding furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010179331A (en) * 2009-02-04 2010-08-19 Kochi Univ Of Technology Die casting device and die casting method
CN107952940A (en) * 2016-10-18 2018-04-24 福建省瑞奥麦特轻金属有限责任公司 A kind of continuous temperature control system for preparing aluminium alloy semi-solid slurry holding furnace

Also Published As

Publication number Publication date
JP3536491B2 (en) 2004-06-07

Similar Documents

Publication Publication Date Title
JP3211754B2 (en) Equipment for manufacturing metal for semi-solid molding
EP0745694B1 (en) Method and apparatus for shaping semisolid metals
US6851466B2 (en) Method and apparatus for shaping semisolid metals
US6742567B2 (en) Apparatus for and method of producing slurry material without stirring for application in semi-solid forming
CN101602102B (en) Solidification process control method using small external temperature gradient to eliminate shrinkage cavities and porosity in casting
WO1999000203A1 (en) Die-casting method and die-castings obtained thereby
US7051784B2 (en) Method of producing semi-solid metal slurries
EP0931607B1 (en) Method of preparing a shot of semi-solid metal
JP2793430B2 (en) Die casting method for producing high mechanical performance parts by injection of semi-fluid metal alloy
JP3920378B2 (en) Rheocast casting method and rheocast casting equipment
US20110193273A1 (en) Process and apparatus for producing semi-solidified slurry of iron alloy
WO1997012709A1 (en) A method and device for the thixotropic casting of metal alloy products
JPH11207458A (en) Automatic molten metal pouring apparatus for production of mixed small lot
JP3536491B2 (en) Temperature control method and temperature control device for semi-molten metal slurry
WO2005110644A1 (en) Method for preparing semi-solid metal slurry, molding method, and molded product
JPH09137239A (en) Method for molding half-molten metal
US20020011321A1 (en) Method of producing semi-solid metal slurries
JP3669388B2 (en) Temperature control device for semi-molten metal slurry
CN101117698A (en) Process and apparatus for preparing a metal alloy
JPH0910893A (en) Apparatus for producing metal for half melt molding
JP2003520683A (en) Die casting method and die casting apparatus for carrying out the die casting method
JPH11138248A (en) Semisolid forming method and production of semisolidified metallic slurry used to this
JP2005205478A (en) Method and apparatus for producing metal slurry, and method and apparatus for producing cast block
JPH09279266A (en) Method for precast forming metal
JP2006015367A (en) Casting production device and casting production method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees