JPH09153481A - Apparatus for plasma processing - Google Patents
Apparatus for plasma processingInfo
- Publication number
- JPH09153481A JPH09153481A JP7312697A JP31269795A JPH09153481A JP H09153481 A JPH09153481 A JP H09153481A JP 7312697 A JP7312697 A JP 7312697A JP 31269795 A JP31269795 A JP 31269795A JP H09153481 A JPH09153481 A JP H09153481A
- Authority
- JP
- Japan
- Prior art keywords
- separation plate
- plasma
- partition
- expansion
- processing apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Chemical Vapour Deposition (AREA)
- ing And Chemical Polishing (AREA)
- Drying Of Semiconductors (AREA)
- Plasma Technology (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、半導体素子基板や
液晶ディスプレイ用ガラス基板等にプラズマを利用して
エッチング、アッシングおよびCVD等の処理を施すの
に適したプラズマ処理装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing apparatus suitable for performing processes such as etching, ashing, and CVD using a plasma on a semiconductor element substrate or a glass substrate for a liquid crystal display.
【0002】[0002]
【従来の技術】ガスに外部からエネルギーを与えて発生
させたプラズマは、大規模集積回路(LSI)や液晶デ
ィスプレイ(LCD)等の製造プロセスにおいて広く用
いられている。特にプラズマを用いたエッチング方法や
アッシング方法はこれらの製造プロセスにとって不可欠
の基本技術となっている。2. Description of the Related Art Plasma generated by externally applying energy to gas is widely used in manufacturing processes of large scale integrated circuits (LSI), liquid crystal displays (LCD) and the like. Particularly, an etching method and an ashing method using plasma are essential basic techniques for these manufacturing processes.
【0003】このエッチング方法やアッシング方法にお
いて、イオン衝撃による基板へのダメージが問題になる
場合がある。また、エッチング方法においては下地膜に
対する高選択比が要求される場合がある。In this etching method or ashing method, damage to the substrate due to ion bombardment may become a problem. In some cases, the etching method requires a high selectivity to the underlying film.
【0004】そのような場合、ダウンフロー型のエッチ
ング方法やアッシング方法が用いられる。ダウンフロー
型とは、プラズマ室で発生させたプラズマから基板の処
理に必要なラディカルやイオンを選択的に反応室に引き
出して基板に照射するものである。例えば、この分離板
でイオンをカットしてラディカルのみを反応室に引き出
すことにより、イオン衝撃による基板へのダメージのな
いエッチングやアッシング、または下地膜に対する高選
択比のエッチングを行うことができる。In such a case, a downflow type etching method or an ashing method is used. The down-flow type selectively draws radicals and ions necessary for processing a substrate from plasma generated in a plasma chamber into a reaction chamber and irradiates the substrate with the radicals and ions. For example, by cutting ions with this separating plate and extracting only the radical into the reaction chamber, it is possible to perform etching or ashing without damaging the substrate due to ion bombardment, or etching with a high selectivity to the underlying film.
【0005】図5は、このダウンフロー型のプラズマ処
理装置を示す模式的縦断面図である。このプラズマ処理
装置では、反応容器1内がアルミニウム(Al)等で作
製された分離板5によってプラズマ室2と反応室3とに
分けられている。この分離板5にはプラズマ引出孔5e
が設けられており、プラズマ室2で発生したプラズマか
ら試料の処理に必要なラディカルやイオンを選択的に反
応室3に引き出せるようになっている。このとき、この
分離板5を接地する、プラズマ引出孔5eの大きさを変
える、または分離板5の厚みを厚くするなどにより、プ
ラズマの引き出し条件を変えることができる。図5に示
したプラズマ処理装置では、分離板5を反応容器1を介
して接地している。そうすることにより、プラズマ引出
孔5eを十分に小さくすれば、イオンを分離板5で消滅
させてラディカルのみを反応室3に引き出すことができ
る。FIG. 5 is a schematic longitudinal sectional view showing this down-flow type plasma processing apparatus. In this plasma processing apparatus, the inside of the reaction container 1 is divided into a plasma chamber 2 and a reaction chamber 3 by a separation plate 5 made of aluminum (Al) or the like. The separation plate 5 has a plasma extraction hole 5e.
Is provided so that radicals and ions necessary for processing a sample can be selectively extracted from the plasma generated in the plasma chamber 2 into the reaction chamber 3. At this time, the plasma extraction conditions can be changed by grounding the separation plate 5, changing the size of the plasma extraction hole 5e, or increasing the thickness of the separation plate 5. In the plasma processing apparatus shown in FIG. 5, the separation plate 5 is grounded via the reaction container 1. By doing so, if the plasma extraction hole 5e is made sufficiently small, the ions can be eliminated by the separation plate 5 and only the radical can be extracted into the reaction chamber 3.
【0006】このプラズマ処理装置では、テフロン(登
録商標)等で作製された誘電体層21にマイクロ波を伝
搬させ、誘電体層21に対向する石英(SiO2 )等で
作製されたマイクロ波導入窓4からプラズマ室2内にマ
イクロ波を導入して、プラズマを発生する。発生したプ
ラズマは分離板5のプラズマ引出孔5eから反応室3内
に引き出される。そして、試料台14上の基板Sに照射
して、所望のエッチングやアッシング処理を施すのであ
る。In this plasma processing apparatus, microwaves are propagated through the dielectric layer 21 made of Teflon (registered trademark) or the like, and microwaves made of quartz (SiO 2 ) or the like facing the dielectric layer 21 are introduced. A microwave is introduced into the plasma chamber 2 through the window 4 to generate plasma. The generated plasma is drawn into the reaction chamber 3 through the plasma drawing hole 5e of the separation plate 5. Then, the substrate S on the sample table 14 is irradiated with the desired etching or ashing process.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、上述の
プラズマ処理装置においては、プラズマを発生させると
分離板の温度がプラズマ加熱によって上昇する、またプ
ラズマの発生を停止すると、分離板の温度が下降する。
この温度上昇および温度下降よって分離板が伸縮し分離
板の外周部にある分離板を固定している部分に摩擦が生
じて、金属の微粒子、すなわちパーティクルが発生する
という問題が生じていた。このパーティクルが試料台上
の基板に堆積すると、この基板に形成されるデバイスの
絶縁不良等の原因になる。However, in the above-described plasma processing apparatus, when plasma is generated, the temperature of the separation plate rises due to plasma heating, and when plasma generation is stopped, the temperature of the separation plate falls. .
Due to the temperature increase and the temperature decrease, the separation plate expands and contracts, and friction occurs in the outer peripheral portion of the separation plate to which the separation plate is fixed, resulting in the generation of metal fine particles, that is, particles. When these particles are deposited on the substrate on the sample table, they may cause defective insulation of devices formed on the substrate.
【0008】図6は、このプラズマ処理装置の分離板の
固定部を示す模式的縦断面図であるり、(a)は常温の
状態であり、(b)はプラズマ加熱により分離板が伸長
した状態である。なお、(a)はネジで固定されている
部分の図であり、(b)はネジとネジとの間であってネ
ジで固定されていない部分の図である。FIG. 6 is a schematic vertical sectional view showing a fixing portion of a separation plate of this plasma processing apparatus. (A) shows a room temperature condition, and (b) shows the separation plate elongated by plasma heating. It is in a state. Note that (a) is a view of a portion fixed with screws, and (b) is a view of a portion between the screws and not fixed with the screws.
【0009】分離板5はプラズマ引出孔5eが設けられ
た分離板本体5aとその外周部にある分離板固定部5c
とからなる。分離板5は、分離板固定部5cにおいて反
応容器1の分離板保持部6に数本のアルミニウム製のネ
ジ7で固定される(図6(a))。分離板本体5aがプ
ラズマ加熱により伸長すると、ネジ7で固定されていな
い部分では、分離板固定部5cが外側に移動するため、
分離板固定部5cと分離板保持部6との間で摩擦が生
じ、パーティクルが発生するのである(図6(b))。The separation plate 5 includes a separation plate body 5a having a plasma extraction hole 5e and a separation plate fixing portion 5c on the outer periphery thereof.
Consists of The separation plate 5 is fixed to the separation plate holding portion 6 of the reaction vessel 1 at the separation plate fixing portion 5c with several screws 7 made of aluminum (FIG. 6A). When the separation plate main body 5a is expanded by plasma heating, the separation plate fixing portion 5c moves to the outside in the portion not fixed by the screw 7,
Friction occurs between the separation plate fixing portion 5c and the separation plate holding portion 6 to generate particles (FIG. 6 (b)).
【0010】本発明はこのような課題に鑑みてなされた
ものであり、分離板の熱膨張に起因するパーティクルの
発生を抑えて、基板上に形成するデバイスの絶縁不良等
の発生を抑制できるプラズマ処理装置を提供することを
目的としている。The present invention has been made in view of the above problems, and it is possible to suppress the generation of particles due to the thermal expansion of the separation plate, and to suppress the generation of defective insulation of the device formed on the substrate. It is intended to provide a processing device.
【0011】[0011]
【課題を解決するための手段】本発明者は、分離板本体
の伸縮が分離板の固定部に及ばないようにする方法につ
いて検討し、本発明を完成させた。Means for Solving the Problems The present inventor has studied the method for preventing the expansion and contraction of the separation plate main body from reaching the fixed portion of the separation plate, and completed the present invention.
【0012】すなわち、本発明のプラズマ処理装置は、
プラズマを発生するプラズマ室と、内部に試料台が配設
された反応室と、プラズマ室で発生したプラズマから試
料の処理に必要な成分を選択的に反応室に引き出す分離
板とを備えるプラズマ処理装置であって、前記分離板の
熱膨張による平面的な伸縮を吸収する構造を有すること
を特徴としている。That is, the plasma processing apparatus of the present invention is
Plasma processing including a plasma chamber for generating plasma, a reaction chamber in which a sample stage is arranged, and a separation plate for selectively extracting components necessary for sample processing from the plasma generated in the plasma chamber to the reaction chamber The device is characterized by having a structure for absorbing planar expansion and contraction due to thermal expansion of the separation plate.
【0013】本発明のプラズマ処理装置は、分離板の熱
膨張による平面的な伸縮を吸収する構造を有しているの
で、分離板本体がプラズマ加熱等により伸縮したとして
も、この伸縮が分離板の固定部に及ばない。したがっ
て、分離板の固定部が移動しないので、分離板の固定部
と分離板保持部との間での摩擦は生じない。したがっ
て、この部分でパーティクルは発生しない。Since the plasma processing apparatus of the present invention has a structure that absorbs the planar expansion and contraction due to the thermal expansion of the separation plate, even if the separation plate body expands or contracts due to plasma heating or the like, this expansion or contraction causes the separation plate to expand or contract. It does not reach the fixed part of. Therefore, since the fixed portion of the separation plate does not move, friction does not occur between the fixed portion of the separation plate and the separation plate holding portion. Therefore, no particles are generated in this part.
【0014】また、分離板の固定部が移動しないので、
分離板の分離板保持部へのネジでの取り付けを安定させ
ることができる。そのため、分離板によりイオンをカッ
トしたり、プラズマの安定化させるために分離板を接地
する場合に、分離板を反応容器を介して安定して接地す
ることが可能になる。Further, since the fixing portion of the separating plate does not move,
It is possible to stabilize the attachment of the separation plate to the separation plate holding portion with a screw. Therefore, when the separation plate is used to cut ions or to ground the separation plate to stabilize the plasma, the separation plate can be stably grounded via the reaction vessel.
【0015】分離板の熱膨張による平面的な伸縮を吸収
する構造としては、例えば、分離板の外周部に屈曲部を
設ける構造がある。この屈曲部が曲がることで、分離板
の平面的な伸縮を吸収できる。また、分離板の外周部に
伸縮緩和溝を設ける構造としても良い。この伸縮緩和溝
の幅が変化することで、分離板の平面的な伸縮を吸収で
きる。As a structure for absorbing the planar expansion and contraction of the separating plate due to thermal expansion, for example, there is a structure in which a bent portion is provided on the outer peripheral portion of the separating plate. By bending this bent portion, the planar expansion and contraction of the separation plate can be absorbed. Further, a structure in which expansion / contraction relaxation grooves are provided on the outer peripheral portion of the separation plate may be adopted. By changing the width of the expansion / contraction relaxation groove, the planar expansion / contraction of the separation plate can be absorbed.
【0016】[0016]
【発明の実施の形態】本発明の熱膨張による平面的な伸
縮を吸収する構造を有する分離板を備えたプラズマ処理
装置の1例について図面に基づき説明する。BEST MODE FOR CARRYING OUT THE INVENTION An example of a plasma processing apparatus having a separating plate having a structure for absorbing planar expansion and contraction due to thermal expansion of the present invention will be described with reference to the drawings.
【0017】図1は、本発明のプラズマ処理装置の1例
を示す模式的縦断面図である。FIG. 1 is a schematic vertical sectional view showing an example of the plasma processing apparatus of the present invention.
【0018】反応容器1は分離板5によってプラズマ室
2と反応室3とに分離され、またその分離板5に設けら
れたプラズマ引出孔5eによりプラズマ室2と反応室3
により連通している。分離板5はその外周部に断面がク
ランク状である折れ曲がりを有しており、その先の部分
で、分離板保持部6に固定されている。分離板5は反応
容器1を介して接地されている。分離板5は通常コンタ
ミネーションの問題からアルミニウム(Al)等の金属
が用いられる。The reaction vessel 1 is separated into a plasma chamber 2 and a reaction chamber 3 by a separation plate 5, and a plasma extraction hole 5e provided in the separation plate 5 separates the plasma chamber 2 and the reaction chamber 3 from each other.
Is communicated with. The separating plate 5 has a bent portion having a crank-shaped cross section on its outer peripheral portion, and is fixed to the separating plate holding portion 6 at the tip portion thereof. The separation plate 5 is grounded via the reaction container 1. The separation plate 5 is usually made of a metal such as aluminum (Al) due to the problem of contamination.
【0019】反応容器1はアルミニウム(Al)等の金
属で作製され、その反応容器1の壁の内部には冷却水経
路15が形成される。反応容器1の上部はマイクロ波導
入窓4で気密に封止される。マイクロ波導入窓4は、耐
熱性とマイクロ波透過性を有し、かつ誘電損失が小さい
石英(SiO2 )、アルミナ(Al2 O3 )等の誘電体
板で作製される。反応室3内にはマイクロ波導入窓4と
は対向する位置に、基板Sを載置する試料台14が配設
される。反応容器1の側壁にはプラズマ室2にガスを供
給するガス導入孔12が設けられ、反応容器1の下部壁
には排気装置(図示せず)に接続される排気口13が設
けられている。誘電体層21に導波管23を介してマイ
クロ波発振器24が連結されている。The reaction vessel 1 is made of a metal such as aluminum (Al), and a cooling water passage 15 is formed inside the wall of the reaction vessel 1. The upper part of the reaction vessel 1 is hermetically sealed by the microwave introduction window 4. The microwave introduction window 4 is made of a dielectric plate such as quartz (SiO 2 ), alumina (Al 2 O 3 ), which has heat resistance and microwave transparency and has a small dielectric loss. A sample stage 14 on which the substrate S is placed is disposed in the reaction chamber 3 at a position facing the microwave introduction window 4. A gas introduction hole 12 for supplying a gas to the plasma chamber 2 is provided on the side wall of the reaction vessel 1, and an exhaust port 13 connected to an exhaust device (not shown) is provided on the lower wall of the reaction vessel 1. . A microwave oscillator 24 is connected to the dielectric layer 21 via a waveguide 23.
【0020】図2は、このプラズマ処理装置の分離板の
固定部の模式的縦断面図であり、(a)は常温の状態で
あり、(b)はプラズマ加熱により分離板が伸長した状
態である。FIG. 2 is a schematic vertical sectional view of a fixed portion of a separation plate of this plasma processing apparatus. (A) shows a room temperature state, and (b) shows a state where the separation plate is extended by plasma heating. is there.
【0021】分離板5は、プラズマ引出孔5eが設けら
れている分離板本体5aとその外周部にある分離板屈曲
部5bと分離板固定部5cとからなる。分離板5は、分
離板固定部5cにおいて反応容器1の分離板保持部6に
アルミニウム(Al)等の金属製の数本のネジ7で固定
される(図2(a))。分離板本体5aがプラズマ加熱
により伸長すると、分離板屈曲部5bが曲がってこの伸
びを吸収する。そのため、分離板固定部5cは動かず、
分離板保持部6との間で摩擦も生じないためパーティク
ルが発生しない(図2(b))。The separating plate 5 comprises a separating plate body 5a having a plasma drawing hole 5e, a separating plate bent portion 5b and a separating plate fixing portion 5c on the outer periphery thereof. The separation plate 5 is fixed to the separation plate holding portion 6 of the reaction container 1 in the separation plate fixing portion 5c with several screws 7 made of metal such as aluminum (Al) (FIG. 2A). When the separation plate body 5a is expanded by plasma heating, the separation plate bent portion 5b is bent and absorbs the expansion. Therefore, the separation plate fixing portion 5c does not move,
No friction is generated between the separation plate holder 6 and particles are not generated (FIG. 2B).
【0022】分離板本体5aの平面形状はほぼ矩形であ
り、その矩形の角は所定の曲率のアール面取り形状に形
成した方が良い。これは、分離板本体5aがプラズマ加
熱により伸長したとき、分離板屈曲部5bを曲がりやす
くして、この伸びを吸収しやすくするためである。な
お、分離板本体5aの平面形状が円形等であっても良い
ことは言うまでもない。The plane shape of the separating plate body 5a is substantially rectangular, and the corners of the rectangle are preferably chamfered with a predetermined curvature. This is because when the separation plate body 5a is expanded by plasma heating, the separation plate bent portion 5b is easily bent, and this expansion is easily absorbed. It goes without saying that the plane shape of the separation plate body 5a may be circular or the like.
【0023】分離板屈曲部5bの厚みを薄くすれば、分
離板屈曲部5bをより曲がり易くして伸びを吸収しやす
くできる。If the thickness of the bent portion 5b of the separating plate is reduced, the bent portion 5b of the separating plate can be bent more easily and the elongation can be absorbed more easily.
【0024】なお、ネジ固定部8はアルミニウム(A
l)等で矩形リング状に作製されたものであり、反応容
器1の側壁のガス導入孔12から導入されるガスをプラ
ズマ室2に速やかに供給する経路を形成するためのもの
である。The screw fixing portion 8 is made of aluminum (A
1) or the like, which is formed in a rectangular ring shape, and is for forming a path for rapidly supplying the gas introduced from the gas introduction hole 12 on the side wall of the reaction vessel 1 to the plasma chamber 2.
【0025】図3は、本発明のプラズマ処理装置の別の
例の分離板の固定部の模式的縦断面図であり、(a)は
常温の状態であり、(b)はプラズマ加熱により分離板
が伸長した状態である。FIG. 3 is a schematic vertical sectional view of a fixed part of a separation plate of another example of the plasma processing apparatus of the present invention. (A) is a room temperature state and (b) is separated by plasma heating. The plate is in a stretched state.
【0026】分離板5は、プラズマ引出孔5eが設けら
れた分離板本体5aとその外周部にある分離板固定部5
cとからなる。ただし、分離板本体5aの外周に伸縮緩
和溝5dが設けられている。分離板5は、分離板固定部
5cにおいて反応容器の分離板保持部6にアルミニウム
(Al)等の金属製の数本のネジ7で固定される(図3
(a))。分離板本体5aがプラズマ加熱により伸長す
ると、伸縮緩和溝5dの溝の幅が狭くなってこの伸びを
吸収する。そのため、分離板固定部5cは動かず、分離
板保持部6との間で摩擦も生じないためパーティクルが
発生しない(図3(b))。The separation plate 5 is composed of a separation plate body 5a having a plasma extraction hole 5e and a separation plate fixing portion 5 on the outer periphery thereof.
c. However, the expansion / contraction relaxation groove 5d is provided on the outer periphery of the separation plate body 5a. The separation plate 5 is fixed to the separation plate holding portion 6 of the reaction container in the separation plate fixing portion 5c with several screws 7 made of metal such as aluminum (Al) (FIG. 3).
(A)). When the separation plate main body 5a is expanded by plasma heating, the width of the expansion / contraction relaxation groove 5d is narrowed to absorb the expansion. Therefore, the separation plate fixing portion 5c does not move and friction does not occur between the separation plate holding portion 6 and particles, so that particles are not generated (FIG. 3B).
【0027】上述した分離板屈曲部5bや伸縮緩和溝5
dの設計は、分離板5の熱膨張の程度を評価して行えば
良い。この評価には、例えば以下の熱膨張の式(式
(1))を用いれば良い。The bent portion 5b of the separating plate and the expansion / contraction relaxation groove 5 described above.
The design of d may be performed by evaluating the degree of thermal expansion of the separation plate 5. For this evaluation, for example, the following thermal expansion formula (Formula (1)) may be used.
【0028】 L=aL0 (T2 −T1 ) ・・・・・ (1) a :線膨張係数 例えば、Alの場合:2.3×10-5(K-1) L0 :0℃での金属の長さ T2 −T1 :温度差(K) なお、本発明は、誘電体層を用いたプラズマ処理装置の
みならず、分離板を用いたプラズマ処理装置のすべてに
適用することができる。L = aL 0 (T 2 −T 1 ) (1) a: linear expansion coefficient For example, in the case of Al: 2.3 × 10 −5 (K −1 ) L 0 : 0 ° C. Length of metal T 2 −T 1 : temperature difference (K) The present invention is applicable not only to the plasma processing apparatus using the dielectric layer but also to all the plasma processing apparatus using the separating plate. You can
【0029】[0029]
【実施例】本発明の実施例について説明する。本発明の
実施例は図1及び図2に示したものである。すなわち、
この実施例の分離板5は、分離板屈曲部5bにより分離
板本体5aの平面的な伸縮を吸収するものである。この
実施例の装置は、LCD用ガラス基板等の大型基板を処
理するものであり、プラズマ発生面積が650mm×6
50mmとした。An embodiment of the present invention will be described. The embodiment of the present invention is shown in FIGS. That is,
The separating plate 5 of this embodiment absorbs the planar expansion and contraction of the separating plate body 5a by the separating plate bent portion 5b. The apparatus of this embodiment is for processing a large substrate such as a glass substrate for LCD and has a plasma generation area of 650 mm × 6.
It was set to 50 mm.
【0030】分離板5はアルミニウム(Al)で作製し
た。分離板本体5aの厚みは2.0mmとし、面積は6
00mm×600mmとし、角に対しては曲率半径30
mmのアール面取りを施してある。プラズマ引出孔は、
直径3mmのものを5mmの間隔で110×110個設
けた。The separating plate 5 was made of aluminum (Al). The separation plate body 5a has a thickness of 2.0 mm and an area of 6 mm.
00mm x 600mm, radius of curvature 30 for each corner
mm chamfered. The plasma extraction hole is
110 × 110 pieces having a diameter of 3 mm were provided at intervals of 5 mm.
【0031】分離板屈曲部5bの厚みは1.5mmと
し、長さは30mmとした。また分離板屈曲部5bと後
述するネジ固定部8との間隔dを3.0mmとした。分
離板屈曲部5bの厚みは分離板本体5aの厚みに比べて
薄くなるように決めた。分離板屈曲部5bの長さ及び分
離板屈曲部5bとネジ固定部8との間隔dは、プラズマ
加熱による分離板本体5aの伸びの評価に基づき決め
た。The separating plate bent portion 5b had a thickness of 1.5 mm and a length of 30 mm. The distance d between the separating plate bent portion 5b and the screw fixing portion 8 described later was set to 3.0 mm. The thickness of the separation plate bent portion 5b was determined to be thinner than the thickness of the separation plate main body 5a. The length of the separation plate bent portion 5b and the distance d between the separation plate bent portion 5b and the screw fixing portion 8 were determined based on the evaluation of the elongation of the separation plate main body 5a due to plasma heating.
【0032】この実施例では、通常のエッチングやアッ
シング処理の際、プラズマ加熱により分離板5が200
℃程度に加熱される。分離板本体5aの横方向の伸びを
式(1)により評価し、通常の処理においては常温(2
5℃)に比べ横方向に2.4mm(片側1.2mmず
つ)伸びることがわかった。この伸びの値に基づき、分
離板屈曲部5bの長さ及び分離板屈曲部5bとネジ固定
部8との間隔dを決めたのである。In this embodiment, during the usual etching or ashing process, the separation plate 5 is heated to 200 by plasma heating.
It is heated to about ℃. The lateral extension of the separation plate body 5a was evaluated by the formula (1), and in normal processing, the room temperature (2
It was found that the film stretched in the lateral direction by 2.4 mm (1.2 mm on each side) as compared with 5 ° C. Based on the value of this elongation, the length of the separating plate bent portion 5b and the distance d between the separating plate bent portion 5b and the screw fixing portion 8 were determined.
【0033】また、分離板保持部6は、その材質がアル
ミニウム(Al)であり、反応容器1の内周に沿って設
けられている。分離板5は、この分離板保持部6にネジ
7で48ケ所固定されている。ネジ固定部8は、アルミ
ニウム(Al)の矩形リング状のものである。ガス供給
孔12は反応容器1の壁に48ケ所設けた。分離板5は
反応容器1を介して接地されている。The separating plate holder 6 is made of aluminum (Al) and is provided along the inner circumference of the reaction vessel 1. The separating plate 5 is fixed to the separating plate holding portion 6 with screws 7 at 48 places. The screw fixing portion 8 has a rectangular ring shape made of aluminum (Al). The gas supply holes 12 were provided in 48 places on the wall of the reaction vessel 1. The separation plate 5 is grounded via the reaction container 1.
【0034】この実施例の分離板の適用の効果を調べる
ために、反応室内におけるパーティクル(>0.2μ
m)数の評価を行った。評価は次のように行った。シリ
コンウエハSを試料台14上に載置してプラズマ照射を
行う工程を繰り返す。この工程の所定の枚数のところ
で、予めパーティクル数を測定したシリコンウエハSを
試料台14上に載置してプラズマ照射を行い、パーティ
クル数を測定し、パーティクル数の増加を求める。な
お、このプラズマ照射の工程は、シリコンウエハSを交
換しながら25枚連続で行い、さらにこれを12回繰り
返して、計300枚に対して行った。プラズマ照射時間
は2分、プラズマ照射の間隔は1分とした。プラズマ照
射の条件は、ガス:Ar、圧力:0.3Torr、マイ
クロ波パワー:3.0kWとした。また、比較のため、
図5および図6に示した従来の分離板を用いたプラズマ
処理装置についても同様の測定を行った。In order to investigate the effect of applying the separation plate of this embodiment, particles (> 0.2 μm) in the reaction chamber were examined.
m) The number was evaluated. The evaluation was performed as follows. The process of placing the silicon wafer S on the sample table 14 and performing plasma irradiation is repeated. At a predetermined number of particles in this step, the silicon wafer S whose number of particles has been measured in advance is placed on the sample table 14 and plasma irradiation is performed, the number of particles is measured, and the increase in the number of particles is obtained. Note that this plasma irradiation step was performed continuously for 25 wafers while exchanging the silicon wafer S, and this was repeated 12 times for a total of 300 wafers. The plasma irradiation time was 2 minutes, and the plasma irradiation interval was 1 minute. The plasma irradiation conditions were gas: Ar, pressure: 0.3 Torr, and microwave power: 3.0 kW. Also, for comparison,
The same measurement was performed for the plasma processing apparatus using the conventional separator shown in FIGS. 5 and 6.
【0035】図4は、パーティクル数の測定結果であ
る。本発明の実施例(○)の場合、パーティクル数が2
0〜30個前後で安定していた。これに対して、従来例
(△)の場合、約50枚のプラズマ照射でパーティクル
数が増加し始め、パーティクル数が100個程度まで増
加した。すなわち、本発明の分離板を適用することによ
って、パーティクル数の増加を抑えることができること
を確認した。FIG. 4 shows the measurement results of the number of particles. In the case of the embodiment of the present invention (○), the number of particles is 2
It was stable at around 0 to 30 pieces. On the other hand, in the case of the conventional example (Δ), the number of particles began to increase after about 50 plasma irradiations, and the number of particles increased to about 100. That is, it was confirmed that the increase in the number of particles can be suppressed by applying the separation plate of the present invention.
【0036】[0036]
【発明の効果】以上詳述したように、本発明のプラズマ
処理装置にあっては、分離板の熱膨張による摩擦に起因
するパーティクルの発生を抑えることができる。これに
より、本発明のプラズマ処理装置を用いて製造されるデ
バイスの絶縁不良等を発生を抑制できる。As described above in detail, in the plasma processing apparatus of the present invention, generation of particles due to friction due to thermal expansion of the separation plate can be suppressed. As a result, it is possible to suppress the occurrence of insulation defects and the like in devices manufactured using the plasma processing apparatus of the present invention.
【図1】本発明のプラズマ処理装置の1例を示す模式的
縦断面図である。FIG. 1 is a schematic longitudinal sectional view showing one example of a plasma processing apparatus of the present invention.
【図2】本発明のプラズマ処理装置の1例の分離板の固
定部の模式的縦断面図であり、(a)は常温の状態であ
り、(b)はプラズマ加熱により分離板が伸長した状態
である。FIG. 2 is a schematic vertical cross-sectional view of a fixed portion of a separation plate of an example of the plasma processing apparatus of the present invention, (a) is a room temperature state, and (b) is a separation plate elongated by plasma heating. It is in a state.
【図3】本発明のプラズマ処理装置の別の例の分離板の
固定部の模式的縦断面図であり、(a)は常温の状態で
あり、(b)はプラズマ加熱により分離板が伸長した状
態である。FIG. 3 is a schematic vertical cross-sectional view of a fixed portion of a separation plate of another example of the plasma processing apparatus of the present invention, (a) is a room temperature state, and (b) is a separation plate expanded by plasma heating. It is in the state of having done.
【図4】パーティクル数の測定結果である。FIG. 4 is a measurement result of the number of particles.
【図5】従来のダウンフロー型のプラズマ処理装置を示
す模式的縦断面図である。FIG. 5 is a schematic vertical sectional view showing a conventional down flow type plasma processing apparatus.
【図6】従来のダウンフロー型のプラズマ処理装置の分
離板の固定部の模式的縦断面図であり、(a)は常温の
状態であり、(b)はプラズマ加熱により分離板が伸長
した状態である。6A and 6B are schematic vertical cross-sectional views of a fixed portion of a separation plate of a conventional down-flow type plasma processing apparatus, where FIG. 6A shows a room temperature state and FIG. 6B shows the separation plate elongated by plasma heating. It is in a state.
1 反応容器 2 プラズマ室 3 反応室 4 マイクロ波導入窓 5 分離板 5a 分離板本体 5b 分離板屈曲部 5c 分離板固定部 5d 伸縮緩和溝 5e プラズマ引出孔 6 分離板保持部 7 ネジ 8 ネジ固定部 11 Oリング 12 ガス導入孔 14 試料台 15 冷却水経路 21 誘電体層 22 金属板 23 導波管 24 マイクロ波発振器 S 基板(シリコンウエハ) DESCRIPTION OF SYMBOLS 1 Reaction container 2 Plasma chamber 3 Reaction chamber 4 Microwave introduction window 5 Separation plate 5a Separation plate body 5b Separation plate bent part 5c Separation plate fixing part 5d Expansion / contraction relaxation groove 5e Plasma extraction hole 6 Separation plate holding part 7 Screw 8 Screw fixing part 11 O-ring 12 Gas introduction hole 14 Sample stage 15 Cooling water path 21 Dielectric layer 22 Metal plate 23 Waveguide 24 Microwave oscillator S Substrate (silicon wafer)
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H05H 1/46 H05H 1/46 B // C23C 16/50 C23C 16/50 H01L 21/302 H (72)発明者 松本 直樹 大阪府大阪市中央区北浜4丁目5番33号住 友金属工業株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H05H 1/46 H05H 1/46 B // C23C 16/50 C23C 16/50 H01L 21/302 H ( 72) Inventor Naoki Matsumoto 4-5-3 Kitahama, Chuo-ku, Osaka City, Osaka Prefecture Sumitomo Metal Industries, Ltd.
Claims (1)
試料台が配設された反応室と、プラズマ室で発生したプ
ラズマから試料の処理に必要な成分を選択的に反応室に
引き出す分離板とを備えるプラズマ処理装置であって、
前記分離板の熱膨張による平面的な伸縮を吸収する構造
を有することを特徴とするプラズマ処理装置。1. A plasma chamber for generating plasma, a reaction chamber in which a sample stage is arranged, and a separation plate for selectively drawing out components necessary for processing a sample from the plasma generated in the plasma chamber into the reaction chamber. A plasma processing apparatus comprising:
A plasma processing apparatus having a structure for absorbing planar expansion and contraction due to thermal expansion of the separation plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7312697A JPH09153481A (en) | 1995-11-30 | 1995-11-30 | Apparatus for plasma processing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7312697A JPH09153481A (en) | 1995-11-30 | 1995-11-30 | Apparatus for plasma processing |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09153481A true JPH09153481A (en) | 1997-06-10 |
Family
ID=18032347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7312697A Pending JPH09153481A (en) | 1995-11-30 | 1995-11-30 | Apparatus for plasma processing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09153481A (en) |
Cited By (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002115069A (en) * | 2000-06-22 | 2002-04-19 | Applied Materials Inc | Showerhead |
JP2002533911A (en) * | 1998-09-25 | 2002-10-08 | ラム リサーチ コーポレーション | Low contamination high density plasma etching chamber and method of manufacturing the same |
US6583980B1 (en) * | 2000-08-18 | 2003-06-24 | Applied Materials Inc. | Substrate support tolerant to thermal expansion stresses |
JP2005256172A (en) * | 2004-02-24 | 2005-09-22 | Applied Materials Inc | Movable or flexible shower head fitting |
JP4356117B2 (en) * | 1997-01-29 | 2009-11-04 | 財団法人国際科学振興財団 | Plasma device |
JP2010186825A (en) * | 2009-02-10 | 2010-08-26 | Ulvac Japan Ltd | Plasma processing device |
JP2010209429A (en) * | 2009-03-11 | 2010-09-24 | Ulvac Japan Ltd | Remote plasma cvd machine |
US8236134B2 (en) | 2004-07-09 | 2012-08-07 | Jusung Engineering Co., Ltd. | Gas distributor and apparatus using the same |
US20120238102A1 (en) * | 2011-03-14 | 2012-09-20 | Applied Materials, Inc. | Methods for etch of sin films |
US8801952B1 (en) | 2013-03-07 | 2014-08-12 | Applied Materials, Inc. | Conformal oxide dry etch |
US8895449B1 (en) | 2013-05-16 | 2014-11-25 | Applied Materials, Inc. | Delicate dry clean |
US8921234B2 (en) | 2012-12-21 | 2014-12-30 | Applied Materials, Inc. | Selective titanium nitride etching |
US8927390B2 (en) | 2011-09-26 | 2015-01-06 | Applied Materials, Inc. | Intrench profile |
US8951429B1 (en) | 2013-10-29 | 2015-02-10 | Applied Materials, Inc. | Tungsten oxide processing |
US8956980B1 (en) | 2013-09-16 | 2015-02-17 | Applied Materials, Inc. | Selective etch of silicon nitride |
US8969212B2 (en) | 2012-11-20 | 2015-03-03 | Applied Materials, Inc. | Dry-etch selectivity |
US8975152B2 (en) | 2011-11-08 | 2015-03-10 | Applied Materials, Inc. | Methods of reducing substrate dislocation during gapfill processing |
US8980763B2 (en) | 2012-11-30 | 2015-03-17 | Applied Materials, Inc. | Dry-etch for selective tungsten removal |
US9023732B2 (en) | 2013-03-15 | 2015-05-05 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
US9023734B2 (en) | 2012-09-18 | 2015-05-05 | Applied Materials, Inc. | Radical-component oxide etch |
US9034770B2 (en) | 2012-09-17 | 2015-05-19 | Applied Materials, Inc. | Differential silicon oxide etch |
US9040422B2 (en) | 2013-03-05 | 2015-05-26 | Applied Materials, Inc. | Selective titanium nitride removal |
US9064816B2 (en) | 2012-11-30 | 2015-06-23 | Applied Materials, Inc. | Dry-etch for selective oxidation removal |
US9064815B2 (en) | 2011-03-14 | 2015-06-23 | Applied Materials, Inc. | Methods for etch of metal and metal-oxide films |
CN104752271A (en) * | 2013-12-27 | 2015-07-01 | 株式会社日立国际电气 | Substrate processing apparatus and method of manufacturing semiconductor device |
US9111877B2 (en) | 2012-12-18 | 2015-08-18 | Applied Materials, Inc. | Non-local plasma oxide etch |
US9114438B2 (en) | 2013-05-21 | 2015-08-25 | Applied Materials, Inc. | Copper residue chamber clean |
US9117855B2 (en) | 2013-12-04 | 2015-08-25 | Applied Materials, Inc. | Polarity control for remote plasma |
US9132436B2 (en) | 2012-09-21 | 2015-09-15 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US9136273B1 (en) | 2014-03-21 | 2015-09-15 | Applied Materials, Inc. | Flash gate air gap |
US9159606B1 (en) | 2014-07-31 | 2015-10-13 | Applied Materials, Inc. | Metal air gap |
US9165786B1 (en) | 2014-08-05 | 2015-10-20 | Applied Materials, Inc. | Integrated oxide and nitride recess for better channel contact in 3D architectures |
US9190293B2 (en) | 2013-12-18 | 2015-11-17 | Applied Materials, Inc. | Even tungsten etch for high aspect ratio trenches |
US9236266B2 (en) | 2011-08-01 | 2016-01-12 | Applied Materials, Inc. | Dry-etch for silicon-and-carbon-containing films |
US9236265B2 (en) | 2013-11-04 | 2016-01-12 | Applied Materials, Inc. | Silicon germanium processing |
US9245762B2 (en) | 2013-12-02 | 2016-01-26 | Applied Materials, Inc. | Procedure for etch rate consistency |
US9263278B2 (en) | 2013-12-17 | 2016-02-16 | Applied Materials, Inc. | Dopant etch selectivity control |
US9287095B2 (en) | 2013-12-17 | 2016-03-15 | Applied Materials, Inc. | Semiconductor system assemblies and methods of operation |
US9287134B2 (en) | 2014-01-17 | 2016-03-15 | Applied Materials, Inc. | Titanium oxide etch |
US9293568B2 (en) | 2014-01-27 | 2016-03-22 | Applied Materials, Inc. | Method of fin patterning |
US9299582B2 (en) | 2013-11-12 | 2016-03-29 | Applied Materials, Inc. | Selective etch for metal-containing materials |
US9299538B2 (en) | 2014-03-20 | 2016-03-29 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
US9299537B2 (en) | 2014-03-20 | 2016-03-29 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
US9299575B2 (en) | 2014-03-17 | 2016-03-29 | Applied Materials, Inc. | Gas-phase tungsten etch |
US9309598B2 (en) | 2014-05-28 | 2016-04-12 | Applied Materials, Inc. | Oxide and metal removal |
US9324576B2 (en) | 2010-05-27 | 2016-04-26 | Applied Materials, Inc. | Selective etch for silicon films |
US9355856B2 (en) | 2014-09-12 | 2016-05-31 | Applied Materials, Inc. | V trench dry etch |
US9362130B2 (en) | 2013-03-01 | 2016-06-07 | Applied Materials, Inc. | Enhanced etching processes using remote plasma sources |
US9373517B2 (en) | 2012-08-02 | 2016-06-21 | Applied Materials, Inc. | Semiconductor processing with DC assisted RF power for improved control |
US9378978B2 (en) | 2014-07-31 | 2016-06-28 | Applied Materials, Inc. | Integrated oxide recess and floating gate fin trimming |
US9378969B2 (en) | 2014-06-19 | 2016-06-28 | Applied Materials, Inc. | Low temperature gas-phase carbon removal |
US9385028B2 (en) | 2014-02-03 | 2016-07-05 | Applied Materials, Inc. | Air gap process |
US9390937B2 (en) | 2012-09-20 | 2016-07-12 | Applied Materials, Inc. | Silicon-carbon-nitride selective etch |
US9396989B2 (en) | 2014-01-27 | 2016-07-19 | Applied Materials, Inc. | Air gaps between copper lines |
US9406523B2 (en) | 2014-06-19 | 2016-08-02 | Applied Materials, Inc. | Highly selective doped oxide removal method |
US9425058B2 (en) | 2014-07-24 | 2016-08-23 | Applied Materials, Inc. | Simplified litho-etch-litho-etch process |
US9493879B2 (en) | 2013-07-12 | 2016-11-15 | Applied Materials, Inc. | Selective sputtering for pattern transfer |
US9496167B2 (en) | 2014-07-31 | 2016-11-15 | Applied Materials, Inc. | Integrated bit-line airgap formation and gate stack post clean |
US9553102B2 (en) | 2014-08-19 | 2017-01-24 | Applied Materials, Inc. | Tungsten separation |
US9576809B2 (en) | 2013-11-04 | 2017-02-21 | Applied Materials, Inc. | Etch suppression with germanium |
US9659753B2 (en) | 2014-08-07 | 2017-05-23 | Applied Materials, Inc. | Grooved insulator to reduce leakage current |
US9773648B2 (en) | 2013-08-30 | 2017-09-26 | Applied Materials, Inc. | Dual discharge modes operation for remote plasma |
US9847289B2 (en) | 2014-05-30 | 2017-12-19 | Applied Materials, Inc. | Protective via cap for improved interconnect performance |
US9903020B2 (en) | 2014-03-31 | 2018-02-27 | Applied Materials, Inc. | Generation of compact alumina passivation layers on aluminum plasma equipment components |
US10170282B2 (en) | 2013-03-08 | 2019-01-01 | Applied Materials, Inc. | Insulated semiconductor faceplate designs |
US10256079B2 (en) | 2013-02-08 | 2019-04-09 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
JP2020503670A (en) * | 2016-12-27 | 2020-01-30 | エヴァテック・アーゲー | Vacuum plasma processing object processing equipment |
US10879053B2 (en) | 2013-06-03 | 2020-12-29 | Lam Research Corporation | Temperature controlled substrate support assembly |
-
1995
- 1995-11-30 JP JP7312697A patent/JPH09153481A/en active Pending
Cited By (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4356117B2 (en) * | 1997-01-29 | 2009-11-04 | 財団法人国際科学振興財団 | Plasma device |
JP2002533911A (en) * | 1998-09-25 | 2002-10-08 | ラム リサーチ コーポレーション | Low contamination high density plasma etching chamber and method of manufacturing the same |
JP2002115069A (en) * | 2000-06-22 | 2002-04-19 | Applied Materials Inc | Showerhead |
US6583980B1 (en) * | 2000-08-18 | 2003-06-24 | Applied Materials Inc. | Substrate support tolerant to thermal expansion stresses |
JP2005256172A (en) * | 2004-02-24 | 2005-09-22 | Applied Materials Inc | Movable or flexible shower head fitting |
US7722925B2 (en) | 2004-02-24 | 2010-05-25 | Applied Materials, Inc. | Showerhead mounting to accommodate thermal expansion |
JP2011089208A (en) * | 2004-02-24 | 2011-05-06 | Applied Materials Inc | Movable or flexible showerhead mounting |
US8236134B2 (en) | 2004-07-09 | 2012-08-07 | Jusung Engineering Co., Ltd. | Gas distributor and apparatus using the same |
JP2010186825A (en) * | 2009-02-10 | 2010-08-26 | Ulvac Japan Ltd | Plasma processing device |
JP2010209429A (en) * | 2009-03-11 | 2010-09-24 | Ulvac Japan Ltd | Remote plasma cvd machine |
US9324576B2 (en) | 2010-05-27 | 2016-04-26 | Applied Materials, Inc. | Selective etch for silicon films |
US20120238102A1 (en) * | 2011-03-14 | 2012-09-20 | Applied Materials, Inc. | Methods for etch of sin films |
US9343327B2 (en) * | 2011-03-14 | 2016-05-17 | Applied Materials, Inc. | Methods for etch of sin films |
CN103430289A (en) * | 2011-03-14 | 2013-12-04 | 应用材料公司 | Methods for etch of SIN films |
US9064815B2 (en) | 2011-03-14 | 2015-06-23 | Applied Materials, Inc. | Methods for etch of metal and metal-oxide films |
US8999856B2 (en) * | 2011-03-14 | 2015-04-07 | Applied Materials, Inc. | Methods for etch of sin films |
US9236266B2 (en) | 2011-08-01 | 2016-01-12 | Applied Materials, Inc. | Dry-etch for silicon-and-carbon-containing films |
US8927390B2 (en) | 2011-09-26 | 2015-01-06 | Applied Materials, Inc. | Intrench profile |
US9012302B2 (en) | 2011-09-26 | 2015-04-21 | Applied Materials, Inc. | Intrench profile |
US8975152B2 (en) | 2011-11-08 | 2015-03-10 | Applied Materials, Inc. | Methods of reducing substrate dislocation during gapfill processing |
US9373517B2 (en) | 2012-08-02 | 2016-06-21 | Applied Materials, Inc. | Semiconductor processing with DC assisted RF power for improved control |
US9887096B2 (en) | 2012-09-17 | 2018-02-06 | Applied Materials, Inc. | Differential silicon oxide etch |
US9034770B2 (en) | 2012-09-17 | 2015-05-19 | Applied Materials, Inc. | Differential silicon oxide etch |
US9023734B2 (en) | 2012-09-18 | 2015-05-05 | Applied Materials, Inc. | Radical-component oxide etch |
US9390937B2 (en) | 2012-09-20 | 2016-07-12 | Applied Materials, Inc. | Silicon-carbon-nitride selective etch |
US9132436B2 (en) | 2012-09-21 | 2015-09-15 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US8969212B2 (en) | 2012-11-20 | 2015-03-03 | Applied Materials, Inc. | Dry-etch selectivity |
US8980763B2 (en) | 2012-11-30 | 2015-03-17 | Applied Materials, Inc. | Dry-etch for selective tungsten removal |
US9064816B2 (en) | 2012-11-30 | 2015-06-23 | Applied Materials, Inc. | Dry-etch for selective oxidation removal |
US9111877B2 (en) | 2012-12-18 | 2015-08-18 | Applied Materials, Inc. | Non-local plasma oxide etch |
US9449845B2 (en) | 2012-12-21 | 2016-09-20 | Applied Materials, Inc. | Selective titanium nitride etching |
US8921234B2 (en) | 2012-12-21 | 2014-12-30 | Applied Materials, Inc. | Selective titanium nitride etching |
US10256079B2 (en) | 2013-02-08 | 2019-04-09 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
US9362130B2 (en) | 2013-03-01 | 2016-06-07 | Applied Materials, Inc. | Enhanced etching processes using remote plasma sources |
US9040422B2 (en) | 2013-03-05 | 2015-05-26 | Applied Materials, Inc. | Selective titanium nitride removal |
US9607856B2 (en) | 2013-03-05 | 2017-03-28 | Applied Materials, Inc. | Selective titanium nitride removal |
US9093390B2 (en) | 2013-03-07 | 2015-07-28 | Applied Materials, Inc. | Conformal oxide dry etch |
US8801952B1 (en) | 2013-03-07 | 2014-08-12 | Applied Materials, Inc. | Conformal oxide dry etch |
US10170282B2 (en) | 2013-03-08 | 2019-01-01 | Applied Materials, Inc. | Insulated semiconductor faceplate designs |
US9153442B2 (en) | 2013-03-15 | 2015-10-06 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
US9991134B2 (en) | 2013-03-15 | 2018-06-05 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
US9184055B2 (en) | 2013-03-15 | 2015-11-10 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
US9093371B2 (en) | 2013-03-15 | 2015-07-28 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
US9023732B2 (en) | 2013-03-15 | 2015-05-05 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
US8895449B1 (en) | 2013-05-16 | 2014-11-25 | Applied Materials, Inc. | Delicate dry clean |
US9114438B2 (en) | 2013-05-21 | 2015-08-25 | Applied Materials, Inc. | Copper residue chamber clean |
US10879053B2 (en) | 2013-06-03 | 2020-12-29 | Lam Research Corporation | Temperature controlled substrate support assembly |
US9493879B2 (en) | 2013-07-12 | 2016-11-15 | Applied Materials, Inc. | Selective sputtering for pattern transfer |
US9773648B2 (en) | 2013-08-30 | 2017-09-26 | Applied Materials, Inc. | Dual discharge modes operation for remote plasma |
US9209012B2 (en) | 2013-09-16 | 2015-12-08 | Applied Materials, Inc. | Selective etch of silicon nitride |
US8956980B1 (en) | 2013-09-16 | 2015-02-17 | Applied Materials, Inc. | Selective etch of silicon nitride |
US8951429B1 (en) | 2013-10-29 | 2015-02-10 | Applied Materials, Inc. | Tungsten oxide processing |
US9576809B2 (en) | 2013-11-04 | 2017-02-21 | Applied Materials, Inc. | Etch suppression with germanium |
US9236265B2 (en) | 2013-11-04 | 2016-01-12 | Applied Materials, Inc. | Silicon germanium processing |
US9711366B2 (en) | 2013-11-12 | 2017-07-18 | Applied Materials, Inc. | Selective etch for metal-containing materials |
US9520303B2 (en) | 2013-11-12 | 2016-12-13 | Applied Materials, Inc. | Aluminum selective etch |
US9299582B2 (en) | 2013-11-12 | 2016-03-29 | Applied Materials, Inc. | Selective etch for metal-containing materials |
US9245762B2 (en) | 2013-12-02 | 2016-01-26 | Applied Materials, Inc. | Procedure for etch rate consistency |
US9117855B2 (en) | 2013-12-04 | 2015-08-25 | Applied Materials, Inc. | Polarity control for remote plasma |
US9263278B2 (en) | 2013-12-17 | 2016-02-16 | Applied Materials, Inc. | Dopant etch selectivity control |
US9287095B2 (en) | 2013-12-17 | 2016-03-15 | Applied Materials, Inc. | Semiconductor system assemblies and methods of operation |
US9190293B2 (en) | 2013-12-18 | 2015-11-17 | Applied Materials, Inc. | Even tungsten etch for high aspect ratio trenches |
CN104752271A (en) * | 2013-12-27 | 2015-07-01 | 株式会社日立国际电气 | Substrate processing apparatus and method of manufacturing semiconductor device |
US9287134B2 (en) | 2014-01-17 | 2016-03-15 | Applied Materials, Inc. | Titanium oxide etch |
US9396989B2 (en) | 2014-01-27 | 2016-07-19 | Applied Materials, Inc. | Air gaps between copper lines |
US9293568B2 (en) | 2014-01-27 | 2016-03-22 | Applied Materials, Inc. | Method of fin patterning |
US9385028B2 (en) | 2014-02-03 | 2016-07-05 | Applied Materials, Inc. | Air gap process |
US9299575B2 (en) | 2014-03-17 | 2016-03-29 | Applied Materials, Inc. | Gas-phase tungsten etch |
US9299537B2 (en) | 2014-03-20 | 2016-03-29 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
US9299538B2 (en) | 2014-03-20 | 2016-03-29 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
US9136273B1 (en) | 2014-03-21 | 2015-09-15 | Applied Materials, Inc. | Flash gate air gap |
US9903020B2 (en) | 2014-03-31 | 2018-02-27 | Applied Materials, Inc. | Generation of compact alumina passivation layers on aluminum plasma equipment components |
US9309598B2 (en) | 2014-05-28 | 2016-04-12 | Applied Materials, Inc. | Oxide and metal removal |
US9847289B2 (en) | 2014-05-30 | 2017-12-19 | Applied Materials, Inc. | Protective via cap for improved interconnect performance |
US9406523B2 (en) | 2014-06-19 | 2016-08-02 | Applied Materials, Inc. | Highly selective doped oxide removal method |
US9378969B2 (en) | 2014-06-19 | 2016-06-28 | Applied Materials, Inc. | Low temperature gas-phase carbon removal |
US9425058B2 (en) | 2014-07-24 | 2016-08-23 | Applied Materials, Inc. | Simplified litho-etch-litho-etch process |
US9159606B1 (en) | 2014-07-31 | 2015-10-13 | Applied Materials, Inc. | Metal air gap |
US9496167B2 (en) | 2014-07-31 | 2016-11-15 | Applied Materials, Inc. | Integrated bit-line airgap formation and gate stack post clean |
US9378978B2 (en) | 2014-07-31 | 2016-06-28 | Applied Materials, Inc. | Integrated oxide recess and floating gate fin trimming |
US9165786B1 (en) | 2014-08-05 | 2015-10-20 | Applied Materials, Inc. | Integrated oxide and nitride recess for better channel contact in 3D architectures |
US9659753B2 (en) | 2014-08-07 | 2017-05-23 | Applied Materials, Inc. | Grooved insulator to reduce leakage current |
US9553102B2 (en) | 2014-08-19 | 2017-01-24 | Applied Materials, Inc. | Tungsten separation |
US9355856B2 (en) | 2014-09-12 | 2016-05-31 | Applied Materials, Inc. | V trench dry etch |
JP2020503670A (en) * | 2016-12-27 | 2020-01-30 | エヴァテック・アーゲー | Vacuum plasma processing object processing equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH09153481A (en) | Apparatus for plasma processing | |
KR0151769B1 (en) | Plasma etching apparatus | |
JP2532401Y2 (en) | Bias ECR plasma CVD equipment | |
EP0749149A2 (en) | Plasma processing apparatus | |
JPH01251735A (en) | Electrostatic chuck apparatus | |
JPS60115226A (en) | Substrate temperature control method | |
EP0749148B1 (en) | Plasma processing apparatus | |
JPH06196421A (en) | Plasma device | |
JP3323928B2 (en) | Plasma processing equipment | |
JP3204145B2 (en) | Plasma processing equipment | |
EP2148360B1 (en) | Dry etching method | |
JPH09181064A (en) | Depositing method for dielectric layer using pecvd | |
JP2002110637A (en) | Mask member, mask member set, substrate treatment method, manufacturing method, of semiconductor device and the method for deciding manufacturing conditions of the semiconductor device | |
JP3116723B2 (en) | Quartz glass material for microwave plasma equipment | |
JP2523070B2 (en) | Plasma processing device | |
JPH06275566A (en) | Microwave plasma treating device | |
JP2652292B2 (en) | Plasma processing equipment | |
JP3077516B2 (en) | Plasma processing equipment | |
JPH02110925A (en) | Vacuum processing and device therefor | |
JPS5986222A (en) | Dry etching method | |
JP3266076B2 (en) | Microwave plasma processing apparatus and counter electrode used for its implementation | |
JPS6350854B2 (en) | ||
JP2005064120A (en) | Apparatus and method for plasma treatment | |
JPH04318175A (en) | Bias ecr plasma cvd device | |
JPH10189546A (en) | Plasma processor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20090411 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20120411 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20120411 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130411 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130411 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20140411 |