JPH09153401A - Resistive paste for low-temperature baking - Google Patents

Resistive paste for low-temperature baking

Info

Publication number
JPH09153401A
JPH09153401A JP7334075A JP33407595A JPH09153401A JP H09153401 A JPH09153401 A JP H09153401A JP 7334075 A JP7334075 A JP 7334075A JP 33407595 A JP33407595 A JP 33407595A JP H09153401 A JPH09153401 A JP H09153401A
Authority
JP
Japan
Prior art keywords
powder
filler
glass
low
resistance paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7334075A
Other languages
Japanese (ja)
Inventor
Sadami Taguchi
貞美 田口
Yoshinobu Watanabe
嘉伸 渡辺
Mizuyoshi Atozawa
瑞芳 後沢
Tetsuo Sakai
徹男 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku International KK
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Tanaka Kikinzoku International KK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Tanaka Kikinzoku International KK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP7334075A priority Critical patent/JPH09153401A/en
Publication of JPH09153401A publication Critical patent/JPH09153401A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a baked resistor having little irregularity in the resistance value. SOLUTION: A resistive paste is formed by dispersing one kind of conductive particles or a plurality of kinds of conductive particles selected from among Rb2 RuO7-x power (The (x) is 0 to 1.), Bi2 RuO7-x powder (The (x) is 0 to 1.), CaRuO3 powder, SrRuO3 powder and LaRuO3 powder, PbO-SiO2 -B2 O3 -Al2 O3 glass powder of a softening point of 350 to 550 deg.C and a filler for suppressing the flow at the time of firing of this glass powder in an organic vehicle. The filler is selected from among Al2 O3 powder, ZrO2 powder, TiO2 powder and glass powder of a softening point of 750 to 850 deg.C and contains 3 to 30wt.% of a powder body component not containing an organic vehicle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、プラズマディス
プレイパネル、液晶表示板、陰極線管等のガラス基材表
面に焼成固着させて形成する事ができる500℃から6
00℃で焼成可能な低温焼成用抵抗ペーストに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention can be formed by baking and fixing on a glass substrate surface such as a plasma display panel, a liquid crystal display plate, a cathode ray tube or the like.
The present invention relates to a resistance paste for low temperature firing which can be fired at 00 ° C.

【0002】[0002]

【従来の技術】一般に、抵抗ペーストは、酸化ルテニウ
ム粉末とガラス粉末とを有機ビヒクル中に分散させてな
り、低温焼成用抵抗ペーストの場合、軟化点が400℃
〜550℃程度のPbO−SiO2−B23系ガラス粉
末が用いられていた。しかしながら、この様に導電粒子
として酸化ルテニウム粉末を用いた低温焼成用抵抗ペー
ストにおいては、酸化ルテニウムは比抵抗が小さく電気
伝導度が比較的高いため、一定の抵抗値を得るために
は、導電粒子に対するガラス粉末の量を多くしなければ
ならず、為に分散度の相異や焼成温度のばらつきによっ
て抵抗ペーストの焼成によって得られた抵抗体の抵抗値
にかなりのばらつきを生じてしまう不都合があった。
2. Description of the Related Art Generally, a resistance paste is prepared by dispersing ruthenium oxide powder and glass powder in an organic vehicle, and a resistance paste for low temperature firing has a softening point of 400.degree.
PbO-SiO 2 -B 2 O 3 based glass powder of about to 550 ° C. has been used. However, in the resistance paste for low temperature firing using the ruthenium oxide powder as the conductive particles in this way, since the specific resistance of ruthenium oxide is small and the electric conductivity is relatively high, the conductive particles should be Since the amount of glass powder must be increased relative to the above, there is a disadvantage that the resistance value of the resistor obtained by firing the resistance paste varies considerably due to different dispersion degrees and variations in firing temperature. It was

【0003】[0003]

【発明が解決しようとする課題】ところが、例えばプラ
ズマディスプレイ装置に形成される無数の約0.5mm
角の各画素内に設けられるスパッタ防止用の電流制限抵
抗体や、その他のガラス基材表面に焼成固着される無数
の抵抗体においては、極力抵抗値のばらつきが小さい事
が望まれている。そこでこの発明は、抵抗値ばらつきの
小さな焼成抵抗体を得る事のできる低温焼成用抵抗ペー
ストを提供することを目的とする。
However, for example, innumerable about 0.5 mm formed in a plasma display device.
In the current limiting resistor for preventing spatter provided in each corner pixel, and in the countless resistors fired and fixed on the surface of the other glass substrate, it is desired that the variation in resistance value is as small as possible. Therefore, an object of the present invention is to provide a resistance paste for low-temperature firing, which makes it possible to obtain a firing resistor with a small variation in resistance value.

【0004】[0004]

【課題を解決するための手段】この発明の目的は、Pb
2RuO7-x(Xは0〜1)粉末、Bi2RuO7-x(Xは
0〜1)粉末、CaRuO3粉末、SrRuO3粉末、及
びLaRuO3粉末のうちの一種類又は複数種類選んだ
導電粒子と、軟化点が350℃から550℃のPbO−
SiO2−B23−Al23系ガラス粉末と、このガラ
ス粉末の焼成時の流動を押さえるフィラーとを、有機ビ
ヒクル中に分散させてなる低温焼成用抵抗ペーストによ
って達成される。この発明において、フィラーとして
は、Al23粉末、ZrO2粉末、TiO2粉末、及び軟
化点が750℃から850℃のガラス粉末のなかから選
ばれるフィラーが望ましく用いられ、該フィラーを有機
ビヒクルを含まない粉末成分の3〜30wt%含有させ
ることが望ましい。ガラス組成が、PbO 75.0〜
81.0wt%、SiO2 6.0〜10.0wt%、B
23 3.0〜5.0wt%、Al23 8.0〜1
2.0wt%からなるガラス粉末又は、PbO 70.
3〜76.4wt%、SiO2 0.9〜3.wt%、B
23 14.8〜18.9wt%、Al23 1.7〜
3.7wt%、及びZnO 4.1〜6.2wt%よ
りなるガラス粉末が望ましく用いられる。
The object of the present invention is to provide Pb
2 RuO 7-x (X is 0 to 1) powder, Bi 2 RuO 7-x (X is 0 to 1) powder, CaRuO 3 powder, SrRuO 3 powder, and LaRuO 3 powder Conductive particles and PbO- with a softening point of 350 ° C to 550 ° C
This is achieved by a resistance paste for low temperature firing which is obtained by dispersing SiO 2 —B 2 O 3 —Al 2 O 3 based glass powder and a filler that suppresses the flow of the glass powder during firing in an organic vehicle. In the present invention, as the filler, a filler selected from Al 2 O 3 powder, ZrO 2 powder, TiO 2 powder, and glass powder having a softening point of 750 ° C. to 850 ° C. is preferably used, and the filler is an organic vehicle. It is desirable to contain 3 to 30 wt% of the powder component not containing. Glass composition is PbO 75.0-
81.0 wt%, SiO 2 6.0 to 10.0 wt%, B
2 O 3 3.0-5.0 wt%, Al 2 O 3 8.0-1
Glass powder composed of 2.0 wt% or PbO 70.
3-76.4 wt%, SiO 2 0.9-3. wt%, B
2 O 3 14.8 to 18.9 wt%, Al 2 O 3 1.7 to
A glass powder composed of 3.7 wt% and ZnO 4.1 to 6.2 wt% is preferably used.

【0005】[0005]

【発明の実施の形態】低温焼成用抵抗ペーストの製造に
当たり、導電粒子の量と、ガラス粉末及びフィラーの量
については、焼成抵抗体に求められる抵抗値に応じて調
合選択する。導電粒子、ガラス粉末及びフィラーは、焼
成抵抗体の固着対象が例えばプラズマディスプレイ装置
の画素である場合は、粉体の平均粒径を1μm以下にあ
らかじめ加工しておく。かくして得られた導電粒子、ガ
ラス粉末及びフィラーは抵抗値に応じて調合されて有機
ビヒクル中に混合され分散される。この分散のためには
例えば遊星ブレンダーや三本ロール等の装置が用いられ
る。得られた低温焼成用抵抗ペーストは、あらかじめA
g、Au、Pt、Ni、Cr、Alをそれぞれ主成分と
する電極を形成したガラス基板或いはガラス基材表面に
スクリーン印刷法により位置や形状を定めて付着され
る。基材に付着された抵抗ペーストは、基材の軟化点以
下の温度で焼成され、所定位置に焼成抵抗体が形成され
る。この際有機ビヒクルは消失し、導電粒子とガラス粉
末とフィラーとで焼成抵抗体が形成される。
BEST MODE FOR CARRYING OUT THE INVENTION In the production of a resistance paste for low temperature firing, the amount of conductive particles and the amounts of glass powder and filler are compounded and selected according to the resistance value required for a fired resistor. The conductive particles, the glass powder, and the filler are preliminarily processed to have an average particle diameter of 1 μm or less when the target to which the firing resistor is fixed is, for example, a pixel of a plasma display device. The conductive particles, glass powder and filler thus obtained are mixed according to the resistance value and mixed and dispersed in the organic vehicle. For this dispersion, a device such as a planetary blender or a triple roll is used. The obtained resistance paste for low temperature firing is
The position and the shape of the glass substrate or the glass substrate on which the electrodes containing g, Au, Pt, Ni, Cr, and Al as the main components are formed are fixed by the screen printing method and attached. The resistance paste attached to the base material is fired at a temperature equal to or lower than the softening point of the base material to form a fired resistor at a predetermined position. At this time, the organic vehicle disappears and the firing resistor is formed by the conductive particles, the glass powder and the filler.

【0006】この発明によれば、導電粒子はPb2Ru
7-x(Xは、0〜1)粉末、Bi2RuO7-x(Xは、
0〜1)粉末、CaRuO3粉末、SrRuO3粉末、L
aRuO3粉末等のルテニウム酸化合物から選択され
る。これらのルテニウム酸化合物は、RuO2に比較し
て電気伝導度が一桁小さいため、絶縁物であるガラス粉
末やフィラーの量を少なくでき、抵抗値ばらつき要素が
少なくなる。
According to the present invention, the conductive particles are Pb 2 Ru.
O 7-x (X is 0 to 1) powder, Bi 2 RuO 7-x (X is
0-1) powder, CaRuO 3 powder, SrRuO 3 powder, L
It is selected from ruthenate compounds such as aRuO 3 powder. Since these ruthenic acid compounds have an order of magnitude smaller electrical conductivity than RuO 2 , the amount of glass powder or filler that is an insulator can be reduced, and the resistance value variation factor can be reduced.

【0007】フィラーはAl23粉末、ZrO2粉末、
TiO2粉末、及び軟化点が750℃から850℃のガ
ラス粉末等の、抵抗ペーストの焼成温度では形態変化を
しない粉体が用いられ、抵抗ペーストの焼成時にガラス
粉末が過度に流動する事を制限し、焼成抵抗体の均質化
に寄与する。混合比率は3〜30wt%である。
The filler is Al 2 O 3 powder, ZrO 2 powder,
TiO 2 powder and glass powder having a softening point of 750 ° C. to 850 ° C. are used that do not change their shape at the firing temperature of the resistance paste, and limit excessive flow of the glass powder during firing of the resistance paste. And contributes to homogenization of the firing resistor. The mixing ratio is 3 to 30 wt%.

【0008】ガラス粉末は、軟化点が350℃から55
0℃のPbO−SiO2−B23−Al23系ガラスが
用いられ、窓ガラス他の汎用ガラス表面に焼成抵抗体の
固着を可能にしている。その様なガラス粉末として例え
ば、軟化点510℃のPbO78.0wt%、SiO2
8.0wt%、B23 4.0wt%、及びAl23
10.0wt%のガラス粉末、或いは、軟化点430
℃のPbO 73.3wt%、SiO2 2.wt%、
23 16.9wt%、Al23 2.7wt%、及
びZnO 5.2wt%のガラス粉末を用いる事ができ
る。
Glass powder has a softening point of 350 ° C. to 55 ° C.
0 ℃ of PbO-SiO 2 -B 2 O 3 -Al 2 O 3 based glass is used, allowing the fixation of the firing resistor to the window glass other general-purpose glass surface. As such glass powder, for example, PbO 78.0 wt% with a softening point of 510 ° C., SiO 2
8.0 wt%, B 2 O 3 4.0 wt%, and Al 2 O 3
10.0 wt% glass powder or softening point 430
73.3 wt% of PbO, SiO 2 2. wt%,
Glass powders of B 2 O 3 16.9 wt%, Al 2 O 3 2.7 wt% and ZnO 5.2 wt% can be used.

【0009】[0009]

【実施例1】次に具体例について説明する。先ず、Pb
O 73.3wt%、SiO2 2.0wt%、B23
16.9wt%、Al23 2.7wt%、及びZn
O 5.2wt%を混合して約1300℃で溶解した後
冷却し、これをボールミルにて粉砕して軟化点430℃
で平均粒径1μm以下のガラス粉末を用意した。これと
は別に、導電粒子として平均粒径1μm以下のPbRu
6.5粉末、並びにフィラーとして平均粒径1μm以下
ののTiO2粉末を用意した。ここで用意した材料を用
い、PbRuO6.5粉末24.1wt%、ガラス粉末5
9.2wt%、TiO2粉末16.7wt%の割合で調
合し、これに適量の有機ビヒクルを加えて、遊星ブレン
ダーで予備混練した後、順次圧力を変えた三本ロールに
数個ずつ通して、導電粒子であるPbRuO6.5粉末
と、ガラス粉末と、フィラーであるTiO2粉末とを有
機ビヒクル中に均等に分散させて低温焼成用抵抗ペース
トを得た。
Example 1 Next, a specific example will be described. First, Pb
O 73.3 wt%, SiO 2 2.0 wt%, B 2 O 3
16.9 wt%, Al 2 O 3 2.7 wt%, and Zn
O 5.2% by weight was mixed and melted at about 1300 ° C., then cooled and crushed with a ball mill to obtain a softening point of 430 ° C.
Then, a glass powder having an average particle diameter of 1 μm or less was prepared. Separately, PbRu having an average particle diameter of 1 μm or less is used as the conductive particles.
O 6.5 powder and TiO 2 powder having an average particle size of 1 μm or less were prepared as a filler. Using the materials prepared here, PbRuO 6.5 powder 24.1 wt%, glass powder 5
9.2 wt% and TiO 2 powder 16.7 wt% were mixed, an appropriate amount of organic vehicle was added to the mixture, and the mixture was pre-kneaded with a planetary blender, and then passed through a three-roll mill with various pressures. to give a PbRuO 6.5 powder is conductive particles, glass powder, a TiO 2 powder is a filler uniformly dispersed in an organic vehicle a low temperature fired resistive paste.

【0010】かくして得られたこの発明による低温焼成
用抵抗ペーストの抵抗値ばらつきの評価に当たり、ガラ
ス板の中央部に直線状の共通電極を設け、この共通電極
の両側に振り分けで各16個の試験電極を設けた評価基
板2枚を用意した。これらの評価基板の各電極はそれぞ
れ、ガラス板上にAgを主成分とする導体ペーストをス
クリーン印刷してから焼成して得た。この評価基板上の
共通電極と試験電極とを橋絡する様にこの発明による低
温焼成用抵抗ペーストをスクリーン印刷してから580
℃ピーク値10分トータル1時間に設定した炉で焼成
し、評価基板一枚当たり32試料の0.25mm×0.
25mmで厚さ5.5μmの抵抗体を焼成形成した。こ
の評価基板を2枚作成し、合計64サンプルの焼成抵抗
体を作成して評価した所、平均抵抗値は1.17MΩ、
抵抗値ばらつきの指標である抵抗値変動係数CV=σ/
x×100(%)(ここでσは標準偏差、xは平均抵抗
値である)は3.7%であった。これを従来の低温焼成
用抵抗ペーストと比較するに、導電粒子としてRuO2
粉末、軟化点490℃のPbO−SiO2−B23系ガ
ラス粉末を用いた抵抗ペーストによって同様の抵抗体を
作成し評価したところ抵抗値変動係数が16.7%であ
った。比較すると、従来の約1/5(22%)にばらつ
きが小さくなったことがわかった。
In the evaluation of the resistance value variation of the resistance paste for low temperature firing according to the present invention thus obtained, a linear common electrode is provided in the center of the glass plate, and 16 test pieces are distributed on both sides of the common electrode. Two evaluation substrates provided with electrodes were prepared. Each electrode of these evaluation substrates was obtained by screen-printing a conductor paste containing Ag as a main component on a glass plate and then firing the paste. After the resistance paste for low temperature firing according to the present invention was screen-printed so as to bridge the common electrode and the test electrode on the evaluation substrate, 580
The sample was fired in a furnace set to a peak value of 10 ° C. for 10 minutes for a total of 1 hour, and 32 samples per evaluation substrate of 0.25 mm × 0.
A resistor having a thickness of 25 mm and a thickness of 5.5 μm was formed by firing. When two evaluation substrates were prepared and a total of 64 samples of fired resistors were prepared and evaluated, the average resistance value was 1.17 MΩ,
Resistance variation coefficient CV = σ / which is an index of resistance variation
xx100 (%) (here, σ is a standard deviation and x is an average resistance value) was 3.7%. To compare this with the conventional resistance paste for low temperature firing, RuO 2 was used as conductive particles.
When a similar resistor was prepared and evaluated by a resistance paste using PbO—SiO 2 —B 2 O 3 -based glass powder having a softening point of 490 ° C. as a powder, the coefficient of variation in resistance was 16.7%. By comparison, it was found that the variation was reduced to about ⅕ (22%) of the conventional one.

【0011】[0011]

【実施例2】同様にして、平均粒径1μm以下のPb2
RuO6.5粉末からなる導電粒子19.9wt%と、P
bO 78.0wt%、SiO2 8.0wt%、B2
3 4.0wt%、Al23 10.0wt%よりなる
軟化点510℃の平均粒径1μm以下のガラス粉末 6
3.4wt%と、軟化点850℃で平均粒径1μm以下
のガラス粉末よりなるフィラー 16.7wt%とを有
機ビヒクルに分散させて得た。この発明による低温焼成
用抵抗ペーストについて、評価した所、焼成膜厚5.0
μmで、平均抵抗値839KΩの焼成抵抗体が得られ、
抵抗値変動係数は4.6%であった。この値は、従来の
約1/4(27%)である。
Example 2 Similarly, Pb 2 having an average particle size of 1 μm or less is used.
19.9 wt% of conductive particles made of RuO 6.5 powder, and P
bO 78.0 wt%, SiO 2 8.0 wt%, B 2 O
3 4.0 wt%, Al 2 O 3 10.0 wt% glass powder having a softening point of 510 ° C. and an average particle size of 1 μm or less 6
It was obtained by dispersing 3.4 wt% and 16.7 wt% filler made of glass powder having an average particle diameter of 1 μm or less at a softening point of 850 ° C. in an organic vehicle. The resistance paste for low temperature firing according to the present invention was evaluated, and the firing film thickness was 5.0.
In μm, a fired resistor having an average resistance value of 839 KΩ was obtained,
The coefficient of variation of resistance was 4.6%. This value is about 1/4 (27%) of the conventional value.

【0012】[0012]

【発明の効果】以上の通りこの発明によれば、導電率の
比較的低い導電粒子を用いることにより絶縁物依頼度を
低下させると共に、低温で軟化流動するガラス粉末の流
動をフィラーによって制限する構成としたため、ガラス
表面上に均質で抵抗値変動係数の小さな焼成抵抗体を形
成することが可能となり、例えばプラズマディスプレイ
装置の画素内の電流制限抵抗体等の特殊用途に用いる事
ができ、ガラス基材を用いた電子機器の機能を高める事
ができ、その産業上の効果大いなるものがある。
As described above, according to the present invention, conductive particles having a relatively low conductivity are used to reduce the requirement for an insulator and to limit the flow of glass powder which softens and flows at low temperature by a filler. Therefore, it is possible to form a homogeneous firing resistor with a small resistance variation coefficient on the glass surface, which can be used for special purposes such as a current limiting resistor in a pixel of a plasma display device. It is possible to enhance the function of electronic equipment using wood, and there are some great industrial effects.

フロントページの続き (72)発明者 渡辺 嘉伸 神奈川県厚木市飯山字台ノ岡2453番21号田 中貴金属インターナショナル株式会社厚木 工場内 (72)発明者 後沢 瑞芳 東京都世田谷区砧1丁目10番11号日本放送 協会放送技術研究所内 (72)発明者 坂井 徹男 東京都世田谷区砧1丁目10番11号日本放送 協会放送技術研究所内Front Page Continuation (72) Inventor Yoshinobu Watanabe 2453-21 Iinoyama Atsugi-shi, Kanagawa Tanaka Kikinzoku International Co., Ltd. Atsugi Plant (72) Inventor Mizuho Gozawa 1-10 Kinuta, Setagaya-ku, Tokyo No. 11 Japan Broadcasting Corporation Broadcasting Technology Research Laboratory (72) Inventor Tetsuo Sakai 1-10-11 Kinuta, Setagaya-ku, Tokyo Tokyo Broadcasting Technology Research Institute

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ルテニウム酸鉛粉末、ルテニウム酸ビス
マス粉末、ルテニウム酸カルシウム粉末、ルテニウム酸
ストロンチウム粉末、及びルテニウム酸ランタン粉末の
うちの一種類又は複数種類選んだ導電粒子と、軟化点が
350℃から550℃のPbO−SiO2−B23−A
23系又はPbO−SiO2−B23−Al23−Z
nO系のガラス粉末と、焼成中のガラス熔解による抵抗
体の流動を押さえるフィラーとを、有機ビヒクル中に分
散させてなる低温焼成用抵抗ペースト。
1. Conductive particles selected from one or more kinds of lead ruthenate powder, bismuth ruthenate powder, calcium ruthenate powder, strontium ruthenate powder, and lanthanum ruthenate powder, and a softening point from 350 ° C. PbO-SiO 2 of 550 ℃ -B 2 O 3 -A
l 2 O 3 system or PbO-SiO 2 -B 2 O 3 -Al 2 O 3 -Z
A low-temperature firing resistance paste obtained by dispersing nO-based glass powder and a filler that suppresses the flow of a resistor due to glass melting during firing in an organic vehicle.
【請求項2】 フィラーは、Al23粉末、ZrO2
末、TiO2粉末、及び軟化点が750℃から850℃
のガラス粉末の中から選ばれる請求項1に記載の低温焼
成用抵抗ペースト。
2. The filler is an Al 2 O 3 powder, a ZrO 2 powder, a TiO 2 powder, and a softening point of 750 ° C. to 850 ° C.
The low-temperature firing resistance paste according to claim 1, which is selected from among the glass powders.
【請求項3】 フィラーは、TiO2粉末である請求項
1に記載の低温焼成用抵抗ペースト。
3. The low-temperature firing resistance paste according to claim 1, wherein the filler is TiO 2 powder.
【請求項4】 フィラーの含有量は、有機ビヒクルを含
まない粉末成分の3〜30wt%である請求項1ないし
請求項3に記載の低温焼成用抵抗ペースト。
4. The low-temperature firing resistance paste according to claim 1, wherein the content of the filler is 3 to 30 wt% of the powder component containing no organic vehicle.
【請求項5】 ガラス組成が、PbO 75.0〜8
1.0wt%、SiO2 6.0〜10.0wt%、B2
3 3.0〜5.0wt%、及びAl238.0〜1
2.0wt%である「請求項1」ないし「請求項4」の
いずれかに記載の低温焼成用抵抗ペースト。
5. The glass composition is PbO 75.0-8.
1.0 wt%, SiO 2 6.0 to 10.0 wt%, B 2
O 3 3.0~5.0wt%, and Al 2 O 3 from 8.0 to 1
The resistance paste for low temperature firing according to any one of "claim 1" to "claim 4", which is 2.0 wt%.
【請求項6】 ガラス組成が、PbO 70.3〜7
6.3wt%、SiO20.9〜3.0wt%、B23
14.8〜18.9wt%、Al23 1.7〜3.
7wt%、及びZnO 4.1〜6.2wt%である請
求項1ないし請求項5のいずれかに記載の低温焼成用抵
抗ペースト。
6. The glass composition is PbO 70.3-7.
6.3 wt%, SiO 2 0.9-3.0 wt%, B 2 O 3
14.8 to 18.9 wt%, Al 2 O 3 1.7 to 3 .
The resistance paste for low temperature firing according to any one of claims 1 to 5, which is 7 wt% and ZnO 4.1 to 6.2 wt%.
【請求項7】 導電粒子がルテニウム酸鉛である請求項
1〜6の低温焼成用抵抗ペースト。
7. The resistance paste for low temperature firing according to claim 1, wherein the conductive particles are lead ruthenate.
JP7334075A 1995-11-29 1995-11-29 Resistive paste for low-temperature baking Pending JPH09153401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7334075A JPH09153401A (en) 1995-11-29 1995-11-29 Resistive paste for low-temperature baking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7334075A JPH09153401A (en) 1995-11-29 1995-11-29 Resistive paste for low-temperature baking

Publications (1)

Publication Number Publication Date
JPH09153401A true JPH09153401A (en) 1997-06-10

Family

ID=18273240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7334075A Pending JPH09153401A (en) 1995-11-29 1995-11-29 Resistive paste for low-temperature baking

Country Status (1)

Country Link
JP (1) JPH09153401A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013161770A (en) * 2012-02-09 2013-08-19 Kyoto Elex Kk Resistor paste for ceramic substrate heater and ceramic substrate heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013161770A (en) * 2012-02-09 2013-08-19 Kyoto Elex Kk Resistor paste for ceramic substrate heater and ceramic substrate heater

Similar Documents

Publication Publication Date Title
CN1971771B (en) Resistor composition and thick film resistor
US4015230A (en) Humidity sensitive ceramic resistor
US10403421B2 (en) Thick film resistor and production method for same
KR0142577B1 (en) Reristance masses for firing under nirogen
US3573229A (en) Cermet resistor composition and method of making same
JPH06653B2 (en) Method for producing pyrochlore compound containing tin oxide
JPH0620001B2 (en) Composition for producing electric resistance element and method for producing electric resistance element
TWI587320B (en) Resistance composition
EP1632961B1 (en) Thick-film resistor paste and thick-film resistor
CN110291599B (en) Composition for resistor, paste for resistor, and thick film resistor
JP2004356266A (en) Resistor paste, resistor and electronic part
US3607789A (en) Electroconductive glaze and method for preparation
EP1632958B1 (en) A thick-film resistor paste, a thick-film resistor manufactured using the thick-film resistor paste and an electronic device comprising the thick-film resistor
KR102341611B1 (en) Composition for positive temperature coefficient resistor, paste for positive temperature coefficient resistor, positive temperature coefficient resistor and method for producing positive temperature coefficient resistor
JPH09153401A (en) Resistive paste for low-temperature baking
US4698265A (en) Base metal resistor
JPH113802A (en) Resistance paste for low-temperature baking
EP0201362A2 (en) Base metal resistive paints
EP0722175B1 (en) Resistance paste and resistor comprising the material
JPH0422005B2 (en)
JPH09219301A (en) Low temperature burning resistance paste
JP2021193704A (en) Thick film resistor composition and thick film resistance paste including the same
JPH0230101A (en) Composition for forming resistive film
JP2006165347A (en) Resistor paste, resistor and electronic component
Nam et al. The effect of glass frits on the microstructure and electrical properties of bismuth ruthenate thick film resistors