JPH09152571A - Optical connection device - Google Patents

Optical connection device

Info

Publication number
JPH09152571A
JPH09152571A JP31316395A JP31316395A JPH09152571A JP H09152571 A JPH09152571 A JP H09152571A JP 31316395 A JP31316395 A JP 31316395A JP 31316395 A JP31316395 A JP 31316395A JP H09152571 A JPH09152571 A JP H09152571A
Authority
JP
Japan
Prior art keywords
optical
optical transmission
transmission line
wedge
optical signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31316395A
Other languages
Japanese (ja)
Inventor
Hiroshi Shinkai
浩 新海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP31316395A priority Critical patent/JPH09152571A/en
Publication of JPH09152571A publication Critical patent/JPH09152571A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an optical crossbar. SOLUTION: Plural optical transmission lines 11-1 having wedgelike grooves 110 formed at intervals d2 are arranged on a 1st plane at intervals d1 and plural optical paths 11-2 having wedgelike grooves 110 formed at intervals d1 are arranged on a 2nd plane parallel to the 1st plane at intervals d2 crossing the array direction of the optical transmission lines 11-1 so that the slanting surfaces 112 of the wedgelike grooves 110 face each other between the optical transmission lines 11-1 and 11-2. Each time a light signal 13a transmitted by an optical transmission line 11-1 passes through a groove 110, part of it is reflected downward by the slanting surface 112 of the groove 110 as a light signal 13a. The light signal 13a passes through an LCD provided on the side of the groove 110 of the opposite optical transmission line 11-1 or 11-2 when the LCD is in a light passing state and is transmitted to the groove 110 of the optical transmission line 11-2, and the light has its course changed by the slanting surface 112 of the groove 110 and is transmitted through the optical transmission line 11-2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、複数の装置と別の
複数の装置とを対象に、1入力点につき1対1あるいは
1対多の接続を光学的に行うための光学的接続装置に係
り、特にFPGA(Field Programmable Gate Array )
や並列計算機、交換機などの接続を静的または動的に変
化させ、1入力点につき1対1あるいは1対多の接続を
光学的に行うのに好適な光学的接続装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical connecting device for optically making a one-to-one or one-to-many connection per input point for a plurality of devices and a plurality of other devices. In particular, FPGA (Field Programmable Gate Array)
The present invention relates to an optical connection device suitable for statically or dynamically changing the connection of a parallel computer, a switch, or the like, and optically making a one-to-one or one-to-many connection per input point.

【0002】[0002]

【従来の技術】従来、複数の信号線の多対多の接続は、
例えば並列計算機や交換機の場合であれば、電気的な方
法でトランジスタなどを用いたクロスバースイッチやバ
ンヤンネットなどにより実現されていた。また、FPG
Aを複数接続する場合、FPIC(Field Programmable
interconnection circuit)と呼ばれるクロスバースイ
ッチの一種を使用していた。
2. Description of the Related Art Conventionally, many-to-many connection of a plurality of signal lines is
For example, in the case of a parallel computer or an exchange, it was realized by an electric method such as a crossbar switch using a transistor or a Banyan net. Also, FPG
When connecting multiple A, FPIC (Field Programmable
interconnection circuit) was used a type of crossbar switch called.

【0003】また、光学的な方法を適用した例では、球
面状の鏡あるいは非球面上に湾曲した鏡を用いて、1つ
の光信号を他の複数の受光素子に固定的に分配する固定
的(静的)接続方法が知られていた。この接続方法は、
ニューラルネットのニューロン間の接続などでよく使わ
れていた。
In addition, in an example in which an optical method is applied, a fixed mirror for fixedly distributing one optical signal to a plurality of other light receiving elements by using a spherical mirror or a mirror curved on an aspherical surface. A (static) connection method was known. This connection method is
It was often used in connections between neurons in neural networks.

【0004】[0004]

【発明が解決しようとする課題】しかし、例えば上記F
PICにおいては、1つのラインに複数のパストランジ
スタがつながっているため、当該トランジスタが大きな
寄生容量となって、遅延を大きくする原因となってい
た。特に回路のファンアウト(fanout)が多い場
合には、経路によってはディレイが大きくなり、回路全
体の性能が著しく劣化するという問題があった。
However, for example, the above-mentioned F
In the PIC, since a plurality of pass transistors are connected to one line, the transistor becomes a large parasitic capacitance and causes a large delay. In particular, when the fanout of the circuit is large, there is a problem that the delay becomes large depending on the route and the performance of the entire circuit is significantly deteriorated.

【0005】また、例えば並列計算機などで使われるク
ロスバースイッチは、(1)動的な接続が変化する際の
発熱量が大きく、(2)シリコンウェハの大きさと歩留
まりの制限から、1つのチップで実現できる接続数が少
ないという問題もあった。
Further, a crossbar switch used in, for example, a parallel computer, (1) generates a large amount of heat when a dynamic connection changes, and (2) limits the size of a silicon wafer and the yield, thereby making it a single chip. There was also a problem that the number of connections that can be realized with is small.

【0006】また、従来の光学的な方法による接続は、
固定的(静的)な接続であり、動的な接続が行えないと
いう問題があった。本発明は上記事情を考慮してなされ
たものでその目的は、光学的なクロスバーを実現するこ
とで、ディレイが小さく、且つ発熱量も小さく、しかも
比較的低価格で済む、1入力点につき1対1あるいは1
対多の接続が可能な光学的接続装置を提供することにあ
る。本発明の他の目的は、光学的な接続が動的に行える
光学的接続装置を提供することにある。
Further, the connection by the conventional optical method is
Since it is a fixed (static) connection, there is a problem that dynamic connection cannot be performed. The present invention has been made in consideration of the above circumstances, and an object thereof is to realize an optical crossbar, which results in a small delay, a small heat generation amount, and a relatively low price. One-to-one or one
An object of the present invention is to provide an optical connecting device capable of connecting to many terminals. Another object of the present invention is to provide an optical connecting device which can dynamically make an optical connection.

【0007】[0007]

【課題を解決するための手段】本発明は、光信号入力端
に入光された光信号を伝送するための第1の光伝送路で
あって、伝送する光信号の進行方向に沿ってくさび状の
溝が第1の間隔で形成され、当該くさび状溝が、上記光
信号をそのまま通過させるための光進行方向に対して垂
直な第1の面と当該第1の面に対して一定の角度をなし
上記光信号を通過させると共にその一部を反射させるた
めの第2の面とからなる第1の光伝送路を、第1の平面
に第1の方向に第2の間隔で複数配設する一方、光信号
を光信号出力端に伝送するための第2の光伝送路であっ
て、伝送する光信号の進行方向に沿って上記第1の光伝
送路におけるくさび状溝と同様の構造のくさび状の溝が
前記第2の間隔で形成された第2の光伝送路を、上記第
1の平面と平行な第2の平面に上記第1の方向とは異な
る第2の方向に上記第1の間隔で且つ第1及び第2の光
伝送路の間で上記第2の面同士が対向するように複数配
設し、第1の光伝送路の各くさび状溝と当該各くさび状
溝に対応する第2の光伝送路のくさび状溝との間に、光
信号の通過/遮断を行うための光スイッチ手段をそれぞ
れ設けることにより、光通過状態に設定されている光ス
イッチ手段に対応する第1及び第2のくさび状溝の第2
の面を介して当該第1及び第2の光伝送路が光学的に接
続される光学的接続装置を構成したことを特徴とする。
SUMMARY OF THE INVENTION The present invention is a first optical transmission line for transmitting an optical signal incident on an optical signal input end, the wedge being provided along the traveling direction of the optical signal to be transmitted. -Shaped grooves are formed at a first interval, and the wedge-shaped grooves are constant with respect to the first surface perpendicular to the light traveling direction for passing the optical signal as it is and the first surface. A plurality of first optical transmission lines each having an angle and a second surface for transmitting the optical signal and reflecting a part of the optical signal are arranged on the first plane in the first direction at a second interval. On the other hand, a second optical transmission line for transmitting an optical signal to the optical signal output end, which is similar to the wedge-shaped groove in the first optical transmission line along the traveling direction of the optical signal to be transmitted. The second optical transmission line in which the wedge-shaped groove of the structure is formed at the second interval is parallel to the first plane. A plurality of planes are arranged on the second plane at the first distance in the second direction different from the first direction and between the first and second optical transmission lines so that the second surfaces face each other. An optical switch means for passing / blocking an optical signal between each wedge-shaped groove of the first optical transmission line and the wedge-shaped groove of the second optical transmission line corresponding to each wedge-shaped groove. By respectively providing the first and second wedge-shaped groove second grooves corresponding to the optical switch means set to the light passing state.
The optical connection device is characterized in that the first and the second optical transmission lines are optically connected via the surface.

【0008】また本発明は、上記構成の光学的接続装置
に、上記各光スイッチ手段の状態を切り替え制御するこ
とで、上記各第1の光伝送路の光信号入力端と上記各第
2の光伝送路の光信号出力端との間の接続状態を変化さ
せる光スイッチ状態設定手段を更に備えたことをも特徴
とする。
Further, according to the present invention, the optical connection device having the above-mentioned configuration controls the switching of the states of the respective optical switch means, whereby the optical signal input ends of the respective first optical transmission lines and the respective second optical transmission lines. It is also characterized in that it further comprises an optical switch state setting means for changing the connection state between the optical transmission line and the optical signal output end.

【0009】また本発明は、上記各光スイッチ手段を第
1または第2の光伝送路側に設け、当該光スイッチ手段
と第2または第1の光伝送路の対応するくさび状溝との
間に集光用のレンズを設けたことをも特徴とする。
According to the present invention, each of the above optical switch means is provided on the side of the first or second optical transmission line, and between the optical switch means and the corresponding wedge-shaped groove of the second or first optical transmission line. It is also characterized in that a condenser lens is provided.

【0010】上記構成の光学的接続装置において、外部
から第1の平面上の1つの第1の光伝送路の光信号入力
端に入光した光信号は、当該第1の光伝送路により伝送
され、くさび状溝を通過する毎に、その一部が当該くさ
び状溝の第2の面で別の方向(例えば第1の平面に垂直
な方向)に反射される。この第1の光伝送路上の各くさ
び状溝からの反射光のうち、光通過状態に設定された光
スイッチ手段に入光する反射光だけが、当該光スイッチ
手段を通過して、そのくさび状溝の反射面(第2の面)
と対向する第2の平面上の第2の光伝送路のくさび状溝
に入光して、当該くさび状溝の第2の面で(第2の方向
に)反射され、上記第1の光伝送路のくさび状溝におけ
るのと逆の経路で、第2の光伝送路を伝送され、その光
信号出力端から外部に伝達される。
In the optical connecting device having the above-mentioned configuration, the optical signal entering from the outside to the optical signal input end of the one first optical transmission line on the first plane is transmitted through the first optical transmission line. Each time it passes through the wedge-shaped groove, a part thereof is reflected by the second surface of the wedge-shaped groove in another direction (for example, a direction perpendicular to the first plane). Of the reflected light from each of the wedge-shaped grooves on the first optical transmission line, only the reflected light that enters the optical switch means set to the light passing state passes through the optical switch means and is wedge-shaped. Reflective surface of groove (second surface)
Light into the wedge-shaped groove of the second optical transmission line on the second plane opposite to and is reflected (in the second direction) by the second surface of the wedge-shaped groove, and the first light The signal is transmitted through the second optical transmission line through the route opposite to that in the wedge-shaped groove of the transmission line, and is transmitted from the optical signal output end to the outside.

【0011】このように上記構成の光学的接続装置によ
れば、光通過状態に設定された光スイッチ手段に対応す
る第1及び第2の光伝送路のくさび状溝の第2の面を介
して当該第1及び第2の光伝送路が結合(接続)される
ことで、外部から第1の光伝送路の光信号入力端に入光
した光信号がその結合部分を通して第2の光伝送路に伝
達され、当該第2の光伝送路によりその光信号出力端に
伝送されることから、1入力点につき、1対1または1
対多の光学的接続が実現できる。この光学的な接続で
は、信号伝送の遅延が極めて小さく、またファンアウト
数が増えても遅延が増加しないため、大規模な接続装置
が容易に実現できる。また、第1及び第2の光伝送路に
光ファイバと同様の素材を用いて形成できるため、比較
的安価に実現できる。
As described above, according to the optical connecting device having the above structure, the second surfaces of the wedge-shaped grooves of the first and second optical transmission lines corresponding to the optical switch means set to the light passing state are interposed. By coupling (connecting) the first and second optical transmission lines, the optical signal entering from the outside to the optical signal input end of the first optical transmission line is transmitted through the coupling portion to the second optical transmission line. To the optical signal output end by the second optical transmission line, and therefore, one to one or one per input point.
Multipoint optical connection can be realized. In this optical connection, the delay of signal transmission is extremely small, and the delay does not increase even if the number of fanouts increases, so that a large-scale connection device can be easily realized. Further, since the first and second optical transmission lines can be formed by using the same material as the optical fiber, it can be realized at a relatively low cost.

【0012】また、上記構成の光学的接続装置におい
て、光スイッチ状態設定手段を設けることで、各光スイ
ッチ手段の状態(光通過/遮断状態)の切り替え設定が
任意に行えるため光学的な接続切り替えでありながら、
各第1の光伝送路の光信号入力端と各第2の光伝送路の
光信号出力端との間の接続状態を動的に変化させること
が可能となる。しかも、光学的な接続切り替えであるこ
とから、動的に接続が変化する場合でも、発熱量が少な
くて済む。
Further, in the optical connecting device having the above-mentioned structure, by providing the optical switch state setting means, the switching setting of the state (light passing / blocking state) of each optical switch means can be arbitrarily performed, so that the optical connection is switched. While
It is possible to dynamically change the connection state between the optical signal input end of each first optical transmission line and the optical signal output end of each second optical transmission line. Moreover, since the connection is optically switched, the amount of heat generated can be small even when the connection dynamically changes.

【0013】また、上記構成の光学的接続装置におい
て、第1の光伝送路のくさび状溝で進路を第2の光伝送
路のくさび状溝の側に曲げられた光(反射光)を集光す
るレンズを設けることで、この進路を曲げられた光を効
率良く第2の光伝送路側に伝達することが可能となる。
Further, in the optical connecting device having the above-mentioned structure, the light (reflected light) whose path is bent by the wedge-shaped groove of the first optical transmission line to the side of the wedge-shaped groove of the second optical transmission line is collected. By providing the lens that emits light, it becomes possible to efficiently transmit the light whose path is bent to the second optical transmission line side.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を交換
機に適用した場合について図面を参照して説明する。図
1は本発明の一実施形態に係る光学的接続装置を備えた
交換機の全体構成を示す図である。
BEST MODE FOR CARRYING OUT THE INVENTION A case in which an embodiment of the present invention is applied to an exchange will be described below with reference to the drawings. FIG. 1 is a diagram showing an overall configuration of an exchange equipped with an optical connection device according to an embodiment of the present invention.

【0015】図1において、複数(図では4つ)の光伝
送路11-1は、平面12-1をなすように第1の方向に一
定間隔で配設されている。この光伝送路11-1の列の下
側には、複数(図では4つ)の光伝送路11-2が、上記
平面12-1と平行な平面12-2をなすように、上記第1
の方向とは異なる第2の方向(例えば、第1の方向と直
交する第2の方向)に一定間隔で配設されている。光伝
送路11-1の列と光伝送路11-2の列とは、平面12-
1,12-2を同一平面とみなすと、格子状に配設され、
任意の光伝送路11-1を1つまたは複数の光伝送路11
-2と選択的に光学的に結合(接続)することで、光伝送
路11-1に入光された光信号13を当該光伝送路11-1
と結合された1つまたは複数の光伝送路11-2に伝達さ
せて、光信号14として外部に伝搬するための光学的接
続装置(以下、光学的クロスバースイッチと称する)1
5を構成する。
In FIG. 1, a plurality of (four in the figure) optical transmission lines 11-1 are arranged at regular intervals in the first direction so as to form a plane 12-1. A plurality of (four in the figure) optical transmission lines 11-2 are arranged on the lower side of the row of the optical transmission lines 11-1 so as to form a plane 12-2 parallel to the plane 12-1. 1
Are arranged at regular intervals in a second direction different from the direction (for example, a second direction orthogonal to the first direction). The optical transmission line 11-1 and the optical transmission line 11-2 have a plane 12-
Assuming that 1 and 12-2 are on the same plane, they are arranged in a grid,
One or a plurality of optical transmission lines 11-1
-2 selectively optically couples (connects) the optical signal 13 incident on the optical transmission line 11-1 to the optical transmission line 11-1.
An optical connection device (hereinafter, referred to as an optical crossbar switch) 1 for transmitting to one or a plurality of optical transmission lines 11-2 coupled to the optical transmission line 11-2 and propagating to the outside as an optical signal 14.
5 is constituted.

【0016】上記光伝送路11-i(i=1,2)の構造
を図2に示す。この図2に示す光伝送路11-iは、光フ
ァイバーなどと同様の素材、例えば石英ガラスなどの光
を伝搬する透明な素材を用いて作成されたものである。
光伝送路11-iには、当該伝送路11-i(における光の
進行方向)に沿ってくさび状の溝110が一定間隔で形
成されている。このくさび状溝110は、光をそのまま
通過させるための光進行方向に対して垂直な面111
と、当該垂直面111に対して一定の角度(図の例では
45度)をなし光信号を通過させると共にその一部(一
定の割合)を反射させるための傾斜面112とからな
る。この傾斜面112は、外部から当該傾斜面112に
光信号が入光した場合には、その光信号を図とは逆の向
きに、即ち当該傾斜面112と対をなす垂直面111側
に一定の割合で反射する。
The structure of the optical transmission line 11-i (i = 1, 2) is shown in FIG. The optical transmission line 11-i shown in FIG. 2 is made of the same material as an optical fiber or the like, for example, a transparent material such as quartz glass that propagates light.
Wedge-shaped grooves 110 are formed in the optical transmission line 11-i along the transmission line 11-i (in the traveling direction of light) at regular intervals. The wedge-shaped groove 110 is a surface 111 perpendicular to the light traveling direction for allowing light to pass as it is.
And an inclined surface 112 for making a certain angle (45 degrees in the illustrated example) with respect to the vertical surface 111 and transmitting an optical signal and reflecting a part (a certain proportion) thereof. When an optical signal enters the inclined surface 112 from the outside, the inclined surface 112 keeps the optical signal in a direction opposite to that shown in the figure, that is, on the side of the vertical surface 111 that forms a pair with the inclined surface 112. Is reflected at a rate of.

【0017】図3は、(平面12-1をなす)光伝送路1
1-1の列と(平面12-2をなす)光伝送路11-2の列と
の位置関係、及び光伝送路11-1から光伝送路11-2へ
の光(光信号)の伝搬経路について説明するための図で
ある。
FIG. 3 shows an optical transmission line 1 (forming a plane 12-1).
The positional relationship between the row 1-1 and the row of the optical transmission line 11-2 (forming the plane 12-2), and the propagation of light (optical signal) from the optical transmission line 11-1 to the optical transmission line 11-2 It is a figure for explaining a course.

【0018】まず、図3の例のように、光伝送路11-1
の列が、その下面側にくさび状溝110の開口部が位置
するように配設される場合には、光伝送路11-2の列
は、当該光伝送路11-2の各くさび状溝110の開口部
(の傾斜面112)が各光伝送路11-1のくさび状溝1
10の開口部(の傾斜面112)とそれぞれ対向するよ
うに、光伝送路11-1の列の下側に配設される。そのた
め、光伝送路11-1の列の間隔(光伝送路11-2の配列
方向に沿う間隔)を、光伝送路11-2の各くさび状溝1
10の間隔に一致させ(間隔d1 とする)、光伝送路1
1-2の列の間隔((光伝送路11-1の配列方向に沿う間
隔)を、光伝送路11-1の各くさび状溝110の間隔に
一致させてある(間隔d2 とする)。ここでは簡単のた
め、光伝送路11-1の列の間隔、光伝送路11-2の列の
間隔、光伝送路11-1の各くさび状溝110の間隔、及
び光伝送路11-2の各くさび状溝110の間隔は全て等
しいもの(d1 =d2 )とする。
First, as in the example of FIG. 3, the optical transmission line 11-1
When the rows of the optical transmission lines 11-2 are arranged so that the openings of the wedge-shaped grooves 110 are located on the lower surface side, the rows of the optical transmission lines 11-2 are arranged in the respective wedge-shaped grooves of the optical transmission line 11-2. The opening of 110 (the inclined surface 112) is the wedge-shaped groove 1 of each optical transmission line 11-1.
The optical transmission lines 11-1 are arranged on the lower side of the row so as to respectively face (the inclined surfaces 112 of) the openings 10. Therefore, the interval between the rows of the optical transmission lines 11-1 (the interval along the arrangement direction of the optical transmission lines 11-2) is set to the wedge-shaped groove 1 of the optical transmission line 11-2.
The optical transmission line 1 is matched with the interval of 10 (interval d1).
The intervals between the rows 1-2 (the intervals along the arrangement direction of the optical transmission lines 11-1) are matched with the intervals between the wedge-shaped grooves 110 of the optical transmission lines 11-1 (referred to as intervals d2). Here, for simplification, the spacing between the rows of the optical transmission line 11-1, the spacing between the rows of the optical transmission line 11-2, the spacing between the wedge-shaped grooves 110 of the optical transmission line 11-1, and the optical transmission line 11-2. It is assumed that the wedge-shaped grooves 110 have the same interval (d1 = d2).

【0019】以上の位置関係の例では、各光伝送路11
-1の両端部のうち、当該光伝送路11-1に形成されたく
さび状溝110の垂直面111側の端部が、光信号入力
端113として用いられ、各光伝送路11-2の両端部の
うち、当該光伝送路11-2に形成されたくさび状溝11
0の垂直面111側の端部が、光信号出力端114とし
て用いられる。
In the above example of the positional relationship, each optical transmission line 11
-1 of both ends of the wedge-shaped groove 110 formed on the optical transmission line 11-1 on the side of the vertical surface 111 is used as an optical signal input end 113, and each end of the optical transmission line 11-2. Of the both ends, the wedge-shaped groove 11 formed in the optical transmission line 11-2.
The end of the vertical surface 111 side of 0 is used as the optical signal output end 114.

【0020】光信号13が光伝送路11-1の光信号入力
端113に入光すると、その光信号13は当該光伝送路
11-1を伝搬する。この光伝送路11-1には、くさび状
溝110が一定間隔で形成されており、当該光伝送路1
1-1を伝搬する光信号13の一部はくさび状溝110
(をなす垂直面111及び傾斜面112)をそのまま通
過するものの、残りの一部は光信号13aとしてくさび
状溝110の傾斜面112で反射する。本実施形態にお
いて、傾斜面112の傾斜角は45度である。この場
合、光伝送路11-1のくさび状溝110の傾斜面112
で反射された光信号13aの向きは、光伝送路11-1に
よる光信号13の進行方向(平面12-1)に垂直且つ下
向きとなるため、光伝送路11-1のくさび状溝110と
対向する光伝送路11-2のくさび状溝110に導かれ
る。光伝送路11-2のくさび状溝110に導かれた光信
号13aは、そのくさび状溝110の傾斜面112でそ
のくさび状溝110の垂直面111側に反射され、その
垂直面111を通過した後、当該光伝送路11-2により
当該光伝送路11-2の光信号出力端114に光信号14
として伝搬される。
When the optical signal 13 enters the optical signal input terminal 113 of the optical transmission line 11-1, the optical signal 13 propagates through the optical transmission line 11-1. Wedge-shaped grooves 110 are formed at regular intervals on the optical transmission line 11-1.
A part of the optical signal 13 propagating through 1-1 is wedge-shaped groove 110.
Although the light passes through (the vertical surface 111 and the inclined surface 112 that form) as it is, the remaining part is reflected by the inclined surface 112 of the wedge-shaped groove 110 as the optical signal 13a. In this embodiment, the inclination angle of the inclined surface 112 is 45 degrees. In this case, the inclined surface 112 of the wedge-shaped groove 110 of the optical transmission line 11-1
The direction of the optical signal 13a reflected by the optical transmission line 11-1 is perpendicular and downward to the traveling direction (the plane 12-1) of the optical signal 13 by the optical transmission line 11-1. It is guided to the wedge-shaped groove 110 of the opposing optical transmission line 11-2. The optical signal 13a guided to the wedge-shaped groove 110 of the optical transmission line 11-2 is reflected by the inclined surface 112 of the wedge-shaped groove 110 toward the vertical surface 111 side of the wedge-shaped groove 110, and passes through the vertical surface 111. After that, the optical signal 14 is sent to the optical signal output end 114 of the optical transmission line 11-2 by the optical transmission line 11-2.
Is propagated as.

【0021】さて、図3に示した構造だけでは、ある光
伝送路11-1の光信号入力端113に入光した光信号1
3を目的の光伝送路11-2の光信号出力端114に光信
号14として伝搬する光学的クロスバースイッチ15と
しての機能を実現するには不十分である。
Now, with only the structure shown in FIG. 3, the optical signal 1 incident on the optical signal input end 113 of a certain optical transmission line 11-1 is received.
3 is insufficient to realize the function as the optical crossbar switch 15 that propagates the optical signal 3 to the optical signal output end 114 of the target optical transmission line 11-2 as the optical signal 14.

【0022】そこで本実施形態では、図4に示すよう
に、光伝送路11-1の各くさび状溝110の開口部に、
当該くさび状溝110の傾斜面112で反射された光信
号13aの通過/遮断を行うための光スイッチ手段、例
えばLCD(液晶素子)21を当該開口部を塞ぐように
設けている。このLCD21は、電圧が印加されない通
常状態(非活性化状態)ではほぼ透明となっており、電
圧が印加されて活性化すると、ほぼ不透明となるものと
する。勿論、活性化/非活性化の状態と透明/不透明の
状態が、これとは逆の関係のLCD21を用いても構わ
ない。
Therefore, in this embodiment, as shown in FIG. 4, at the openings of the respective wedge-shaped grooves 110 of the optical transmission line 11-1,
Optical switch means, for example, an LCD (liquid crystal element) 21 for passing / blocking the optical signal 13a reflected by the inclined surface 112 of the wedge-shaped groove 110 is provided so as to close the opening. It is assumed that the LCD 21 is substantially transparent in a normal state (inactive state) to which no voltage is applied, and becomes substantially opaque when activated by being applied with a voltage. Of course, the LCD 21 in which the activated / inactivated state and the transparent / opaque state have the opposite relationship may be used.

【0023】このように、光伝送路11-1の各くさび状
溝110の開口部にLCD21を設けた場合、当該各L
CD21の状態(非活性化/活性化状態)を切り替える
ことで、光伝送路11-1の各くさび状溝110の傾斜面
112で反射された光信号13aの通過/遮断を制御で
きることから、光学的クロスバースイッチ15を実現で
きる。
As described above, when the LCD 21 is provided at the opening of each wedge-shaped groove 110 of the optical transmission line 11-1, each L
By switching the state (deactivated / activated state) of the CD 21, it is possible to control the passage / cutoff of the optical signal 13a reflected by the inclined surface 112 of each wedge-shaped groove 110 of the optical transmission line 11-1. The crossbar switch 15 can be realized.

【0024】このような光学的クロスバースイッチ15
は、現在半導体集積回路の製造等で適用されている微細
加工技術を用いることにより、LSI等と同程度の大き
さで実現可能である。
Such an optical crossbar switch 15
Can be realized in the same size as an LSI or the like by using the fine processing technology currently applied in the manufacture of semiconductor integrated circuits.

【0025】なお本実施形態では、光伝送路11-1,1
1-2のくさび状溝110間が空気の層となっている構造
であるものとするが、これに限るものではなく、光伝送
路11-1,11-2の素材(ここでは石英ガラス)とは屈
折率が異なり且つ光を透過する媒質で満たされている構
造としても構わない。
In this embodiment, the optical transmission lines 11-1, 1
It is assumed that the structure has an air layer between the wedge-shaped grooves 110 of 1-2, but the structure is not limited to this, and the material of the optical transmission lines 11-1 and 11-2 (here, quartz glass). May have a structure in which a medium having a different refractive index and being transparent to light is filled.

【0026】また、図4の例では、光伝送路11-1のく
さび状溝110(の傾斜面112)で反射された光信号
13aを通過/遮断させるLCD21と、光伝送路11
-2の対応するくさび状溝110との間に、当該LCD2
1を通過した光信号13aを集光するレンズ(集光レン
ズ)22を設けている。この集光レンズ22を設けたこ
とで、LCD21を通過した光信号13aを、光伝送路
11-2の対応するくさび状溝110に効率良く伝搬させ
ることが可能となる。このためには、レンズ22を、そ
の光軸が光伝送路11-1のくさび状溝110(の傾斜面
112)で反射された光信号13aの中心に一致する位
置に配置することが好ましい。
In the example of FIG. 4, the LCD 21 for passing / blocking the optical signal 13a reflected by (the inclined surface 112 of) the wedge-shaped groove 110 of the optical transmission line 11-1, and the optical transmission line 11 are used.
-2 corresponding to the wedge-shaped groove 110, the LCD 2 concerned.
A lens (condensing lens) 22 that condenses the optical signal 13a that has passed through 1 is provided. By providing this condenser lens 22, it becomes possible to efficiently propagate the optical signal 13a that has passed through the LCD 21 to the corresponding wedge-shaped groove 110 of the optical transmission line 11-2. For this purpose, it is preferable to arrange the lens 22 at a position where its optical axis coincides with the center of the optical signal 13a reflected by (the inclined surface 112 of) the wedge-shaped groove 110 of the optical transmission line 11-1.

【0027】なお、図5に示すように、光伝送路11-2
の各くさび状溝110側にLCD21を設け、この光伝
送路11-2のくさび状溝110側のLCD21と光伝送
路11-1の対応するくさび状溝110(図5では省略)
との間に集光レンズ22を設けるようにしても構わな
い。
As shown in FIG. 5, the optical transmission line 11-2
An LCD 21 is provided on each wedge-shaped groove 110 side of the optical transmission line 11-2 and the corresponding wedge-shaped groove 110 of the optical transmission line 11-1 on the wedge-shaped groove 110 side (not shown in FIG. 5).
A condenser lens 22 may be provided between and.

【0028】さて、以上に述べた構造の光学的クロスバ
ースイッチ15を持つ図1の交換機には、1対1または
1対多の接続の対象となる光信号13が外部から伝送さ
れる。この光信号13は、1対1または1対多の接続
(による情報伝達)に必要な経路情報を含む。
By the way, the optical signal 13 to be connected in a one-to-one or one-to-many connection is externally transmitted to the exchange shown in FIG. 1 having the optical crossbar switch 15 having the structure described above. This optical signal 13 includes route information necessary for (information transmission by) one-to-one or one-to-many connection.

【0029】図1の交換機に外部から伝送された光信号
13は光学的クロスバースイッチ15内の1つの光伝送
路11-1の光信号入力端113に導かれると共に、電気
/光変換器16に導かれる。電気/光変換器16は、こ
の光信号13を電気信号に変換する。
The optical signal 13 transmitted from the outside to the exchange shown in FIG. 1 is guided to the optical signal input end 113 of one optical transmission line 11-1 in the optical crossbar switch 15, and the electrical / optical converter 16 is also provided. Be led to. The electric / optical converter 16 converts the optical signal 13 into an electric signal.

【0030】電気/光変換器16により変換された電気
信号は経路情報検出回路17に導かれる。経路情報検出
回路17は、この電気信号から情報伝達に必要な経路情
報(ヘッダ情報)を検出して経路設定回路18に渡す。
経路設定回路18は、この経路情報をもとに、当該経路
情報の示す1対1または1対多の接続のために(光学的
クロスバースイッチ15内の)各LCD21の状態(非
活性化/活性化状態)を切り替える制御信号を生成し、
各LCD21を制御する(実際には、他の光伝送路11
-1に同時に入光する別の光信号についての1対1または
1対多の接続のための制御も同時に行われる)。
The electrical signal converted by the electrical / optical converter 16 is guided to the route information detection circuit 17. The route information detection circuit 17 detects route information (header information) necessary for information transmission from this electric signal and passes it to the route setting circuit 18.
Based on this route information, the route setting circuit 18 makes a state (inactivation / deactivation) of each LCD 21 (in the optical crossbar switch 15) for one-to-one or one-to-many connection indicated by the route information. Generate a control signal to switch the activation state,
Controls each LCD 21 (actually, another optical transmission line 11
The control for one-to-one or one-to-many connection for another optical signal that simultaneously enters -1 is also performed).

【0031】すると、光信号13が入光された光伝送路
11-1は、上記経路情報の示す1つまたは複数の光伝送
路11-2と光学的に結合される。この結果、光伝送路1
1-1上の光信号13は、当該光伝送路11-1と結合され
た1つまたは複数の光伝送路により、光信号14として
外部に伝搬される。
Then, the optical transmission line 11-1 into which the optical signal 13 is input is optically coupled to one or a plurality of optical transmission lines 11-2 indicated by the route information. As a result, the optical transmission line 1
The optical signal 13 on 1-1 is propagated to the outside as an optical signal 14 by one or a plurality of optical transmission lines coupled to the optical transmission line 11-1.

【0032】なお、前記実施形態では、光伝送路11-1
のくさび状溝110の傾斜面112の角度を45度とし
て、当該光伝送路11-1により伝搬される光信号の一部
を平面12-1に垂直な方向に反射させる場合について説
明したが、45度以外の傾斜面112として、平面12
-1に対して斜め方向に反射させるようにしても構わな
い。但し、この反射光が光伝送路11-2により伝搬され
るように、当該光伝送路11-2側のくさび状溝110の
傾斜面112の角度を設定する必要がある。また、くさ
び状溝110の列からなる光伝送路11-1,110-2に
代えて、例えば光を進行方向に沿ってそのまま通過させ
ると共に、一部を反射または屈折させて方向を代えるプ
リズム等の突起部の列からなる光伝送路を用いることも
可能である。
In the above embodiment, the optical transmission line 11-1 is used.
The case where the angle of the inclined surface 112 of the wedge-shaped groove 110 is 45 degrees and a part of the optical signal propagated through the optical transmission line 11-1 is reflected in the direction perpendicular to the plane 12-1 has been described. As the inclined surface 112 other than 45 degrees, the flat surface 12
The reflection may be performed in an oblique direction with respect to -1. However, it is necessary to set the angle of the inclined surface 112 of the wedge-shaped groove 110 on the optical transmission line 11-2 side so that the reflected light is propagated through the optical transmission line 11-2. Further, instead of the optical transmission paths 11-1 and 110-2 formed of rows of the wedge-shaped grooves 110, for example, a prism or the like that allows light to pass therethrough as it is along the traveling direction and reflects or refracts a part of the light to change its direction. It is also possible to use an optical transmission line consisting of a row of protrusions.

【0033】また、前記実施形態では、本発明(の光学
的接続装置)を交換機に適用した場合について説明した
が、FPGAや並列計算機などにおける1入力点につき
1対1及び1対多の接続にも適用可能である。
Further, in the above embodiment, the case where (the optical connection device of) the present invention is applied to the exchange has been described. However, in the one-to-one connection and the one-to-many connection per one input point in the FPGA or the parallel computer. Is also applicable.

【0034】[0034]

【発明の効果】以上詳述したように本発明によれば、1
入力点につき、1対1または1対多の光学的接続が実現
できるため、信号伝送の遅延が極めて小さく、またファ
ンアウト数が増えても遅延が増加しないため、大規模な
接続装置を容易に実現できる。また、光伝送路に光ファ
イバと同様の素材を用いて形成できるため、比較的安価
に実現できる。
As described above in detail, according to the present invention, 1
Since one-to-one or one-to-many optical connection can be realized for each input point, the delay of signal transmission is extremely small, and the delay does not increase even if the number of fanouts increases, facilitating large-scale connection device. realizable. Further, since the same material as that of the optical fiber can be used for the optical transmission line, it can be realized at a relatively low cost.

【0035】また本発明によれば、第1の光伝送路と第
2の光伝送路との間のくさび状溝を介しての光学的接続
の切り替えが動的に行え、しかも光学的な接続切り替え
であることから、動的に接続が変化する場合でも、発熱
量が少なくて済む。
Further, according to the present invention, the optical connection can be dynamically switched through the wedge-shaped groove between the first optical transmission line and the second optical transmission line, and the optical connection can be made. Since the switching is performed, the amount of heat generated can be small even when the connection dynamically changes.

【0036】また本発明によれば、第1の光伝送路のく
さび状溝で進路を第2の光伝送路のくさび状溝の側に曲
げられた光(反射光)を集光するレンズを設けること
で、この進路を曲げられた光を効率良く第2の光伝送路
側に伝えることができる。
Further, according to the present invention, there is provided a lens for condensing light (reflected light) whose course is bent in the wedge-shaped groove of the first optical transmission line to the side of the wedge-shaped groove of the second optical transmission line. By providing the light, the light whose path is bent can be efficiently transmitted to the second optical transmission path side.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る光学的接続装置を備
えた交換機の全体構成を示す図。
FIG. 1 is a diagram showing an overall configuration of an exchange equipped with an optical connection device according to an embodiment of the present invention.

【図2】同実施形態における光伝送路11-i(i=1,
2)の構造を示す図。
FIG. 2 is an optical transmission line 11-i (i = 1, 1 in the same embodiment;
The figure which shows the structure of 2).

【図3】同実施形態における光伝送路11-1の列と光伝
送路11-2の列との位置関係、及び光伝送路11-1から
光伝送路11-2への光(光信号)の伝搬経路について説
明するための図。
FIG. 3 is a positional relationship between a row of optical transmission lines 11-1 and a row of optical transmission lines 11-2 in the same embodiment, and a light (optical signal from the optical transmission line 11-1 to the optical transmission line 11-2). 2) is a diagram for explaining a propagation path.

【図4】光伝送路11-1の各くさび状溝110の開口部
側にLCD21が設けられ、そのLCD21と光伝送路
11-2のくさび状溝110との間に集光レンズ22が設
けられている状態を示す図。
FIG. 4 shows an LCD 21 provided on the opening side of each wedge-shaped groove 110 of the optical transmission line 11-1, and a condenser lens 22 provided between the LCD 21 and the wedge-shaped groove 110 of the optical transmission line 11-2. FIG.

【図5】図4とは逆に、光伝送路11-2の各くさび状溝
110の開口部側にLCD21が設けられ、そのLCD
21と光伝送路11-1のくさび状溝110(図5では省
略)との間に集光レンズ22が設けられている状態を示
す図。
FIG. 5 is opposite to FIG. 4, and an LCD 21 is provided on the opening side of each wedge-shaped groove 110 of the optical transmission line 11-2, and the LCD 21 is provided.
FIG. 6 is a diagram showing a state in which a condenser lens 22 is provided between the optical fiber 21 and the wedge-shaped groove 110 (not shown in FIG. 5) of the optical transmission line 11-1.

【符号の説明】[Explanation of symbols]

11-1…光伝送路(第1の光伝送路)、 11-2…光伝送路(第2の光伝送路)、 12-1…平面(第1の平面)、 12-2…平面(第2の平面)、 13,13a,14…光信号、 15…光学的クロスバースイッチ(光学的接続装置)、 16…電気/光変換器、 17…経路情報検出回路、 18…経路設定回路(光スイッチ状態設定手段)、 21…LCD(液晶素子、光スイッチ手段)、 22…集光レンズ、 110…くさび状溝、 111…垂直面(第1の面)、 112…傾斜面(第2の面)、 113…光信号入力端、 114…光信号出力端。 11-1 ... Optical transmission line (first optical transmission line), 11-2 ... Optical transmission line (second optical transmission line), 12-1 ... Plane (first plane), 12-2 ... Plane ( Second plane), 13, 13a, 14 ... Optical signal, 15 ... Optical crossbar switch (optical connection device), 16 ... Electric / optical converter, 17 ... Path information detection circuit, 18 ... Path setting circuit ( Optical switch state setting means), 21 ... LCD (liquid crystal element, optical switch means), 22 ... Condensing lens, 110 ... Wedge-shaped groove, 111 ... Vertical surface (first surface), 112 ... Inclined surface (second surface) Surface), 113 ... Optical signal input end, 114 ... Optical signal output end.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光信号入力端に入光された光信号を伝送
するための第1の光伝送路であって、伝送する光信号の
進行方向に沿ってくさび状の溝が第1の間隔で形成さ
れ、当該くさび状溝が、前記光信号をそのまま通過させ
るための光進行方向に対して垂直な第1の面と当該第1
の面に対して一定の角度をなし前記光信号を通過させる
と共にその一部を反射させるための第2の面とからなる
第1の光伝送路を、第1の平面に第1の方向に第2の間
隔で複数配設する一方、 光信号を光信号出力端に伝送するための第2の光伝送路
であって、伝送する光信号の進行方向に沿ってくさび状
の溝が前記第2の間隔で形成され、当該くさび状溝が、
前記光信号をそのまま通過させるための光進行方向に対
して垂直な第1の面と当該第1の面に対して一定の角度
をなし入光する光信号の一部を当該第1の面側に反射さ
せるための第2の面とからなる第2の光伝送路を、前記
第1の平面と平行な第2の平面に前記第1の方向とは異
なる第2の方向に、前記第1及び第2の光伝送路の間で
前記第2の面同士が対向するように前記第1の間隔で複
数配設し、 前記第1の光伝送路の各くさび状溝と当該各くさび状溝
に対応する前記第2の光伝送路のくさび状溝との間に、
光信号の通過/遮断を行うための光スイッチ手段をそれ
ぞれ設けることにより、光通過状態に設定されている前
記光スイッチ手段に対応する前記第1及び第2の光伝送
路のくさび状溝の第2の面を介して当該第1及び第2の
光伝送路が光学的に接続され、前記第1の光伝送路の光
信号入力端に入光した光信号が前記第2の光伝送路の光
信号出力端に伝搬されるようにしたことを特徴とする光
学的接続装置。
1. A first optical transmission line for transmitting an optical signal incident on an optical signal input end, wherein a wedge-shaped groove has a first interval along a traveling direction of the optical signal to be transmitted. And the wedge-shaped groove is formed with
A first optical transmission line formed of a second surface for transmitting a part of the optical signal and reflecting a part thereof with respect to the surface of A second optical transmission line for transmitting an optical signal to an optical signal output end while providing a plurality of optical fibers at a second interval, wherein the wedge-shaped groove is provided along the traveling direction of the optical signal to be transmitted. 2 are formed at intervals and the wedge-shaped grooves are
A first surface perpendicular to the light traveling direction for passing the optical signal as it is, and a part of the optical signal entering at a certain angle with respect to the first surface, which is part of the first surface side. A second optical transmission line formed of a second surface for reflecting the first surface on a second plane parallel to the first plane in a second direction different from the first direction. And a plurality of the wedge-shaped grooves and the wedge-shaped grooves of the first optical transmission path are arranged at the first interval so that the second surfaces face each other between the second optical transmission paths. Between the wedge-shaped groove of the second optical transmission line corresponding to
By providing the optical switch means for passing / blocking the optical signal, respectively, the wedge-shaped grooves of the first and second optical transmission lines corresponding to the optical switch means set to the light passing state are provided. The first and second optical transmission lines are optically connected via the second surface, and the optical signal incident on the optical signal input end of the first optical transmission line is the optical signal of the second optical transmission line. An optical connection device characterized in that it is propagated to an output end of an optical signal.
【請求項2】 前記各光スイッチ手段の状態を切り替え
制御することで、前記各第1の光伝送路の光信号入力端
と前記各第2の光伝送路の光信号出力端との間の接続状
態を変化させる光スイッチ状態設定手段を更に具備する
ことを特徴とする請求項1記載の光学的接続装置。
2. By controlling the switching of the states of the respective optical switch means, between the optical signal input end of each of the first optical transmission lines and the optical signal output end of each of the second optical transmission lines. The optical connection device according to claim 1, further comprising optical switch state setting means for changing the connection state.
【請求項3】 前記光スイッチ手段が前記第1の光伝送
路側に設けられており、当該光スイッチ手段と前記第2
の光伝送路の対応するくさび状溝との間に、前記第1の
光伝送路の対応するくさび状溝の第2の面で反射して当
該光スイッチ手段を通過する光信号を集光するためのレ
ンズを更に具備することを特徴とする請求項1記載の光
学的接続装置。
3. The optical switch means is provided on the first optical transmission line side, and the optical switch means and the second optical switch means are provided.
The optical signal reflected by the second surface of the corresponding wedge-shaped groove of the first optical transmission path and passing through the optical switch means between the optical signal and the corresponding wedge-shaped groove of the optical transmission path. The optical connection device according to claim 1, further comprising a lens for
【請求項4】 前記光スイッチ手段が前記第2の光伝送
路側に設けられており、当該光スイッチ手段と前記第1
の光伝送路の対応するくさび状溝との間に、前記第1の
光伝送路の対応するくさび状溝の第2の面で反射された
光信号を集光して当該光スイッチ手段に導くためのレン
ズを更に具備することを特徴とする請求項1記載の光学
的接続装置。
4. The optical switch means is provided on the second optical transmission line side, and the optical switch means and the first optical switch means are provided.
Optical signal reflected by the second surface of the corresponding wedge-shaped groove of the first optical transmission path is condensed between the corresponding optical switch means and the corresponding wedge-shaped groove of the optical transmission path of the first optical transmission means. The optical connection device according to claim 1, further comprising a lens for
JP31316395A 1995-11-30 1995-11-30 Optical connection device Pending JPH09152571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31316395A JPH09152571A (en) 1995-11-30 1995-11-30 Optical connection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31316395A JPH09152571A (en) 1995-11-30 1995-11-30 Optical connection device

Publications (1)

Publication Number Publication Date
JPH09152571A true JPH09152571A (en) 1997-06-10

Family

ID=18037867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31316395A Pending JPH09152571A (en) 1995-11-30 1995-11-30 Optical connection device

Country Status (1)

Country Link
JP (1) JPH09152571A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006171642A (en) * 2004-12-20 2006-06-29 Sony Corp Optical waveguide sheet, optoelectronic apparatus and their manufacturing method
CN105700086A (en) * 2016-04-29 2016-06-22 宁波市樱铭电子科技有限公司 Optical fiber linker

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006171642A (en) * 2004-12-20 2006-06-29 Sony Corp Optical waveguide sheet, optoelectronic apparatus and their manufacturing method
CN105700086A (en) * 2016-04-29 2016-06-22 宁波市樱铭电子科技有限公司 Optical fiber linker

Similar Documents

Publication Publication Date Title
Jahns Planar packaging of free-space optical interconnections
US5037173A (en) Optical interconnection network
US4856863A (en) Optical fiber interconnection network including spatial light modulator
US7379636B2 (en) Optical switch
CA2221200A1 (en) Reflective optical switch
EP0350760A2 (en) Integrated electro-optic arithetic/logic unit and method for making the same
US6483961B1 (en) Dual refraction index collimator for an optical switch
US6839472B1 (en) Solid state optical interconnect system
JPH09152571A (en) Optical connection device
CA2727931A1 (en) Two-dimensional lensing arrangement for optical beam collimation and beam orientation
JP2004021072A (en) Optical switch and optical switch module
Goodwill et al. An ATM-based intelligent optical backplane using CMOS-SEED smart pixel arrays and free-space optical interconnect modules
JPH09281355A (en) Optical connector
WO2004003652A1 (en) Reflection type variable light polariscope and optical device using the polariscope
JPH0513289B2 (en)
US5235661A (en) Optical connection device of a planar type
US20030118276A1 (en) Optical switch having a retro-reflector associated therewith and a method of use thereof
RU2231816C1 (en) Multichannel optoelectronic commutation system
Lukowicz et al. Design of an opto-electronic VLSI/parallel fibre bus
Lukowicz et al. Design of an optoelectronic VLSI/parallel-fiber bus
JP3090610U (en) Optical path switching device
JPH063606A (en) Spatial light switch device
JP2002182251A5 (en)
US6430334B1 (en) System and method for refracting and deflecting light utilizing liquid crystal bars and blocks
JPH06177363A (en) Space optical connecting device