JPH09153481A - Apparatus for plasma processing - Google Patents

Apparatus for plasma processing

Info

Publication number
JPH09153481A
JPH09153481A JP7312697A JP31269795A JPH09153481A JP H09153481 A JPH09153481 A JP H09153481A JP 7312697 A JP7312697 A JP 7312697A JP 31269795 A JP31269795 A JP 31269795A JP H09153481 A JPH09153481 A JP H09153481A
Authority
JP
Japan
Prior art keywords
plasma
separation plate
partition
plate
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7312697A
Other languages
Japanese (ja)
Inventor
Koichi Iio
Kyoichi Komachi
Naoki Matsumoto
Takahiro Yoshiki
隆裕 吉識
恭一 小町
直樹 松本
浩一 飯尾
Original Assignee
Sumitomo Metal Ind Ltd
住友金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Ind Ltd, 住友金属工業株式会社 filed Critical Sumitomo Metal Ind Ltd
Priority to JP7312697A priority Critical patent/JPH09153481A/en
Publication of JPH09153481A publication Critical patent/JPH09153481A/en
Application status is Granted legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for plasma processing, in which a partition for selectively introducing desired components to a reaction chamber from a plasma chamber has a structure capable of absorbing its thermal expansion so as to reduce the generation of dust due to the thermal expansion of the partition and prevent insulation failure of devices on a wafer. SOLUTION: A chemical reactor 1 is divided by a partition 5 to define a plasma chamber 2 and a reaction chamber 2. The partition 5 has crank-shaped bends in the periphery and usually composed of aluminum in view of contamination. The partition 5 comprises a body 5a, a bent portion 5b and a mounting part 5c. The partition 5 is fixed to a holder 6 of the reactor 1 by fastening the mounting part with aluminum or other metallic screws 7. If the partition body 5a expands with heat from the plasma, the expansion is absorbed by the deformation of the bent portion 5b.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、半導体素子基板や液晶ディスプレイ用ガラス基板等にプラズマを利用してエッチング、アッシングおよびCVD等の処理を施すのに適したプラズマ処理装置に関する。 The present invention relates utilizes plasma to the semiconductor device substrate, a liquid crystal display glass substrate or the like etching, a plasma processing apparatus suitable for performing processing such as ashing and CVD.

【0002】 [0002]

【従来の技術】ガスに外部からエネルギーを与えて発生させたプラズマは、大規模集積回路(LSI)や液晶ディスプレイ(LCD)等の製造プロセスにおいて広く用いられている。 BACKGROUND ART plasma generated by applying an external energy to the gas is widely used in manufacturing processes, such as large-scale integrated circuits (LSI), a liquid crystal display (LCD). 特にプラズマを用いたエッチング方法やアッシング方法はこれらの製造プロセスにとって不可欠の基本技術となっている。 In particular etching process and an ashing method using plasma is an indispensable fundamental technique for these manufacturing processes.

【0003】このエッチング方法やアッシング方法において、イオン衝撃による基板へのダメージが問題になる場合がある。 [0003] In this etching process and an ashing method, there are cases where damage to the substrate due to ion bombardment becomes a problem. また、エッチング方法においては下地膜に対する高選択比が要求される場合がある。 Further, in the etching method in some cases high selectivity to the underlying film is required.

【0004】そのような場合、ダウンフロー型のエッチング方法やアッシング方法が用いられる。 [0004] In such a case, the etching process and an ashing process of the down flow type is used. ダウンフロー型とは、プラズマ室で発生させたプラズマから基板の処理に必要なラディカルやイオンを選択的に反応室に引き出して基板に照射するものである。 The downflow, is to irradiate the substrate is pulled out from the plasma generated in the plasma chamber selectively reacting chamber radical or ion necessary substrate processing. 例えば、この分離板でイオンをカットしてラディカルのみを反応室に引き出すことにより、イオン衝撃による基板へのダメージのないエッチングやアッシング、または下地膜に対する高選択比のエッチングを行うことができる。 For example, by drawing by cutting ions in the separator plate only radical in the reaction chamber, it is possible to perform etching of a high selection ratio to the damage-free etching and ashing or the base film, to the substrate by ion bombardment.

【0005】図5は、このダウンフロー型のプラズマ処理装置を示す模式的縦断面図である。 [0005] Figure 5 is a schematic longitudinal sectional view showing the down-flow type plasma processing apparatus. このプラズマ処理装置では、反応容器1内がアルミニウム(Al)等で作製された分離板5によってプラズマ室2と反応室3とに分けられている。 The plasma processing apparatus is divided into a plasma chamber 2 and the reaction chamber 3 in the reaction vessel 1 by the separation plate 5 made of aluminum (Al) or the like. この分離板5にはプラズマ引出孔5e Plasma extraction hole 5e for this separation plate 5
が設けられており、プラズマ室2で発生したプラズマから試料の処理に必要なラディカルやイオンを選択的に反応室3に引き出せるようになっている。 Is provided and consists of a plasma generated in the plasma chamber 2 to draw a radical or ion necessary sample treatment to selectively reacting chamber 3. このとき、この分離板5を接地する、プラズマ引出孔5eの大きさを変える、または分離板5の厚みを厚くするなどにより、プラズマの引き出し条件を変えることができる。 In this case, grounding the separation plate 5, changing the size of the plasma outlet hole 5e, or such as by increasing the thickness of the separating plate 5, it is possible to change the plasma drawer conditions. 図5に示したプラズマ処理装置では、分離板5を反応容器1を介して接地している。 In the plasma processing apparatus shown in FIG. 5 is grounded separation plate 5 through the reaction vessel 1. そうすることにより、プラズマ引出孔5eを十分に小さくすれば、イオンを分離板5で消滅させてラディカルのみを反応室3に引き出すことができる。 By doing so, if sufficiently small plasma extraction hole 5e, can be allowed to disappear ion separation plate 5 elicit only a radical in the reaction chamber 3.

【0006】このプラズマ処理装置では、テフロン(登録商標)等で作製された誘電体層21にマイクロ波を伝搬させ、誘電体層21に対向する石英(SiO 2 )等で作製されたマイクロ波導入窓4からプラズマ室2内にマイクロ波を導入して、プラズマを発生する。 [0006] In this plasma processing apparatus, Teflon (registered trademark) by propagating microwaves produced dielectric layer 21, the quartz (SiO 2) facing the dielectric layer 21 microwaves produced by such introduction and introducing microwaves through a window 4 in the plasma chamber 2, to generate plasma. 発生したプラズマは分離板5のプラズマ引出孔5eから反応室3内に引き出される。 The generated plasma is extracted from the plasma outlet hole 5e of the separation plate 5 into the reaction chamber 3. そして、試料台14上の基板Sに照射して、所望のエッチングやアッシング処理を施すのである。 Then, by irradiating the substrate S on the sample stage 14 is subjected to a desired etching and ashing process.

【0007】 [0007]

【発明が解決しようとする課題】しかしながら、上述のプラズマ処理装置においては、プラズマを発生させると分離板の温度がプラズマ加熱によって上昇する、またプラズマの発生を停止すると、分離板の温度が下降する。 [SUMMARY OF THE INVENTION However, in the above-described plasma processing apparatus, when the generating a plasma temperature of the separation plate rises by plasma heating, also stops generating the plasma, the temperature of the separating plate is lowered .
この温度上昇および温度下降よって分離板が伸縮し分離板の外周部にある分離板を固定している部分に摩擦が生じて、金属の微粒子、すなわちパーティクルが発生するという問題が生じていた。 The temperature increase and temperature decrease result in friction in a portion separating plate is a separation plate at the outer peripheral portion of the elastic separating plate fixed occurs, have occurred a problem that fine metal particles, i.e., particles are generated. このパーティクルが試料台上の基板に堆積すると、この基板に形成されるデバイスの絶縁不良等の原因になる。 This particles are deposited on the substrate on the sample stage, cause insulation failure or the like of the devices formed on the substrate.

【0008】図6は、このプラズマ処理装置の分離板の固定部を示す模式的縦断面図であるり、(a)は常温の状態であり、(b)はプラズマ加熱により分離板が伸長した状態である。 [0008] Figure 6, the plasma processing Ri device is a schematic longitudinal sectional view showing a fixing portion of the separation plate, (a) is a normal temperature, (b) the separation plate is extended by plasma heating it is a state. なお、(a)はネジで固定されている部分の図であり、(b)はネジとネジとの間であってネジで固定されていない部分の図である。 Incidentally, (a) is a diagram of a portion which is fixed with screws, is a diagram of a portion not fixed with screws be between (b) is a screw and the screw.

【0009】分離板5はプラズマ引出孔5eが設けられた分離板本体5aとその外周部にある分離板固定部5c [0009] separation plate 5 is in its outer peripheral portion and the separation plate body 5a of plasma extraction hole 5e is provided separator plate fixing portion 5c
とからなる。 Consisting of. 分離板5は、分離板固定部5cにおいて反応容器1の分離板保持部6に数本のアルミニウム製のネジ7で固定される(図6(a))。 Separation plate 5 is fixed in the separation plate holder 6 in several of aluminum screw 7 of the reaction vessel 1 in the separation plate fixing unit 5c (FIG. 6 (a)). 分離板本体5aがプラズマ加熱により伸長すると、ネジ7で固定されていない部分では、分離板固定部5cが外側に移動するため、 When the separation plate body 5a is extended by plasma heating, the portion not fixed with the screws 7, since the separation plate fixing portion 5c is moved to the outside,
分離板固定部5cと分離板保持部6との間で摩擦が生じ、パーティクルが発生するのである(図6(b))。 Friction occurs between the separator plate fixing portion 5c and the separation plate holder 6 is of particles are generated (Figure 6 (b)).

【0010】本発明はこのような課題に鑑みてなされたものであり、分離板の熱膨張に起因するパーティクルの発生を抑えて、基板上に形成するデバイスの絶縁不良等の発生を抑制できるプラズマ処理装置を提供することを目的としている。 [0010] The present invention has been made in view of such problems, by suppressing the generation of particles caused by the thermal expansion of the separation plate, plasma generation of insulation failure or the like of the device formed on the substrate can be suppressed and its object is to provide a processing apparatus.

【0011】 [0011]

【課題を解決するための手段】本発明者は、分離板本体の伸縮が分離板の固定部に及ばないようにする方法について検討し、本発明を完成させた。 Means for Solving the Problems The present inventors have studied how to expansion and contraction of the separating plate body so as not extend to the fixing portion of the separation plate, and completed the present invention.

【0012】すなわち、本発明のプラズマ処理装置は、 Namely, the plasma treatment apparatus of the present invention,
プラズマを発生するプラズマ室と、内部に試料台が配設された反応室と、プラズマ室で発生したプラズマから試料の処理に必要な成分を選択的に反応室に引き出す分離板とを備えるプラズマ処理装置であって、前記分離板の熱膨張による平面的な伸縮を吸収する構造を有することを特徴としている。 Plasma processing comprising a plasma chamber, a reaction chamber in which a sample stage disposed therein, and a separation plate to draw components necessary from the plasma generated in the plasma chamber to the processing of the sample to selective reaction chamber for generating a plasma an apparatus is characterized by having a structure that absorbs a planar stretch due to thermal expansion of the separation plate.

【0013】本発明のプラズマ処理装置は、分離板の熱膨張による平面的な伸縮を吸収する構造を有しているので、分離板本体がプラズマ加熱等により伸縮したとしても、この伸縮が分離板の固定部に及ばない。 [0013] The plasma processing apparatus of the present invention has a structure that absorbs a planar stretch due to thermal expansion of the separating plate, also as a separating plate body is stretchable by plasma heating or the like, the expansion and contraction separation plate inferior to the fixed portion. したがって、分離板の固定部が移動しないので、分離板の固定部と分離板保持部との間での摩擦は生じない。 Accordingly, since the fixing portion of the separation plate does not move, there is no friction between the fixed portion of the separation plate and the separation plate holder. したがって、この部分でパーティクルは発生しない。 Thus, the particles does not occur in this portion.

【0014】また、分離板の固定部が移動しないので、 [0014] In addition, since the fixed portion of the separation plate does not move,
分離板の分離板保持部へのネジでの取り付けを安定させることができる。 The attachment of a screw to the separation plate holding portion of the separation plate can be stabilized. そのため、分離板によりイオンをカットしたり、プラズマの安定化させるために分離板を接地する場合に、分離板を反応容器を介して安定して接地することが可能になる。 Therefore, cut or ions by the separation plate, when grounding the separation plate in order to stabilize the plasma, stably becomes possible to ground through a separation plate reactor.

【0015】分離板の熱膨張による平面的な伸縮を吸収する構造としては、例えば、分離板の外周部に屈曲部を設ける構造がある。 [0015] As a structure for absorbing a planar stretch due to thermal expansion of the separation plate, for example, there is a structure in which the bent portion on the outer periphery of the separating plate. この屈曲部が曲がることで、分離板の平面的な伸縮を吸収できる。 By this bending portion bends, it can absorb planar stretch of the separation plate. また、分離板の外周部に伸縮緩和溝を設ける構造としても良い。 Further, it may be a structure in which an elastic relaxation groove on the outer periphery of the separating plate. この伸縮緩和溝の幅が変化することで、分離板の平面的な伸縮を吸収できる。 By width of the elastic relaxation groove is changed, it can absorb a planar stretch of the separation plate.

【0016】 [0016]

【発明の実施の形態】本発明の熱膨張による平面的な伸縮を吸収する構造を有する分離板を備えたプラズマ処理装置の1例について図面に基づき説明する。 One case of a plasma processing apparatus having a separation plate having a structure for absorbing a planar stretch due to thermal expansion of the embodiment of the present invention will be described with reference to the accompanying drawings.

【0017】図1は、本発明のプラズマ処理装置の1例を示す模式的縦断面図である。 [0017] Figure 1 is a schematic longitudinal sectional view showing one example of a plasma processing apparatus of the present invention.

【0018】反応容器1は分離板5によってプラズマ室2と反応室3とに分離され、またその分離板5に設けられたプラズマ引出孔5eによりプラズマ室2と反応室3 The reaction vessel 1 is separated into the plasma chamber 2 by the separation plate 5 and the reaction chamber 3, also the plasma chamber 2 and the reaction chamber 3 by the plasma outlet hole 5e provided on the separation plate 5
により連通している。 And communicate with each other through. 分離板5はその外周部に断面がクランク状である折れ曲がりを有しており、その先の部分で、分離板保持部6に固定されている。 Separation plate 5 has a bent section on its outer periphery is crank-shaped, the portion of the first, is fixed to the separator plate holding portion 6. 分離板5は反応容器1を介して接地されている。 Separation plate 5 is grounded through the reactor vessel 1. 分離板5は通常コンタミネーションの問題からアルミニウム(Al)等の金属が用いられる。 Separation plate 5 is a metal such as aluminum (Al) is used from the usual contamination problems.

【0019】反応容器1はアルミニウム(Al)等の金属で作製され、その反応容器1の壁の内部には冷却水経路15が形成される。 The reaction vessel 1 is made of metal such as aluminum (Al), the inside of the reaction container 1 wall cooling water passage 15 is formed. 反応容器1の上部はマイクロ波導入窓4で気密に封止される。 The top of the reaction vessel 1 is hermetically sealed in a microwave introduction window 4. マイクロ波導入窓4は、耐熱性とマイクロ波透過性を有し、かつ誘電損失が小さい石英(SiO 2 )、アルミナ(Al 23 )等の誘電体板で作製される。 Microwave introduction window 4 has a heat resistance and microwave transparency, and quartz dielectric loss is small (SiO 2), is made of a dielectric plate such as alumina (Al 2 O 3). 反応室3内にはマイクロ波導入窓4とは対向する位置に、基板Sを載置する試料台14が配設される。 The reaction chamber 3 at a position facing the microwave introduction window 4, a sample stage 14 for placing a substrate S is disposed. 反応容器1の側壁にはプラズマ室2にガスを供給するガス導入孔12が設けられ、反応容器1の下部壁には排気装置(図示せず)に接続される排気口13が設けられている。 The side wall of the reaction vessel 1 is provided a plasma chamber 2 gas introduction hole 12 for supplying gas to the exhaust port 13 is provided in the lower wall of the reaction vessel 1 is connected to an exhaust device (not shown) . 誘電体層21に導波管23を介してマイクロ波発振器24が連結されている。 Microwave oscillator 24 through the waveguide 23 to the dielectric layer 21 is connected.

【0020】図2は、このプラズマ処理装置の分離板の固定部の模式的縦断面図であり、(a)は常温の状態であり、(b)はプラズマ加熱により分離板が伸長した状態である。 [0020] Figure 2 is a schematic longitudinal sectional view of the fixing portion of the separation plate of the plasma processing apparatus, (a) is a normal temperature, (b) in a state where the separation plate is extended by plasma heating is there.

【0021】分離板5は、プラズマ引出孔5eが設けられている分離板本体5aとその外周部にある分離板屈曲部5bと分離板固定部5cとからなる。 The separation plate 5 is made of a separator plate body 5a of plasma extraction hole 5e is provided with a separating plate bent portion 5b in its outer peripheral portion and the separator plate fixing portion 5c. 分離板5は、分離板固定部5cにおいて反応容器1の分離板保持部6にアルミニウム(Al)等の金属製の数本のネジ7で固定される(図2(a))。 Separation plate 5 is fixed to the separator plate holding portion 6 of the reaction vessel 1 in the separation plate fixing portion 5c of aluminum (Al) several screws 7 made of metal or the like (FIG. 2 (a)). 分離板本体5aがプラズマ加熱により伸長すると、分離板屈曲部5bが曲がってこの伸びを吸収する。 When the separation plate body 5a is elongated by plasma heating, the separation plate bent portion 5b is bent to absorb the elongation. そのため、分離板固定部5cは動かず、 Therefore, without moving the separation plate fixing portion 5c,
分離板保持部6との間で摩擦も生じないためパーティクルが発生しない(図2(b))。 Particles does not occur because not caused friction between the separator plate holding portion 6 (Figure 2 (b)).

【0022】分離板本体5aの平面形状はほぼ矩形であり、その矩形の角は所定の曲率のアール面取り形状に形成した方が良い。 The planar shape of the separator plate body 5a is substantially rectangular, the corners of the rectangle is better formed in radiusing shape of predetermined curvature. これは、分離板本体5aがプラズマ加熱により伸長したとき、分離板屈曲部5bを曲がりやすくして、この伸びを吸収しやすくするためである。 This is when the separation plate body 5a is extended by plasma heating, and bend easily the separation plate bent portion 5b, in order to easily absorb the elongation. なお、分離板本体5aの平面形状が円形等であっても良いことは言うまでもない。 The planar shape of the separation plate body 5a is of course may be circular or the like.

【0023】分離板屈曲部5bの厚みを薄くすれば、分離板屈曲部5bをより曲がり易くして伸びを吸収しやすくできる。 [0023] By reducing the thickness of the separation plate bent portion 5b, it tends to absorb the extension by more bendable more separation plate bent portion 5b.

【0024】なお、ネジ固定部8はアルミニウム(A It should be noted, screw fixing portion 8 of aluminum (A
l)等で矩形リング状に作製されたものであり、反応容器1の側壁のガス導入孔12から導入されるガスをプラズマ室2に速やかに供給する経路を形成するためのものである。 It has been produced in a rectangular ring shape in l) or the like, is intended to form a rapidly supplying path gas introduced from the gas introducing hole 12 of the side wall of the reaction vessel 1 into the plasma chamber 2.

【0025】図3は、本発明のプラズマ処理装置の別の例の分離板の固定部の模式的縦断面図であり、(a)は常温の状態であり、(b)はプラズマ加熱により分離板が伸長した状態である。 FIG. 3 is a schematic longitudinal sectional view of the fixing portion of another example of the separation plate of the plasma processing apparatus of the present invention, (a) is a normal temperature, (b) is isolated by plasma heating it is a state in which the plate is extended.

【0026】分離板5は、プラズマ引出孔5eが設けられた分離板本体5aとその外周部にある分離板固定部5 The separation plate 5, the separating plate fixing unit 5 with separator plate body 5a of plasma extraction hole 5e is provided with peripherally thereof
cとからなる。 Consisting of a c. ただし、分離板本体5aの外周に伸縮緩和溝5dが設けられている。 However, stretch relaxation groove 5d is provided on the outer periphery of the separating plate body 5a. 分離板5は、分離板固定部5cにおいて反応容器の分離板保持部6にアルミニウム(Al)等の金属製の数本のネジ7で固定される(図3 Separator plate 5 is secured by an aluminum (Al) several screws 7 made of a metal such as separation plate holder 6 of the reaction vessel in the separation plate fixing unit 5c (FIG. 3
(a))。 (A)). 分離板本体5aがプラズマ加熱により伸長すると、伸縮緩和溝5dの溝の幅が狭くなってこの伸びを吸収する。 When the separation plate body 5a is extended by plasma heating, the width of the groove of stretch relaxation groove 5d is narrowed to absorb the elongation. そのため、分離板固定部5cは動かず、分離板保持部6との間で摩擦も生じないためパーティクルが発生しない(図3(b))。 Therefore, without moving the separation plate fixing portion 5c, the particles does not occur because not caused friction between the separator plate holding portion 6 (Figure 3 (b)).

【0027】上述した分離板屈曲部5bや伸縮緩和溝5 The separator plate bent portion 5b described above and stretch relaxation groove 5
dの設計は、分離板5の熱膨張の程度を評価して行えば良い。 d The design may be performed by evaluating the degree of thermal expansion of the separating plate 5. この評価には、例えば以下の熱膨張の式(式(1))を用いれば良い。 This evaluation, for example, may be used the following formulas of thermal expansion (Equation (1)).

【0028】 L=aL 0 (T 2 −T 1 ) ・・・・・ (1) a :線膨張係数 例えば、Alの場合:2.3×10 -5 (K -1 ) L 0 :0℃での金属の長さ T 2 −T 1 :温度差(K) なお、本発明は、誘電体層を用いたプラズマ処理装置のみならず、分離板を用いたプラズマ処理装置のすべてに適用することができる。 [0028] L = aL 0 (T 2 -T 1) ····· (1) a: linear expansion coefficient For example, in the case of Al: 2.3 × 10 -5 (K -1) L 0: 0 ℃ metal length T 2 -T 1 at: Note temperature difference (K), the present invention not only a plasma processing apparatus using a dielectric layer, applying to all of the plasma processing apparatus using the separating plate can.

【0029】 [0029]

【実施例】本発明の実施例について説明する。 EXAMPLES Examples of the present invention will be described. 本発明の実施例は図1及び図2に示したものである。 Examples of the present invention is shown in FIGS. 1 and 2. すなわち、 That is,
この実施例の分離板5は、分離板屈曲部5bにより分離板本体5aの平面的な伸縮を吸収するものである。 Separation plate 5 of this embodiment is intended to absorb the planar expansion of the separation plate body 5a by the separating plate bent portion 5b. この実施例の装置は、LCD用ガラス基板等の大型基板を処理するものであり、プラズマ発生面積が650mm×6 The apparatus of this embodiment is intended to process a large substrate such as a glass substrate for LCD, plasma generation area 650 mm × 6
50mmとした。 It was 50mm.

【0030】分離板5はアルミニウム(Al)で作製した。 The separation plate 5 is manufactured in aluminum (Al). 分離板本体5aの厚みは2.0mmとし、面積は6 The thickness of the separation plate body 5a is a 2.0 mm, area 6
00mm×600mmとし、角に対しては曲率半径30 And 300 mm × 600 mm, the radius of curvature 30 with respect to the angular
mmのアール面取りを施してある。 It is subjected to Earl chamfer mm. プラズマ引出孔は、 Plasma pull-out holes,
直径3mmのものを5mmの間隔で110×110個設けた。 110 × was 110 amino provided at an interval of 5mm to a diameter of 3 mm.

【0031】分離板屈曲部5bの厚みは1.5mmとし、長さは30mmとした。 [0031] The thickness of the separation plate bent portion 5b is set to 1.5 mm, was 30mm length. また分離板屈曲部5bと後述するネジ固定部8との間隔dを3.0mmとした。 The distance d between the screw fixing portion 8 described later and the separation plate bent portion 5b was 3.0 mm. 分離板屈曲部5bの厚みは分離板本体5aの厚みに比べて薄くなるように決めた。 The thickness of the separation plate bent portion 5b is decided to be thinner than the thickness of the separation plate body 5a. 分離板屈曲部5bの長さ及び分離板屈曲部5bとネジ固定部8との間隔dは、プラズマ加熱による分離板本体5aの伸びの評価に基づき決めた。 Distance d between the length and the separation plate bent portion 5b and the screw fixing portion 8 of the separator plate bent portion 5b is decided based on the evaluation of the elongation of the separating plate body 5a by plasma heating.

【0032】この実施例では、通常のエッチングやアッシング処理の際、プラズマ加熱により分離板5が200 [0032] In this embodiment, during normal etching and ashing process, separation plate 5 by plasma heating 200
℃程度に加熱される。 It is heated to approximately ° C.. 分離板本体5aの横方向の伸びを式(1)により評価し、通常の処理においては常温(2 The lateral extension of the separation plate body 5a evaluated by Equation (1), room temperature in normal processing (2
5℃)に比べ横方向に2.4mm(片側1.2mmずつ)伸びることがわかった。 Laterally compared to 5 ° C.) was found to extend 2.4 mm (each side 1.2 mm). この伸びの値に基づき、分離板屈曲部5bの長さ及び分離板屈曲部5bとネジ固定部8との間隔dを決めたのである。 Based on the value of this elongation, it was decided to distance d of length and separation plate bent portions 5b of the separator plate bent portion 5b and the screw fixing portion 8.

【0033】また、分離板保持部6は、その材質がアルミニウム(Al)であり、反応容器1の内周に沿って設けられている。 Further, the separation plate holder 6, the material is aluminum (Al), are provided along the inner periphery of the reaction vessel 1. 分離板5は、この分離板保持部6にネジ7で48ケ所固定されている。 Separation plate 5 is in screw 7 fixed 48 places in the separating plate holding portion 6. ネジ固定部8は、アルミニウム(Al)の矩形リング状のものである。 Screw fixing portion 8 are those aluminum rectangular ring shape of (Al). ガス供給孔12は反応容器1の壁に48ケ所設けた。 Gas supply holes 12 provided 48 places on the walls of the reaction vessel 1. 分離板5は反応容器1を介して接地されている。 Separation plate 5 is grounded through the reactor vessel 1.

【0034】この実施例の分離板の適用の効果を調べるために、反応室内におけるパーティクル(>0.2μ [0034] To investigate the effect of the application of the separation plate in this embodiment, the particles in the reaction chamber (> 0.2.mu.
m)数の評価を行った。 m) were evaluated in the number. 評価は次のように行った。 The evaluation was carried out as follows. シリコンウエハSを試料台14上に載置してプラズマ照射を行う工程を繰り返す。 The silicon wafer S is placed on the sample stage 14 repeats the step of performing plasma irradiation. この工程の所定の枚数のところで、予めパーティクル数を測定したシリコンウエハSを試料台14上に載置してプラズマ照射を行い、パーティクル数を測定し、パーティクル数の増加を求める。 At a predetermined number of steps, in advance of the silicon wafer S to the number of particles was determined by placing on a sample stage 14 by plasma irradiation, it was measured number of particles to determine the increase in the number of particles. なお、このプラズマ照射の工程は、シリコンウエハSを交換しながら25枚連続で行い、さらにこれを12回繰り返して、計300枚に対して行った。 The steps of the plasma irradiation was performed at replacement 25 sheets while continuously a silicon wafer S, and repeated 12 times this was carried out on a total of 300 sheets. プラズマ照射時間は2分、プラズマ照射の間隔は1分とした。 Plasma irradiation time 2 minutes, interval of the plasma irradiation was 1 minute. プラズマ照射の条件は、ガス:Ar、圧力:0.3Torr、マイクロ波パワー:3.0kWとした。 Conditions of the plasma irradiation, gas: Ar, pressure: 0.3 Torr, microwave power: was 3.0 kW. また、比較のため、 In addition, for the purpose of comparison,
図5および図6に示した従来の分離板を用いたプラズマ処理装置についても同様の測定を行った。 Was measured same applies to a plasma processing apparatus using the conventional separation plate shown in FIGS.

【0035】図4は、パーティクル数の測定結果である。 [0035] Figure 4 is a measurement result of the number of particles. 本発明の実施例(○)の場合、パーティクル数が2 The embodiment of the present invention (○), the number of particles 2
0〜30個前後で安定していた。 0-30 pieces was stable before and after. これに対して、従来例(△)の場合、約50枚のプラズマ照射でパーティクル数が増加し始め、パーティクル数が100個程度まで増加した。 In contrast, the conventional example (△), begins to increase in number of particles of about 50 sheets of plasma irradiation, the number of particles is increased to about 100. すなわち、本発明の分離板を適用することによって、パーティクル数の増加を抑えることができることを確認した。 In other words, by applying the separating plate of the present invention, it was confirmed that it is possible to suppress an increase in number of particles.

【0036】 [0036]

【発明の効果】以上詳述したように、本発明のプラズマ処理装置にあっては、分離板の熱膨張による摩擦に起因するパーティクルの発生を抑えることができる。 As described in detail above, in the plasma processing apparatus of the present invention, it is possible to suppress the generation of particles caused by the friction due to the thermal expansion of the separation plate. これにより、本発明のプラズマ処理装置を用いて製造されるデバイスの絶縁不良等を発生を抑制できる。 Thus, the occurrence of insulation failure or the like of the device manufactured by using the plasma processing apparatus of the present invention can be suppressed.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明のプラズマ処理装置の1例を示す模式的縦断面図である。 1 is a schematic longitudinal sectional view showing one example of a plasma processing apparatus of the present invention.

【図2】本発明のプラズマ処理装置の1例の分離板の固定部の模式的縦断面図であり、(a)は常温の状態であり、(b)はプラズマ加熱により分離板が伸長した状態である。 It is a schematic longitudinal sectional view of a fixing portion of an example of the separation plate of the plasma processing apparatus of the present invention; FIG, is (a) a normal temperature, (b) the separation plate is extended by plasma heating it is a state.

【図3】本発明のプラズマ処理装置の別の例の分離板の固定部の模式的縦断面図であり、(a)は常温の状態であり、(b)はプラズマ加熱により分離板が伸長した状態である。 FIG. 3 is a schematic longitudinal sectional view of the fixing portion of another example of the separation plate of the plasma processing apparatus of the present invention, (a) is a normal temperature, (b) the separation plate extended by the plasma heating it is a state.

【図4】パーティクル数の測定結果である。 4 is a measurement result of the number of particles.

【図5】従来のダウンフロー型のプラズマ処理装置を示す模式的縦断面図である。 5 is a schematic longitudinal sectional view showing a conventional downflow type plasma processing apparatus.

【図6】従来のダウンフロー型のプラズマ処理装置の分離板の固定部の模式的縦断面図であり、(a)は常温の状態であり、(b)はプラズマ加熱により分離板が伸長した状態である。 6 is a schematic longitudinal sectional view of the fixing portion of the separation plate of a conventional down-flow type plasma processing apparatus, the (a) is a normal temperature state, (b) the separation plate is extended by plasma heating it is a state.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 反応容器 2 プラズマ室 3 反応室 4 マイクロ波導入窓 5 分離板 5a 分離板本体 5b 分離板屈曲部 5c 分離板固定部 5d 伸縮緩和溝 5e プラズマ引出孔 6 分離板保持部 7 ネジ 8 ネジ固定部 11 Oリング 12 ガス導入孔 14 試料台 15 冷却水経路 21 誘電体層 22 金属板 23 導波管 24 マイクロ波発振器 S 基板(シリコンウエハ) 1 reaction vessel 2 plasma chamber 3 reaction chamber 4 the microwave introducing window 5 separation plate 5a separation plate body 5b separator plate bent portion 5c separator plate fixing unit 5d stretch relaxation groove 5e plasma outlet hole 6 separator plate holder 7 screw 8 screw fixing portion 11 O-ring 12 gas inlet 14 a sample stage 15 cooling water passage 21 a dielectric layer 22 a metal plate 23 the waveguide 24 microwave oscillator S substrate (silicon wafer)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl. 6識別記号 庁内整理番号 FI 技術表示箇所 H05H 1/46 H05H 1/46 B // C23C 16/50 C23C 16/50 H01L 21/302 H (72)発明者 松本 直樹 大阪府大阪市中央区北浜4丁目5番33号住 友金属工業株式会社内 ────────────────────────────────────────────────── ─── front page continued (51) Int.Cl. 6 identification symbol Agency in Docket No. FI art display portion H05H 1/46 H05H 1/46 B // C23C 16/50 C23C 16/50 H01L 21/302 H ( 72) inventor Naoki Matsumoto, Chuo-ku, Osaka-shi Kitahama 4-chome No. 5 No. 33 Sumitomo metal industry Co., Ltd. in

Claims (1)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】プラズマを発生するプラズマ室と、内部に試料台が配設された反応室と、プラズマ室で発生したプラズマから試料の処理に必要な成分を選択的に反応室に引き出す分離板とを備えるプラズマ処理装置であって、 1. A plasma chamber for generating plasma, a reaction chamber in which a sample stage disposed therein, separation plate to draw selectively the reaction chamber components necessary to process the sample from the plasma generated in the plasma chamber a plasma processing apparatus comprising bets,
    前記分離板の熱膨張による平面的な伸縮を吸収する構造を有することを特徴とするプラズマ処理装置。 The plasma processing apparatus characterized by having a structure that absorbs a planar stretch due to thermal expansion of the separation plate.
JP7312697A 1995-11-30 1995-11-30 Apparatus for plasma processing Granted JPH09153481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7312697A JPH09153481A (en) 1995-11-30 1995-11-30 Apparatus for plasma processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7312697A JPH09153481A (en) 1995-11-30 1995-11-30 Apparatus for plasma processing

Publications (1)

Publication Number Publication Date
JPH09153481A true JPH09153481A (en) 1997-06-10

Family

ID=18032347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7312697A Granted JPH09153481A (en) 1995-11-30 1995-11-30 Apparatus for plasma processing

Country Status (1)

Country Link
JP (1) JPH09153481A (en)

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115069A (en) * 2000-06-22 2002-04-19 Applied Materials Inc Showerhead
JP2002533911A (en) * 1998-09-25 2002-10-08 ラム リサーチ コーポレーション Low contamination high density plasma etch chamber and method of manufacturing the same
US6583980B1 (en) * 2000-08-18 2003-06-24 Applied Materials Inc. Substrate support tolerant to thermal expansion stresses
JP2005256172A (en) * 2004-02-24 2005-09-22 Applied Materials Inc Movable or flexible shower head fitting
JP2010186825A (en) * 2009-02-10 2010-08-26 Ulvac Japan Ltd Plasma processing device
JP2010209429A (en) * 2009-03-11 2010-09-24 Ulvac Japan Ltd Remote plasma cvd machine
US8236134B2 (en) 2004-07-09 2012-08-07 Jusung Engineering Co., Ltd. Gas distributor and apparatus using the same
US20120238102A1 (en) * 2011-03-14 2012-09-20 Applied Materials, Inc. Methods for etch of sin films
US8801952B1 (en) 2013-03-07 2014-08-12 Applied Materials, Inc. Conformal oxide dry etch
US8895449B1 (en) 2013-05-16 2014-11-25 Applied Materials, Inc. Delicate dry clean
US8921234B2 (en) 2012-12-21 2014-12-30 Applied Materials, Inc. Selective titanium nitride etching
US8927390B2 (en) 2011-09-26 2015-01-06 Applied Materials, Inc. Intrench profile
US8951429B1 (en) 2013-10-29 2015-02-10 Applied Materials, Inc. Tungsten oxide processing
US8956980B1 (en) 2013-09-16 2015-02-17 Applied Materials, Inc. Selective etch of silicon nitride
US8969212B2 (en) 2012-11-20 2015-03-03 Applied Materials, Inc. Dry-etch selectivity
US8975152B2 (en) 2011-11-08 2015-03-10 Applied Materials, Inc. Methods of reducing substrate dislocation during gapfill processing
US8980763B2 (en) 2012-11-30 2015-03-17 Applied Materials, Inc. Dry-etch for selective tungsten removal
US9023732B2 (en) 2013-03-15 2015-05-05 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9023734B2 (en) 2012-09-18 2015-05-05 Applied Materials, Inc. Radical-component oxide etch
US9034770B2 (en) 2012-09-17 2015-05-19 Applied Materials, Inc. Differential silicon oxide etch
US9040422B2 (en) 2013-03-05 2015-05-26 Applied Materials, Inc. Selective titanium nitride removal
US9064816B2 (en) 2012-11-30 2015-06-23 Applied Materials, Inc. Dry-etch for selective oxidation removal
US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
CN104752271A (en) * 2013-12-27 2015-07-01 株式会社日立国际电气 Substrate processing apparatus and method of manufacturing semiconductor device
US9111877B2 (en) 2012-12-18 2015-08-18 Applied Materials, Inc. Non-local plasma oxide etch
US9117855B2 (en) 2013-12-04 2015-08-25 Applied Materials, Inc. Polarity control for remote plasma
US9114438B2 (en) 2013-05-21 2015-08-25 Applied Materials, Inc. Copper residue chamber clean
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US9136273B1 (en) 2014-03-21 2015-09-15 Applied Materials, Inc. Flash gate air gap
US9159606B1 (en) 2014-07-31 2015-10-13 Applied Materials, Inc. Metal air gap
US9165786B1 (en) 2014-08-05 2015-10-20 Applied Materials, Inc. Integrated oxide and nitride recess for better channel contact in 3D architectures
US9190293B2 (en) 2013-12-18 2015-11-17 Applied Materials, Inc. Even tungsten etch for high aspect ratio trenches
US9236266B2 (en) 2011-08-01 2016-01-12 Applied Materials, Inc. Dry-etch for silicon-and-carbon-containing films
US9236265B2 (en) 2013-11-04 2016-01-12 Applied Materials, Inc. Silicon germanium processing
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
US9263278B2 (en) 2013-12-17 2016-02-16 Applied Materials, Inc. Dopant etch selectivity control
US9287095B2 (en) 2013-12-17 2016-03-15 Applied Materials, Inc. Semiconductor system assemblies and methods of operation
US9287134B2 (en) 2014-01-17 2016-03-15 Applied Materials, Inc. Titanium oxide etch
US9293568B2 (en) 2014-01-27 2016-03-22 Applied Materials, Inc. Method of fin patterning
US9299582B2 (en) 2013-11-12 2016-03-29 Applied Materials, Inc. Selective etch for metal-containing materials
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299538B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299575B2 (en) 2014-03-17 2016-03-29 Applied Materials, Inc. Gas-phase tungsten etch
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
US9355856B2 (en) 2014-09-12 2016-05-31 Applied Materials, Inc. V trench dry etch
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US9378978B2 (en) 2014-07-31 2016-06-28 Applied Materials, Inc. Integrated oxide recess and floating gate fin trimming
US9378969B2 (en) 2014-06-19 2016-06-28 Applied Materials, Inc. Low temperature gas-phase carbon removal
US9385028B2 (en) 2014-02-03 2016-07-05 Applied Materials, Inc. Air gap process
US9390937B2 (en) 2012-09-20 2016-07-12 Applied Materials, Inc. Silicon-carbon-nitride selective etch
US9396989B2 (en) 2014-01-27 2016-07-19 Applied Materials, Inc. Air gaps between copper lines
US9406523B2 (en) 2014-06-19 2016-08-02 Applied Materials, Inc. Highly selective doped oxide removal method
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US9847289B2 (en) 2014-05-30 2017-12-19 Applied Materials, Inc. Protective via cap for improved interconnect performance
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US10170282B2 (en) 2013-03-08 2019-01-01 Applied Materials, Inc. Insulated semiconductor faceplate designs
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations

Cited By (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002533911A (en) * 1998-09-25 2002-10-08 ラム リサーチ コーポレーション Low contamination high density plasma etch chamber and method of manufacturing the same
JP2002115069A (en) * 2000-06-22 2002-04-19 Applied Materials Inc Showerhead
US6583980B1 (en) * 2000-08-18 2003-06-24 Applied Materials Inc. Substrate support tolerant to thermal expansion stresses
JP2005256172A (en) * 2004-02-24 2005-09-22 Applied Materials Inc Movable or flexible shower head fitting
US7722925B2 (en) 2004-02-24 2010-05-25 Applied Materials, Inc. Showerhead mounting to accommodate thermal expansion
JP2011089208A (en) * 2004-02-24 2011-05-06 Applied Materials Inc Movable or flexible showerhead mounting
US8236134B2 (en) 2004-07-09 2012-08-07 Jusung Engineering Co., Ltd. Gas distributor and apparatus using the same
JP2010186825A (en) * 2009-02-10 2010-08-26 Ulvac Japan Ltd Plasma processing device
JP2010209429A (en) * 2009-03-11 2010-09-24 Ulvac Japan Ltd Remote plasma cvd machine
US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
US20120238102A1 (en) * 2011-03-14 2012-09-20 Applied Materials, Inc. Methods for etch of sin films
CN103430289A (en) * 2011-03-14 2013-12-04 应用材料公司 Methods for etch of SIN films
US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US8999856B2 (en) * 2011-03-14 2015-04-07 Applied Materials, Inc. Methods for etch of sin films
US9343327B2 (en) * 2011-03-14 2016-05-17 Applied Materials, Inc. Methods for etch of sin films
US9236266B2 (en) 2011-08-01 2016-01-12 Applied Materials, Inc. Dry-etch for silicon-and-carbon-containing films
US8927390B2 (en) 2011-09-26 2015-01-06 Applied Materials, Inc. Intrench profile
US9012302B2 (en) 2011-09-26 2015-04-21 Applied Materials, Inc. Intrench profile
US8975152B2 (en) 2011-11-08 2015-03-10 Applied Materials, Inc. Methods of reducing substrate dislocation during gapfill processing
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US9034770B2 (en) 2012-09-17 2015-05-19 Applied Materials, Inc. Differential silicon oxide etch
US9887096B2 (en) 2012-09-17 2018-02-06 Applied Materials, Inc. Differential silicon oxide etch
US9023734B2 (en) 2012-09-18 2015-05-05 Applied Materials, Inc. Radical-component oxide etch
US9390937B2 (en) 2012-09-20 2016-07-12 Applied Materials, Inc. Silicon-carbon-nitride selective etch
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US8969212B2 (en) 2012-11-20 2015-03-03 Applied Materials, Inc. Dry-etch selectivity
US9064816B2 (en) 2012-11-30 2015-06-23 Applied Materials, Inc. Dry-etch for selective oxidation removal
US8980763B2 (en) 2012-11-30 2015-03-17 Applied Materials, Inc. Dry-etch for selective tungsten removal
US9111877B2 (en) 2012-12-18 2015-08-18 Applied Materials, Inc. Non-local plasma oxide etch
US9449845B2 (en) 2012-12-21 2016-09-20 Applied Materials, Inc. Selective titanium nitride etching
US8921234B2 (en) 2012-12-21 2014-12-30 Applied Materials, Inc. Selective titanium nitride etching
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9607856B2 (en) 2013-03-05 2017-03-28 Applied Materials, Inc. Selective titanium nitride removal
US9040422B2 (en) 2013-03-05 2015-05-26 Applied Materials, Inc. Selective titanium nitride removal
US8801952B1 (en) 2013-03-07 2014-08-12 Applied Materials, Inc. Conformal oxide dry etch
US9093390B2 (en) 2013-03-07 2015-07-28 Applied Materials, Inc. Conformal oxide dry etch
US10170282B2 (en) 2013-03-08 2019-01-01 Applied Materials, Inc. Insulated semiconductor faceplate designs
US9153442B2 (en) 2013-03-15 2015-10-06 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9184055B2 (en) 2013-03-15 2015-11-10 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9991134B2 (en) 2013-03-15 2018-06-05 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9093371B2 (en) 2013-03-15 2015-07-28 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9023732B2 (en) 2013-03-15 2015-05-05 Applied Materials, Inc. Processing systems and methods for halide scavenging
US8895449B1 (en) 2013-05-16 2014-11-25 Applied Materials, Inc. Delicate dry clean
US9114438B2 (en) 2013-05-21 2015-08-25 Applied Materials, Inc. Copper residue chamber clean
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US8956980B1 (en) 2013-09-16 2015-02-17 Applied Materials, Inc. Selective etch of silicon nitride
US9209012B2 (en) 2013-09-16 2015-12-08 Applied Materials, Inc. Selective etch of silicon nitride
US8951429B1 (en) 2013-10-29 2015-02-10 Applied Materials, Inc. Tungsten oxide processing
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9236265B2 (en) 2013-11-04 2016-01-12 Applied Materials, Inc. Silicon germanium processing
US9711366B2 (en) 2013-11-12 2017-07-18 Applied Materials, Inc. Selective etch for metal-containing materials
US9520303B2 (en) 2013-11-12 2016-12-13 Applied Materials, Inc. Aluminum selective etch
US9299582B2 (en) 2013-11-12 2016-03-29 Applied Materials, Inc. Selective etch for metal-containing materials
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
US9117855B2 (en) 2013-12-04 2015-08-25 Applied Materials, Inc. Polarity control for remote plasma
US9287095B2 (en) 2013-12-17 2016-03-15 Applied Materials, Inc. Semiconductor system assemblies and methods of operation
US9263278B2 (en) 2013-12-17 2016-02-16 Applied Materials, Inc. Dopant etch selectivity control
US9190293B2 (en) 2013-12-18 2015-11-17 Applied Materials, Inc. Even tungsten etch for high aspect ratio trenches
CN104752271A (en) * 2013-12-27 2015-07-01 株式会社日立国际电气 Substrate processing apparatus and method of manufacturing semiconductor device
US9287134B2 (en) 2014-01-17 2016-03-15 Applied Materials, Inc. Titanium oxide etch
US9396989B2 (en) 2014-01-27 2016-07-19 Applied Materials, Inc. Air gaps between copper lines
US9293568B2 (en) 2014-01-27 2016-03-22 Applied Materials, Inc. Method of fin patterning
US9385028B2 (en) 2014-02-03 2016-07-05 Applied Materials, Inc. Air gap process
US9299575B2 (en) 2014-03-17 2016-03-29 Applied Materials, Inc. Gas-phase tungsten etch
US9299538B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9136273B1 (en) 2014-03-21 2015-09-15 Applied Materials, Inc. Flash gate air gap
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9847289B2 (en) 2014-05-30 2017-12-19 Applied Materials, Inc. Protective via cap for improved interconnect performance
US9378969B2 (en) 2014-06-19 2016-06-28 Applied Materials, Inc. Low temperature gas-phase carbon removal
US9406523B2 (en) 2014-06-19 2016-08-02 Applied Materials, Inc. Highly selective doped oxide removal method
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9159606B1 (en) 2014-07-31 2015-10-13 Applied Materials, Inc. Metal air gap
US9378978B2 (en) 2014-07-31 2016-06-28 Applied Materials, Inc. Integrated oxide recess and floating gate fin trimming
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9165786B1 (en) 2014-08-05 2015-10-20 Applied Materials, Inc. Integrated oxide and nitride recess for better channel contact in 3D architectures
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9355856B2 (en) 2014-09-12 2016-05-31 Applied Materials, Inc. V trench dry etch

Similar Documents

Publication Publication Date Title
KR100890684B1 (en) Film formation method for semiconductor process
JP3378248B2 (en) Method of handling a plasma device and an object having a dielectric window for inducing a uniform electric field to the plasma chamber in the plasma apparatus
KR100272189B1 (en) Plasma treatment appatatus
US7442274B2 (en) Plasma etching method and apparatus therefor
US4430547A (en) Cleaning device for a plasma etching system
KR100270207B1 (en) Plasma treatment apparatus
US8636871B2 (en) Plasma processing apparatus, plasma processing method and storage medium
KR100635975B1 (en) Apparatus and method for plasma treatment
JP4371442B2 (en) Face plate for supplying gas into the reaction chamber, and a reaction chamber
JP5484650B2 (en) Active cooling of the substrate support
CN102097353B (en) Method of protecting a bond layer in a substrate support adapted for use in a plasma processing system
JP5546216B2 (en) Apparatus and method for improving the uniformity of the etching rate
CN1282986C (en) Enhanced resist strip in dielectric ethcher using downstream plasma
JP3650025B2 (en) Plasma processing apparatus
KR0159178B1 (en) Plasma processing system and plasma processing method
US8105440B2 (en) Method of cleaning a CVD device
US20040168769A1 (en) Plasma processing equipment and plasma processing method
US20090095714A1 (en) Method and system for low pressure plasma processing
US5006192A (en) Apparatus for producing semiconductor devices
CN100388434C (en) Substrate supporting structure for semiconductor processing, and plasma processing device
JP4913603B2 (en) Temperature controlled hot edge ring assembly for reducing the etch rate drift of the plasma reactor
KR101354281B1 (en) SEALED ELASTOMER BONDED Si ELECTRODES AND THE LIKE FOR REDUCED PARTICLE CONTAMINATION IN DIELECTRIC ETCH
JP3979849B2 (en) Method of manufacturing a plasma processing apparatus and a semiconductor device
US4988644A (en) Method for etching semiconductor materials using a remote plasma generator
KR100476136B1 (en) Apparatus for treating the surface of a substrate with atmospheric pressure plasma

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090411

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20120411

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20120411

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20140411