JPH09152548A - Objective - Google Patents

Objective

Info

Publication number
JPH09152548A
JPH09152548A JP7312309A JP31230995A JPH09152548A JP H09152548 A JPH09152548 A JP H09152548A JP 7312309 A JP7312309 A JP 7312309A JP 31230995 A JP31230995 A JP 31230995A JP H09152548 A JPH09152548 A JP H09152548A
Authority
JP
Japan
Prior art keywords
coefficient
order aspherical
aspherical coefficient
order
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7312309A
Other languages
Japanese (ja)
Inventor
栄悦 ▲高▼橋
Sakanobu Takahashi
Shinichi Kubo
真一 久保
Kazuyuki Futaki
和之 二木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagano Fujitsu Component Ltd
Original Assignee
Nagano Fujitsu Component Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagano Fujitsu Component Ltd filed Critical Nagano Fujitsu Component Ltd
Priority to JP7312309A priority Critical patent/JPH09152548A/en
Publication of JPH09152548A publication Critical patent/JPH09152548A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)
  • Optical Head (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide constitution of NA>=0.55 and small wavefront aberration for an aspherical objective which is used for an optical information recording and reproducing device and has both its 1st and 2nd surfaces made aspherical. SOLUTION: The 1st and 2nd surfaces 2 and 3 both satisfy Z=(h<2> / R)/(1+(1-(K+1).(h/R)<2> )<1/2> )+ah<4> +bh<6> +ch<8> +dh<10> , where Z is the distance from the vertex of curvature R along the optical axis, K a cone constant, (h) the distance from the optical axis, (a) a quadratic aspherical surface coefficient, (b) a 6th-degree aspherical surface coefficient, (c) an 8th-degree aspherical surface coefficient, and (d) a 10th-degree aspherical surface coefficient. Then R, K, (a), (b), (c), and d(d) are limited as to the 1st and 2nd surfaces 2 and 3 as specified and the ocular is molded out of an optical material (PMMA: methyl polymetacrylic resin) with an about 1.485 refractive index.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光学式情報記録再
生装置に用いられる対物レンズ、特に、所定波長の平行
光が入射する第1面と、その入射光を集束して出射させ
る第2面との双方、が非球面の無限系単レンズに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an objective lens used in an optical information recording / reproducing apparatus, particularly a first surface on which parallel light of a predetermined wavelength is incident and a second surface on which the incident light is focused and emitted. And both relate to an aspheric infinite single lens.

【0002】[0002]

【従来の技術】光学式情報記録再生装置対物レンズに
は、一般にプラスチックをモールド成形した非球面レン
ズが使用されており、それらのNA(開口数)は0.5
5未満であった。
2. Description of the Related Art As an objective lens for an optical information recording / reproducing apparatus, an aspherical lens molded of plastic is generally used, and the NA (numerical aperture) of them is 0.5.
It was less than 5.

【0003】従来の対物レンズ、例えば特開平2−26
4213号公報には、湿度および温度変化による性能変
化を少なくするため、低吸湿性プラスチック特にアモル
ファスポリオフィレンを用いた光ディスク用対物レンズ
が開示されている。かかる対物レンズは、特に湿度変化
に対し安定した性能を維持する。
A conventional objective lens, for example, JP-A-2-26
Japanese Patent No. 4213 discloses an objective lens for an optical disc using a low hygroscopic plastic, particularly amorphous polyophylene, in order to reduce the performance change due to humidity and temperature changes. Such an objective lens maintains stable performance especially against humidity changes.

【0004】従来の他の対物レンズ、例えば特開平4−
143715号公報には、NAが0.5程度であり、結
像倍率が−0.3程度と大きいにもかかわらず、レンズ
の芯厚が薄く小型かつ軽量であり、高次の非球面項を使
わない有限系の光ディスク用対物レンズが開示されてい
る。そのレンズでは、光学材料として屈折率が1.5〜
1.76のガラス又はポリカーボネイト,ポリスチレ
ン,スチレンアクリルニトリルポリマ,アモルファスポ
リオフィレン等のプチスチックを使用している。
Another conventional objective lens, for example, JP-A-4-
Japanese Patent No. 143715 discloses that although the NA is about 0.5 and the imaging magnification is as large as about -0.3, the lens core thickness is thin, and the size and weight are small. There is disclosed an unused objective lens for optical discs. The lens has an optical material with a refractive index of 1.5 to
1.76 of glass or plastic such as polycarbonate, polystyrene, styrene-acrylonitrile polymer, and amorphous polyophylene is used.

【0005】[0005]

【発明が解決しようとする課題】光学式情報記録再生装
置、特に、光磁気ディスク装置における記録情報の書込
み/読み取りに用いるため、プラスチックをモールド成
形した従来の対物レンズは、NAを0.55以上にしよ
うとすると、収差が許容限界を超えて大きくなり、性能
が損なわれるという問題点があった。
A conventional objective lens molded of plastic has a NA of 0.55 or more for use in writing / reading of recorded information in an optical information recording / reproducing apparatus, particularly a magneto-optical disk apparatus. However, there is a problem that the aberration becomes large beyond the allowable limit and the performance is impaired.

【0006】例えば特開平2−264213号公報に開
示されたレンズは、湿度変化に対し安定した性能を維持
するようになるが、NAが0.53である。さらに、ア
モルファスポリシリコンは複屈折が比較的大きいため、
そのことによって光学的特性が損なわれるようになる。
For example, the lens disclosed in Japanese Unexamined Patent Publication No. 2-264213 maintains stable performance against changes in humidity, but has an NA of 0.53. Furthermore, since amorphous polysilicon has a relatively large birefringence,
As a result, the optical characteristics are impaired.

【0007】前記特開平4−143715号公報に開示
された従来の他の有限系対物レンズは、小型かつ軽量に
することを可能にするが、NAは0.5〜0.53であ
る。さらに、そのレンズではアッベ数(57.0以下)
が低く、かつ、使用する光学材料から複屈折が大きくな
り、そのことによって光学的特性が損なわれるようにな
る。
The other conventional finite objective lens disclosed in Japanese Patent Laid-Open No. 4-143715 makes it possible to make it compact and lightweight, but the NA is 0.5 to 0.53. Furthermore, the Abbe number (57.0 or less) for that lens
Is low, and the birefringence is large depending on the optical material used, whereby the optical characteristics are impaired.

【0008】さらに、プラスチックの非球形レンズは、
溶融したプラスチックを金型内に注入するモールドによ
って成形するが、従来のレンズは成形時のゲートがレン
ズ本体に開口し、そのゲート近傍のレンズ内に発生した
内部歪が、レンズの光学的性能を部分的に損なうという
問題点もあった。
Further, the plastic aspherical lens is
Molded by injecting molten plastic into the mold, the conventional lens has a gate at the time of molding that opens in the lens body, and internal distortion generated in the lens near the gate improves the optical performance of the lens. There was also the problem of partial loss.

【0009】[0009]

【課題を解決するための手段】本発明の目的は、NAが
0.55以上の非球面対物レンズ、特に、波長が780
±20nm又は680±20nmの光源光を使用した光
学系に使用し、複屈折率が小さく,かつ,NAが0.5
5以上であり、波面収差の小さい対物レンズを提供する
ことである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an aspherical objective lens having an NA of 0.55 or more, particularly a wavelength of 780.
Used in an optical system that uses light source light of ± 20 nm or 680 ± 20 nm, has a small birefringence and an NA of 0.5.
The objective is to provide an objective lens having a number of 5 or more and a small wavefront aberration.

【0010】前記目的を達成する第1の本発明は、光源
波長が680nm±20nmの光学系用として、第1面
と第2面とが共に非球面の単レンズにおいて、該第1面
と第2面の頂点を通る光軸に直交しかつ該第1面又は第
2面の頂点を含む平面を想定し、該平面から該第1面又
は第2面の任意の点迄の距離をZ、該任意の点から該光
軸迄の距離をh、該第1面又は第2面の頂点の曲率半径
をR、該第1面又は第2面の円錐定数をK、該第1面又
は第2面の4次の非球面係数をa、該第1面又は第2面
の6次の非球面係数をb、該第1面又は第2面の8次の
非球面係数をc、該第1面又は第2面の10次の非球面
係数をdとしたとき、該第1面及び第2面が下記の数1
式で表され、
A first aspect of the present invention for achieving the above object is a single lens having an aspherical first surface and a second surface for an optical system having a light source wavelength of 680 nm ± 20 nm. Assuming a plane orthogonal to the optical axis passing through the vertices of the two surfaces and including the vertices of the first surface or the second surface, the distance from the plane to any point on the first surface or the second surface is Z, The distance from the arbitrary point to the optical axis is h, the radius of curvature of the apex of the first surface or the second surface is R, the conical constant of the first surface or the second surface is K, the first surface or the second surface. The fourth-order aspherical coefficient of the second surface is a, the sixth-order aspherical coefficient of the first surface or the second surface is b, the eighth-order aspherical coefficient of the first surface or the second surface is c, and When the tenth-order aspherical coefficient of the first surface or the second surface is d, the first surface and the second surface are expressed by the following formula 1
Represented by the formula,

【0011】[0011]

【数1】 (Equation 1)

【0012】該第1面に関し、曲率半径R1 が1.64
1〜1.643,円錐定数K1 が−0.4460〜−
0.4466,4次の非球面係数a1 が−0.334〜
−0.335×10-2,6次の非球面係数b1 が−0.
536〜−0.537×10-3,8次の非球面係数c1
0.274〜0.276×10-3,10次の非球面係数
1 が−0.777〜−0.779×10-4であり、該
第2面に関し、曲率半径R2 が−4.710〜−4.7
12,円錐定数K2が−2.194〜−2.196,4
次の非球面係数a2 が−0.2177〜−0.2179
×10-1,6次の非球面係数b2 が−0.3440〜−
0.3442×10-2,8次の非球面係数c2 が0.5
081〜0.5083×10-3,10次の非球面係数d
2 が−0.7359〜−0.7361×10-4であり、
屈折率が1.475〜1.495の光学材料を使用し、
厚さを1.3595mm〜1.3795mmとしたこと
である。
With respect to the first surface, the radius of curvature R 1 is 1.64.
1 to 1.643, the conic constant K 1 is -0.4460 to-
0.4466, fourth-order aspherical coefficient a 1 is -0.334
−0.335 × 10 −2 , 6th-order aspherical coefficient b 1 is −0.
536 to −0.537 × 10 −3 , 8th-order aspherical coefficient c 1
0.274 to 0.276 × 10 −3 , 10th-order aspherical coefficient d 1 is −0.777 to −0.779 × 10 −4 , and the radius of curvature R 2 is −4 for the second surface. .710-4.7
12, the conic constant K 2 is −2.194 to −2196,4
The following aspherical coefficient a 2 is -0.2177 to -0.2179.
× 10 −1 , 6th-order aspherical coefficient b 2 is −0.3440 to −
0.3442 × 10 -2 , 8th-order aspherical coefficient c 2 is 0.5
081-0.5083 × 10 −3 , 10th-order aspherical coefficient d
2 is −0.7359 to −0.7361 × 10 −4 ,
An optical material having a refractive index of 1.475 to 1.495 is used,
That is, the thickness is set to 1.3595 mm to 1.3795 mm.

【0013】前記目的を達成する第2の本発明は、光源
波長が680nm±20nmの光学系用として、第1面
と第2面とが共に、前記数1式で表される非球面の単レ
ンズにおいて、該第1面に関し、前記曲率半径R1
1.804〜1.806,前記円錐定数K1 が−0.4
438〜−0.4440,前記4次の非球面係数a1
−0.178〜−0.180×10-2,前記6次の非球
面係数b1 が−0.6146〜−0.6148×1
-3,前記8次の非球面係数c1 が0.2194〜0.
2196×10-3,前記10次の非球面係数d1 が−
0.9758〜−0.9760×10-4であり、該第2
面に関し、前記曲率半径R2 が−5.554〜−5.5
56,前記円錐定数K2 が0.8238〜0.824
0,前記4次の非球面係数a2 が0.1978〜0.1
980×10-1,前記6次の非球面係数b2 が−0.3
767〜−0.3769×10-2,前記8次の非球面係
数c2 が0.4880〜0.4882×10-3,前記1
0次の非球面係数d2 が−0.3760〜−0.376
2×10-4であり、屈折率が1.486〜1.488の
光学材料を使用し、厚さを1.5244mm〜1.54
44mmとしたことである。
A second aspect of the present invention that achieves the above object is that, for an optical system having a light source wavelength of 680 nm ± 20 nm, both the first surface and the second surface have an aspherical surface represented by the above formula (1). In the lens, the radius of curvature R 1 is 1.804 to 1.806, and the conic constant K 1 is −0.4 with respect to the first surface.
438 to −0.4440, the fourth-order aspherical coefficient a 1 is −0.178 to −0.180 × 10 −2 , and the sixth-order aspherical coefficient b 1 is −0.6146 to −0.6148. × 1
0 -3 , the aspherical coefficient c 1 of the 8th order is 0.2194 to 0.
2196 × 10 −3 , the tenth-order aspherical surface coefficient d 1 is −
0.9758 to −0.9760 × 10 −4 , and the second
With respect to the surface, the radius of curvature R 2 is −5.554 to −5.5.
56, the conical constant K 2 is 0.8238 to 0.824
0, the fourth-order aspherical coefficient a 2 is 0.1978 to 0.1
980 × 10 −1 , the sixth-order aspherical surface coefficient b 2 is −0.3
767 to -0.3769 × 10 -2 , the eighth-order aspherical coefficient c 2 is 0.4880 to 0.4882 × 10 -3 , and 1
The zero-order aspherical coefficient d 2 is -0.3760 to -0.376.
A 2 × 10 -4, the refractive index using optical material from 1.486 to 1.488, the thickness 1.5244mm~1.54
It is 44 mm.

【0014】さらに本発明では、前記対物レンズの外縁
部にレンズ本体と一体成形されたフランジを有する。さ
らに前記第1の本発明では、屈折率が1.486〜1.
488の光学材料として複屈折の小さいPMMA(ポリ
メタクリル酸メチル樹脂)を使用し、前記の如く第1面
と第2面の形状を限定することで、波長が780nm±
20nmの光源を使用した光学系において、NAが0.
55以上の対物レンズを提供可能にする。
Further, in the present invention, the outer peripheral portion of the objective lens has a flange integrally formed with the lens body. Furthermore, in the said 1st this invention, refractive index is 1.486-1.
By using PMMA (polymethylmethacrylate resin) having a small birefringence as an optical material of 488 and limiting the shapes of the first surface and the second surface as described above, a wavelength of 780 nm ±
In an optical system using a 20 nm light source, NA is 0.
It is possible to provide 55 or more objective lenses.

【0015】さらに前記第2の本発明では、屈折率が
1.486〜1.488の光学材料として複屈折の小さ
いPMMAを使用し、前記の如く第1面と第2面の形状
を限定することで、波長が680nm±20nmの光源
を使用した光学系において、NAが0.55以上の対物
レンズを提供可能にする。
Further, in the second aspect of the present invention, PMMA having a small birefringence is used as an optical material having a refractive index of 1.486 to 1.488, and the shapes of the first surface and the second surface are limited as described above. This makes it possible to provide an objective lens having an NA of 0.55 or more in an optical system using a light source having a wavelength of 680 nm ± 20 nm.

【0016】さらに、プラスチックをモールド成形して
なる本発明の前記対物レンズにおいて、外縁部に有する
フランジは、そのフランジにモールド成形用ゲートを開
口させることで、ゲート近傍の光学的擾乱を排除する。
Further, in the objective lens of the present invention formed by molding plastic, the flange provided on the outer edge portion eliminates the optical disturbance near the gate by opening the molding gate in the flange.

【0017】[0017]

【発明の実施の形態】図1は本発明の実施例による対物
レンズの説明図、図2は本発明の第1の実施例レンズに
おける波面収差の説明図、図3は本発明の実施例レンズ
の合焦点における光の強度分布を示す斜視図、図4は本
発明の第2の実施例レンズにおける波面収差の説明図で
ある。
FIG. 1 is an explanatory view of an objective lens according to an embodiment of the present invention, FIG. 2 is an explanatory view of wavefront aberration in the first embodiment lens of the present invention, and FIG. 3 is an embodiment lens of the present invention. FIG. 4 is a perspective view showing the light intensity distribution at the in-focus point, and FIG. 4 is an explanatory diagram of wavefront aberration in the lens of the second example of the present invention.

【0018】図1において、厚さt1 のレンズ1は、平
行光11が入射する第1面2と、入射した平行光11を
集束する第2面3とが、共に外方に凸であり、外径部か
ら厚さt2 のフランジ4が突出している。
In FIG. 1, a lens 1 having a thickness t 1 has a first surface 2 on which parallel light 11 is incident and a second surface 3 on which the incident parallel light 11 is focused, both of which are convex outward. A flange 4 having a thickness t 2 projects from the outer diameter portion.

【0019】かかるレンズ1のレンズ本体とフランジ4
は、屈折率が1.475〜1.495のプラスチックの
モールド成形により一体に成形されており、第1面2と
第2面3とは、前記数1式で表される。
The lens body of the lens 1 and the flange 4
Is integrally formed by molding a plastic having a refractive index of 1.475 to 1.495, and the first surface 2 and the second surface 3 are represented by the above-mentioned formula 1.

【0020】そこで、波長が780±20nmの光源光
を使用する光学系において、その光源光の平行光が第1
面2に入射する本発明の第1の実施例では、光軸5に対
して回転対称の非球面である第1面2に関し、 R1 =1.641〜1.643 K1 =−0.4460〜−0.4466 a1 =−0.334×10-2〜−0.335×10-21 =−0.536×10-3〜−0.537×10-31 =0.274×10-3〜0.276×10-31 =−0.777×10-4〜−0.779×10-4 とし、光軸5に対して回転対称の非球面である第2面3
に関し、 R2 =−4.710〜−4.712 K2 =−2.194〜−2.196 a2 =−0.2177×10-1〜−0.2179×10
-12 =−0.3440×10-2〜−0.3442×10
-22 =0.5081×10-3〜0.5083×10-32 =−0.7359×10-4〜−0.7361×10
-4 とする。
Therefore, in an optical system using a light source light having a wavelength of 780 ± 20 nm, the parallel light of the light source light is the first
In the first embodiment of the present invention which is incident on the surface 2, with respect to the first surface 2 which is an aspherical surface rotationally symmetric with respect to the optical axis 5, R 1 = 1.641 to 1.643 K 1 = −0. 4460 to −0.4466 a 1 = −0.334 × 10 −2 to −0.335 × 10 −2 b 1 = −0.536 × 10 −3 to −0.537 × 10 −3 c 1 = 0 and .274 × 10 -3 ~0.276 × 10 -3 d 1 = -0.777 × 10 -4 ~-0.779 × 10 -4, is an aspherical surface of rotational symmetry with respect to the optical axis 5 a 2 sides 3
Relates, R 2 = -4.710~-4.712 K 2 = -2.194~-2.196 a 2 = -0.2177 × 10 -1 ~-0.2179 × 10
−1 b 2 = −0.3440 × 10 −2 to −0.3442 × 10
-2 c 2 = 0.5081 × 10 −3 to 0.5083 × 10 −3 d 2 = −0.7359 × 10 −4 to −0.7361 × 10
-4 .

【0021】そして、屈折率が1.475〜1.495
の光学材料として、PMMAを使用した前記本発明の第
1の実施例において、レンズ1の厚さt1 は約1.37
mmであり、フランジ4の厚さt2 は0.25mmであ
り、第1面2から入射した平行光線7は第2面3から出
射し、点Pに合焦する。
The refractive index is 1.475 to 1.495.
In the first embodiment of the present invention, in which PMMA is used as the optical material, the thickness t 1 of the lens 1 is about 1.37.
mm, the thickness t 2 of the flange 4 is 0.25 mm, and the parallel rays 7 incident from the first surface 2 are emitted from the second surface 3 and are focused on the point P.

【0022】かかるレンズのRMS(二乗平均)波面収
差は図2に示す如く、即ち、(a)の入射角が0度のと
きは0.0204λ(λ:波長)程度、(b)の入射角
が0.05度のときは0.0178λ程度、(c)の入
射角が0.1度のときは0.0314λ程度となる。そ
して、波面収差をX−Y成分で表すディフォーカス値
(フォーカスポイントからのずれ)は、何れも0.00
00である。
The RMS (root mean square) wavefront aberration of such a lens is as shown in FIG. 2, that is, when the incident angle of (a) is 0 degree, it is about 0.0204λ (λ: wavelength), and the incident angle of (b) is. Is about 0.0178λ when the angle is 0.05 °, and about 0.0314λ when the incident angle of (c) is 0.1 °. The defocus value (deviation from the focus point) representing the wavefront aberration by the XY component is 0.00
00.

【0023】さらに、前記第1の実施例レンズ1におい
て、合焦点Pにおける光の強度分布は図3(a)に示す
如く極めてシャープとなり、そのスポット径は0.5μ
mである。
Further, in the lens 1 of the first embodiment, the light intensity distribution at the focal point P is extremely sharp as shown in FIG. 3 (a), and the spot diameter is 0.5 μm.
m.

【0024】そこで、第2面3に光ディスク6の裏面が
対向する如くレンズ1を配置し、光ディスク6の屈折率
が1.57,厚さt3 が1.2mmのとき、表面61に
所望情報が記録された光ディスク6の裏面と第2面3と
の間隔αを、1.2mm±0.05mmとすれば、レン
ズ1および光ディスク6を透過した波長780nm±2
0nmの透過光の焦点P′は、光ディスク6の表面61
と一致し、表面61に記録された又は記録すべき情報は
正確に記録または読み取り可能となる。
Therefore, the lens 1 is arranged so that the back surface of the optical disk 6 faces the second surface 3, and when the refractive index of the optical disk 6 is 1.57 and the thickness t 3 is 1.2 mm, the desired information is printed on the front surface 61. If the distance α between the back surface of the optical disc 6 on which is recorded and the second surface 3 is 1.2 mm ± 0.05 mm, the wavelength of 780 nm ± 2 transmitted through the lens 1 and the optical disc 6
The focus P ′ of the transmitted light of 0 nm is on the surface 61 of the optical disc 6.
And the information recorded or to be recorded on the surface 61 can be accurately recorded or read.

【0025】次に、図1,図3(b),図4を用いて本
発明の第2の実施例を説明する。波長が680±20n
mの光源光を使用する光学系において、その光源光の平
行光が第1面2に入射する本発明の第2の実施例では、
光軸5に対して回転対称の非球面である第1面2に関
し、 R1 =1.804〜1.806 K1 =−0.4438〜−0.4440 a1 =−0.178×10-2〜−0.180×10-21 =−0.6146×10-3〜−0.6148×10
-31 =0.2194×10-3〜0.2196×10-31 =−0.9758×10-4〜−0.9760×10
-4 とし、光軸5に対して回転対称の非球面である第2面3
に関し、 R2 =−5.554〜−5.556 K2 =0.8238〜0.8240 a2 =0.1978×10-1〜0.1980×10-12 =−0.3767×10-2〜−0.3769×10
-22 =0.4880×10-3〜0.4882×10-32 =−0.3760×10-4〜−0.3762×10
-4 とする。
Next, a second embodiment of the present invention will be described with reference to FIGS. 1, 3 (b) and 4. Wavelength is 680 ± 20n
In the second embodiment of the present invention in which the parallel light of the light source light is incident on the first surface 2 in the optical system using the light source light of m,
Regarding the first surface 2, which is an aspherical surface rotationally symmetric with respect to the optical axis 5, R 1 = 1.804 to 1.806 K 1 = −0.4438 to −0.4440 a 1 = −0.178 × 10 -2 ~-0.180 × 10 -2 b 1 = -0.6146 × 10 -3 ~-0.6148 × 10
-3 c 1 = 0.2194 × 10 -3 to 0.2196 × 10 -3 d 1 = -0.9758 × 10 -4 to -0.9760 × 10
-4, and the second surface 3 which is an aspheric surface rotationally symmetric with respect to the optical axis 5.
With respect to R 2 = −5.554 to −5.556 K 2 = 0.8238 to 0.8240 a 2 = 0.1978 × 10 −1 to 0.1980 × 10 −1 b 2 = −0.3767 × 10 -2 to -0.3769 x 10
-2 c 2 = 0.4880 × 10 −3 to 0.4882 × 10 −3 d 2 = −0.3760 × 10 −4 to −0.3762 × 10
-4 .

【0026】そして、屈折率が1.486〜1.488
の光学材料としてPMMAを使用した前記本発明の第2
の実施例において、レンズ1の厚さt1 は約1.524
4mm〜1.5444mmであり、フランジ4の厚さt
2 は0.28±0.05mmとする。
The refractive index is 1.486 to 1.488.
The second aspect of the present invention wherein PMMA is used as the optical material of
In this example, the thickness t 1 of the lens 1 is about 1.524.
4 mm to 1.5444 mm and the thickness t of the flange 4
2 is 0.28 ± 0.05 mm.

【0027】かかるレンズのRMS(二乗平均)波面収
差は図4に示す如く、即ち、(a)の入射角が0度のと
きは0.0230λ(λ:波長)程度、(b)の入射角
が0.05度のときは0.0197λ程度、(c)の入
射角が0.1度のときは0.0299λ程度となる。そ
して、波面収差をX−Y成分で表すディフォーカス値
(フォーカスポイントからのずれ)は、何れも0.00
00である。
The RMS (root mean square) wavefront aberration of such a lens is as shown in FIG. 4, that is, when the incident angle of (a) is 0 degree, it is about 0.0230λ (λ: wavelength), and the incident angle of (b). Is about 0.0197λ when the angle of incidence is 0.05 degree, and about 0.0299λ when the incident angle of (c) is 0.1 degree. The defocus value (deviation from the focus point) representing the wavefront aberration by the XY component is 0.00
00.

【0028】さらに、前記本発明の第2の実施例レンズ
1において、合焦点における光の強度分布は図3(b)
に示す如く極めてシャープとなり、そのスポット径は
0.5μmになる。
Further, in the lens 1 of the second embodiment of the present invention, the light intensity distribution at the focal point is shown in FIG. 3 (b).
As shown in, the spot diameter becomes extremely sharp and the spot diameter becomes 0.5 μm.

【0029】そこで、第2面3に光ディスク6の裏面が
対向する如くレンズ1を配置し、光ディスク6の屈折率
が1.57,厚さt3 が1.2mmのとき、表面61に
所望情報が記録された光ディスク6の裏面と第2面3と
の間隔αを、1.4mm±0.05mmとすれば、レン
ズ1および光ディスク6を透過した波長680nm±2
0nmの透過光の焦点P′は、光ディスク6の表面61
と一致し、表面61に記録された又は記録すべき情報は
正確に記録または読み取り可能となる。
Therefore, the lens 1 is arranged so that the rear surface of the optical disk 6 faces the second surface 3, and when the refractive index of the optical disk 6 is 1.57 and the thickness t 3 is 1.2 mm, the desired information is recorded on the front surface 61. If the distance α between the second surface 3 and the back surface of the optical disc 6 on which is recorded is 1.4 mm ± 0.05 mm, the wavelength 680 nm ± 2 transmitted through the lens 1 and the optical disc 6
The focus P ′ of the transmitted light of 0 nm is on the surface 61 of the optical disc 6.
And the information recorded or to be recorded on the surface 61 can be accurately recorded or read.

【0030】なお、前記本発明の第1及び第2の実施例
において、フランジ4は、レンズ1の固定と位置決め利
用すると共に、モールド成形でレンズ1を製造する際の
ゲートがフランジ4の外周面に開口するようにすれば、
モールド成形によるゲート近傍に発生する光学的擾乱部
がフランジ4内に収まり、レンズ本体はゲート近傍の内
部応力の影響を受けないようになる。
In the first and second embodiments of the present invention, the flange 4 is used for fixing and positioning of the lens 1, and the gate when manufacturing the lens 1 by molding is the outer peripheral surface of the flange 4. If you open it to
The optical disturbing portion generated in the vicinity of the gate due to molding is contained in the flange 4, and the lens body is not affected by the internal stress in the vicinity of the gate.

【0031】[0031]

【発明の効果】以上説明したように本発明の対物レンズ
は、NAが0.55以上となり、PMMAを使用するこ
とで複屈折が小さく、かつ、波面収差が小さくなること
で、高性能の光磁気ディスク装置用光学系を可能にす
る。
As described above, the objective lens of the present invention has an NA of 0.55 or more, and by using PMMA, the birefringence is small and the wavefront aberration is small. Enables an optical system for a magnetic disk device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例による対物レンズの説明図FIG. 1 is an explanatory diagram of an objective lens according to an embodiment of the present invention.

【図2】 本発明の第1の実施例レンズにおける波面収
差の説明図
FIG. 2 is an explanatory diagram of wavefront aberration in the lens of Example 1 of the present invention.

【図3】 本発明の実施例レンズの合焦点における光の
強度分布を示す斜視図
FIG. 3 is a perspective view showing a light intensity distribution at a focal point of an example lens of the present invention.

【図4】 本発明の第2の実施例レンズにおける波面収
差の説明図
FIG. 4 is an explanatory diagram of wavefront aberration in the lens of the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 レンズ 2 第1面 3 第2面 4 フランジ 5 光軸 6 光ディスク 61 光ディスクの表面 1 lens 2 1st surface 3 2nd surface 4 flange 5 optical axis 6 optical disk 61 optical disk surface

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 第1面と第2面とが共に非球面の単レン
ズであって、 該第1面と第2面の頂点を通る光軸に直交しかつ該第1
面又は第2面の頂点を含む平面を想定し、該平面から該
第1面又は第2面の任意の点迄の距離をZ、該任意の点
から該光軸迄の距離をh、該第1面又は第2面の頂点の
曲率半径をR、該第1面又は第2面の円錐定数をK、該
第1面又は第2面の4次の非球面係数をa、該第1面又
は第2面の6次の非球面係数をb、該第1面又は第2面
の8次の非球面係数をc、該第1面又は第2面の10次
の非球面係数をdとしたとき、該第1面及び第2面がZ
=(h2 /R)/〔1+{1−(K+1) ・(h/R)
21/2 〕+ah4+bh6+ch8+dh10 の式で表され、 該第1面に関し、曲率半径R1 が1.641〜1.64
3,円錐定数K1 が−0.4460〜−0.4466,
4次の非球面係数a1 が−0.334〜−0.335×
10-2,6次の非球面係数b1 が−0.536〜−0.
537×10-3,8次の非球面係数c1 0.274〜
0.276×10-3,10次の非球面係数d1 が−0.
777〜−0.779×10-4であり、 該第2面に関し、曲率半径R2 が−4.710〜−4.
712,円錐定数K2が−2.194〜−2.196,
4次の非球面係数a2 が−0.2177〜−0.217
9×10-1,6次の非球面係数b2 が−0.3440〜
−0.3442×10-2,8次の非球面係数c2 が0.
5081〜0.5083×10-3,10次の非球面係数
2 が−0.7359〜−0.7361×10-4であ
り、 屈折率が約1.485の光学材料を使用し、厚さが約
1.37mmであること、 を特徴とする対物レンズ。
1. A single lens in which both the first surface and the second surface are aspherical surfaces, the single lens being orthogonal to an optical axis passing through the apexes of the first surface and the second surface, and
Assuming a plane including the vertices of the surface or the second surface, the distance from the plane to an arbitrary point on the first surface or the second surface is Z, the distance from the arbitrary point to the optical axis is h, and The radius of curvature of the apex of the first surface or the second surface is R, the conical constant of the first surface or the second surface is K, the quaternary aspherical coefficient of the first surface or the second surface is a, the first The sixth-order aspherical coefficient of the surface or the second surface is b, the eighth-order aspherical coefficient of the first surface or the second surface is c, and the tenth-order aspherical coefficient of the first surface or the second surface is d. And the first and second surfaces are Z
= (H 2 / R) / [1+ {1- (K + 1) ・ (h / R)
2 } 1/2 ] + ah 4 + bh 6 + ch 8 + dh 10 and the radius of curvature R 1 is 1.641 to 1.64 with respect to the first surface.
3, the conic constant K 1 is -0.4460 to -0.4466,
Quaternary aspherical surface coefficient a 1 is -0.334 to -0.335 ×
10 −2 , 6th-order aspherical coefficient b 1 is −0.536 to −0.
537 × 10 −3 , 8th-order aspherical coefficient c 1 0.274-
0.276 × 10 −3 , 10th-order aspherical coefficient d 1 is −0.
777 to −0.779 × 10 −4 , and the radius of curvature R 2 of the second surface is −4.710 to −4.
712, the conic constant K 2 is −2.194 to −2196,
The fourth-order aspherical coefficient a 2 is -0.2177 to -0.217.
9 × 10 −1 , 6th-order aspherical coefficient b 2 is −0.3440
−0.3442 × 10 −2 , 8th-order aspherical coefficient c 2 is 0.
5081 to 0.5083 × 10 −3 , 10th-order aspherical coefficient d 2 is −0.7359 to −0.7361 × 10 −4 , and an optical material having a refractive index of about 1.485 is used. Is about 1.37 mm.
【請求項2】 第1面と第2面とが共に、請求項1記載
の式で表される非球面の単レンズであって、 該第1面に関し、前記曲率半径R1 が1.804〜1.
806,前記円錐定数K1 が−0.4438〜−0.4
440,前記4次の非球面係数a1 が−0.178〜−
0.180×10-2,前記6次の非球面係数b1 が−
0.6146〜−0.6148×10-3,前記8次の非
球面係数c1 が0.2194〜0.2196×10-3
前記10次の非球面係数d1 が−0.9758〜−0.
9760×10-4であり、 該第2面に関し、前記曲率半径R2 が−5.554〜−
5.556,前記円錐定数K2 が0.8238〜0.8
240,前記4次の非球面係数a2 が0.1978〜
0.1980×10-1,前記6次の非球面係数b2 が−
0.3767〜−0.3769×10-2,前記8次の非
球面係数c2 が0.4880〜0.4882×10-3
前記10次の非球面係数d2 が−0.3760〜−0.
3762×10-4であり、 屈折率が約1.487の光学材料を使用し、厚さが約
1.535mmであること、 を特徴とする対物レンズ。
2. A single lens having an aspherical surface, wherein both the first surface and the second surface are represented by the formula of claim 1, wherein the radius of curvature R 1 is 1.804. ~ 1.
806, the conical constant K 1 is -0.4438 to -0.4
440, the fourth-order aspherical coefficient a 1 is −0.178 to −
0.180 × 10 −2 , the aspherical coefficient b 1 of the 6th order is −
0.6146 to −0.6148 × 10 −3 , the eighth-order aspherical coefficient c 1 is 0.2194 to 0.2196 × 10 −3 ,
The tenth-order aspherical surface coefficient d 1 is −0.9758 to −0.
9760 × 10 −4 , and with respect to the second surface, the radius of curvature R 2 is −5.554 to −
5.556, the conical constant K 2 is 0.8238 to 0.8
240, the fourth-order aspherical coefficient a 2 is 0.1978 to
0.1980 × 10 −1 , the sixth-order aspherical surface coefficient b 2 is −
0.3767 to -0.3769 × 10 -2 , the eighth-order aspherical coefficient c 2 is 0.4880 to 0.4882 × 10 -3 ,
The tenth-order aspherical surface coefficient d 2 is −0.3760 to −0.
An objective lens, which is 3762 × 10 −4 , uses an optical material having a refractive index of about 1.487, and has a thickness of about 1.535 mm.
【請求項3】 請求項1又は2記載の対物レンズにおい
て、外縁部から突出するフランジが一体に形成されてな
ること、 を特徴とする対物レンズ。
3. The objective lens according to claim 1, wherein a flange protruding from an outer edge portion is integrally formed.
【請求項4】 波長が780nm±20nmの平行光が
請求項1記載の第1面に入射し、その入射光を集束して
出射させる請求項1記載の第2面が、屈折率が1.5
7,厚さが1.2mmであって表面に所望情報が記録さ
れたの光ディスクの裏面と、1.2±0.05mmの間
隔で対向するように配設されてなること、 を特徴とする請求項1記載の対物レンズ。
4. The second surface according to claim 1, wherein parallel light having a wavelength of 780 nm ± 20 nm is incident on the first surface according to claim 1, and the incident light is focused and emitted. 5
7. It is arranged so as to face the back surface of an optical disk having a thickness of 1.2 mm and desired information recorded on the front surface at an interval of 1.2 ± 0.05 mm. The objective lens according to claim 1.
【請求項5】 波長が680nm±20nmの平行光が
請求項2記載の第1面に入射し、その入射光を集束して
出射させる請求項2記載の第2面が、屈折率が1.5
7,厚さが1.2mmであって表面に所望情報が記録さ
れたの光ディスクの裏面と、1.4±0.05mmの間
隔で対向するように配設されてなること、 を特徴とする請求項2記載の対物レンズ。
5. The second surface according to claim 2, wherein parallel light having a wavelength of 680 nm ± 20 nm is incident on the first surface according to claim 2, and the incident light is focused and emitted, and the second surface has a refractive index of 1. 5
7. It is arranged so as to face the back surface of the optical disk having a thickness of 1.2 mm and desired information recorded on the front surface at an interval of 1.4 ± 0.05 mm. The objective lens according to claim 2.
【請求項6】 請求項1又は2記載の光学材料が、ポリ
メタクリル酸メチル(PMMA)であること、 を特徴とする請求項1又は2記載の対物レンズ。
6. The objective lens according to claim 1 or 2, wherein the optical material according to claim 1 or 2 is polymethyl methacrylate (PMMA).
JP7312309A 1995-11-30 1995-11-30 Objective Pending JPH09152548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7312309A JPH09152548A (en) 1995-11-30 1995-11-30 Objective

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7312309A JPH09152548A (en) 1995-11-30 1995-11-30 Objective

Publications (1)

Publication Number Publication Date
JPH09152548A true JPH09152548A (en) 1997-06-10

Family

ID=18027702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7312309A Pending JPH09152548A (en) 1995-11-30 1995-11-30 Objective

Country Status (1)

Country Link
JP (1) JPH09152548A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098890A (en) * 2000-09-26 2002-04-05 Sony Corp Optical lens, and optical pickup device and optical disk unit using optical lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098890A (en) * 2000-09-26 2002-04-05 Sony Corp Optical lens, and optical pickup device and optical disk unit using optical lens
JP4654500B2 (en) * 2000-09-26 2011-03-23 ソニー株式会社 Optical lens and optical pickup device and optical disk device using the same

Similar Documents

Publication Publication Date Title
JPH087329B2 (en) Optical system for recording and reproducing optical information
US6055113A (en) Optical pickup and an optical pickup objective lense assembling method
JP2003337281A (en) Objective lens for optical pickup
JP2641514B2 (en) Single group objective lens
US4525040A (en) Lens system for optical recording type disks
US20050232121A1 (en) Refracting objective optical system and optical recording/reproducing device using the same
US4258981A (en) Reproducing objective for video disks
JPH0314324B2 (en)
JP3704833B2 (en) Objective lens and recording / reproducing apparatus
JP3333473B2 (en) Zoom lens
JP2000066095A (en) Image pickup lens
US4684221A (en) Graded refractive index single lens system
JPH0428282B2 (en)
JPH09152548A (en) Objective
JP2000162503A (en) Reflection micro-optical system
US6078431A (en) Object lens system
JP2010244035A (en) Object lens
US4964703A (en) Image-forming lens
JP2000180717A (en) Objective lens for high-density optical recording medium
JP2727373B2 (en) Finite system large aperture imaging lens
JPH0664231B2 (en) Finite power lens for optical head
JPS63163318A (en) Condenser lens
JPH01244421A (en) Anamorphic single lens and optical disk device
JPS593724B2 (en) Inhomogeneous refractive index lens
JPH02106709A (en) Aspherical objective lens