JPH09152382A - Magnetostriction type torque sensor - Google Patents

Magnetostriction type torque sensor

Info

Publication number
JPH09152382A
JPH09152382A JP33830795A JP33830795A JPH09152382A JP H09152382 A JPH09152382 A JP H09152382A JP 33830795 A JP33830795 A JP 33830795A JP 33830795 A JP33830795 A JP 33830795A JP H09152382 A JPH09152382 A JP H09152382A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic anisotropy
torque sensor
magnetostrictive
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33830795A
Other languages
Japanese (ja)
Inventor
Iwao Sasaki
巌 佐々木
Mitsuaki Ikeda
満昭 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP33830795A priority Critical patent/JPH09152382A/en
Publication of JPH09152382A publication Critical patent/JPH09152382A/en
Pending legal-status Critical Current

Links

Landscapes

  • Power Steering Mechanism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetostriction type torque sensor without output variation due to bending by varying the output sensitivity of a sensor so that the output of a distorsion sensor due to the bending of first and second magnetic anisotropy parts may become equivalent. SOLUTION: A first magnetic anisotropy part 21 is formed by a groove 211 and a second magnetic anisotropy part 22 is formed by a groove 212, and the length in axial direction of the groove 211 far away from the axis end of a rotary axis 1 is made shorter than that of the groove 212 close to the axis end. The larger the length in axial length direction of magnetic anisotropy is, the larger the torque inducing magnetic anisotropy in comparison with its shape anisotropy, and the output is increased thereby. Therefore, the respective lengths of grooves are adjusted so that the output due to the bending of the first and second magnetic anisotropy parts 21 and 22 may become equivalent, thereby reducing a change in output value against an applied load.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁性体の逆磁歪効
果を利用した非接触式トルクセンサに関するもので、と
くに例えばロボット、工作機械などの回転駆動系の回転
軸のトルクを検出するトルクセンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact type torque sensor utilizing a reverse magnetostriction effect of a magnetic material, and more particularly to a torque sensor for detecting a torque of a rotary shaft of a rotary drive system of, for example, a robot or a machine tool. About.

【0002】[0002]

【従来の技術】従来、回転駆動系を有するロボットやマ
ニピュレータおよび工作機械の制御に、非接触で、かつ
小形のトルクセンサが要求されている。このようなトル
クセンサには種々方式があるが、非接触で小形化に有利
な方式として磁歪式トルクセンサがある(例えば、特開
平5−72064号)。これは、磁性体に力が印加され
ると、磁性体の透磁率が変わるという逆磁歪効果を利用
してトルク検出を行うものである。例えば図8に示すよ
うに、磁歪合金材からなる回転軸1の表面に回転軸長の
方向と角度をなし、互いに反対方向に傾斜した溝を設け
て、磁気異方性を付与した第1および第2の磁気異方性
部21、22を設け、第1および第2の磁気異方性部に
同心円上にそれぞれ一定のギャップを保って巻回した励
磁コイル31、32および検出コイル41、42または
励磁・検出コイルを巻回した磁気ヘッド(図示しない)
と、励磁コイルに励磁電流を通電する励磁回路(図示せ
ず)とを備え、検出コイル41、42からの信号により
回転軸1に加えられたトルクを検出するようにしてあ
る。回転軸1にトルクを印加すると、印加トルクに伴う
第1および第2の磁気異方性部21、22の磁気異方性
による透磁率の変化はそれぞれ第1および第2の検出コ
イル41、42のインピーダンス変化として検出され
る。このインピーダンス変化をトルクに換算してトルク
出力を発生する。この構成では、差動構造となり、ノイ
ズや温度に対する影響が少なく、また、一つの磁気異方
性部と一つのコイルのみを用いる場合に比べて、同一ト
ルクに対する出力出力感度が大きくなる。
2. Description of the Related Art Conventionally, a non-contact and small torque sensor has been required for controlling a robot, a manipulator, and a machine tool having a rotary drive system. There are various methods for such a torque sensor, but there is a magnetostrictive torque sensor as a method which is non-contact and advantageous for downsizing (for example, Japanese Patent Laid-Open No. 5-72064). In this method, torque is detected by utilizing the inverse magnetostriction effect that the magnetic permeability of the magnetic material changes when a force is applied to the magnetic material. For example, as shown in FIG. 8, the surface of the rotating shaft 1 made of a magnetostrictive alloy material is provided with grooves that are angled with respect to the direction of the rotating shaft length and are inclined in directions opposite to each other. Excitation coils 31 and 32 and detection coils 41 and 42, which are provided with second magnetic anisotropy portions 21 and 22 and are wound around the first and second magnetic anisotropic portions concentrically with a constant gap, respectively. Or a magnetic head (not shown) around which an excitation / detection coil is wound
And an exciting circuit (not shown) for supplying an exciting current to the exciting coil, and the torque applied to the rotating shaft 1 is detected by the signals from the detecting coils 41 and 42. When a torque is applied to the rotating shaft 1, changes in the magnetic permeability due to the magnetic anisotropy of the first and second magnetic anisotropy portions 21 and 22 associated with the applied torque change in the first and second detection coils 41 and 42, respectively. Is detected as a change in impedance. This impedance change is converted into torque to generate a torque output. With this configuration, a differential structure is provided, which has little effect on noise and temperature, and the output output sensitivity with respect to the same torque is greater than that when only one magnetic anisotropic portion and one coil are used.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記従来技
術では、回転軸に負荷を付加する際に発生する曲げ応力
による出力変化が大きいという問題があった。これは、
回転軸1の片側に負荷を付加したときに、第1の磁気異
方性部21と第2の磁気異方性部22の曲げモーメント
がアンバランスしていることに起因している。このアン
バランスは、回転軸1を支持する構造および負荷を与え
る構成により異なるが、負荷を回転軸1の片側に付加す
る場合、あるいは両側に付加してもその大きさが異なる
場合には必ず発生する。本発明は、回転軸に曲げ応力を
生じさせた際にも出力変動が発生しない磁歪式トルクセ
ンサを提供することを目的とするものである。
However, in the above-mentioned conventional technique, there is a problem that the output change is large due to bending stress generated when a load is applied to the rotary shaft. this is,
This is because the bending moments of the first magnetic anisotropic portion 21 and the second magnetic anisotropic portion 22 are unbalanced when a load is applied to one side of the rotating shaft 1. This imbalance varies depending on the structure for supporting the rotating shaft 1 and the structure for applying the load, but it always occurs when the load is added to one side of the rotating shaft 1 or when the load is added to both sides and the size is different. To do. It is an object of the present invention to provide a magnetostrictive torque sensor in which output fluctuation does not occur even when bending stress is generated on a rotating shaft.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、回転軸の表面に軸長方向に対して傾斜角
を持った複数のパターンで形成され、軸端から遠い位置
に設けた第1の磁気異方性部と、前記第1の磁気異方性
部と反対方向に傾斜し、かつ前記第1の磁気異方性部よ
り軸端に近い位置に設けた第2の磁気異方性部と、前記
第1および第2の磁気異方性部に同心円上に配置した励
磁コイルおよび検出コイルと、前記励磁コイルに励磁電
流を通電する励磁回路とを備え、前記検出コイルからの
信号により前記回転軸に加えられたトルクを検出する磁
歪式トルクセンサにおいて、前記第1の磁気異方性部の
出力感度を前記第2の磁気異方性部の出力感度より小さ
くしたものである。具体的に第1の手段として、磁歪合
金材の回転軸の表面に形成した溝、または回転軸の表面
に形成した磁歪膜からなる、前記第1の磁気異方性部の
軸方向長さを前記第2の磁気異方性部の軸方向長さより
短くしたものである。第2の手段として、前記第2の磁
気異方性部の出力が最大のとき、磁歪合金材の回転軸の
表面に形成した溝、または回転軸の表面に形成した磁歪
膜からなる、前記第1の磁気異方性部の軸長方向となす
角度は、前記第2の磁気異方性部の軸長方向となす角度
と異なる角度としたものである。第3の手段として、磁
歪合金材の回転軸の表面に形成した前記第1の磁気異方
性部の第1の溝の本数を前記第2の磁気異方性部の第2
の溝の本数より少なくしたものである。第4の手段とし
て、回転軸の表面に形成した磁歪膜からなる前記第1の
磁気異方性部の膜厚を前記第2の磁気異方性の膜厚より
薄くしたものである。第5の手段として、回転軸の表面
に形成した磁歪膜からなる前記第1の磁気異方性部の磁
歪膜の枚数を前記第2の磁気異方性の磁歪膜の枚数より
少なくしたものである。第6の手段として、回転軸の表
面に形成した磁歪膜からなる前記第1の磁気異方性部の
幅を前記第2の磁気異方性の幅より狭くしたものであ
る。
In order to solve the above-mentioned problems, the present invention provides a plurality of patterns formed on the surface of a rotary shaft with an inclination angle with respect to the axial direction and provided at a position far from the shaft end. A first magnetic anisotropy portion and a second magnetic anisotropy portion that is inclined in a direction opposite to the first magnetic anisotropy portion and is located closer to the axial end than the first magnetic anisotropic portion. An anisotropic part, an exciting coil and a detecting coil concentrically arranged in the first and second magnetic anisotropic parts, and an exciting circuit for supplying an exciting current to the exciting coil, the detecting coil In the magnetostrictive torque sensor for detecting the torque applied to the rotating shaft by the signal of, the output sensitivity of the first magnetic anisotropy section is made smaller than the output sensitivity of the second magnetic anisotropy section. is there. Specifically, as a first means, the axial length of the first magnetic anisotropy portion formed of a groove formed on the surface of the rotating shaft of the magnetostrictive alloy material or a magnetostrictive film formed on the surface of the rotating shaft is set. The length is shorter than the axial length of the second magnetic anisotropic portion. As a second means, when the output of the second magnetic anisotropy portion is maximum, the magnetostrictive alloy material comprises a groove formed on the surface of the rotating shaft or a magnetostrictive film formed on the surface of the rotating shaft. The angle formed by the first magnetic anisotropic portion with the axial direction is different from the angle formed by the second magnetic anisotropic portion with the axial direction. As a third means, the number of the first grooves of the first magnetic anisotropy portion formed on the surface of the rotating shaft of the magnetostrictive alloy material is equal to the number of the second grooves of the second magnetic anisotropy portion.
The number is less than the number of grooves. As a fourth means, the film thickness of the first magnetic anisotropy portion formed of a magnetostrictive film formed on the surface of the rotating shaft is made thinner than the film thickness of the second magnetic anisotropy. As a fifth means, the number of the magnetostrictive films of the first magnetic anisotropy portion formed of the magnetostrictive film formed on the surface of the rotating shaft is made smaller than the number of the magnetostrictive films of the second magnetic anisotropy. is there. As a sixth means, the width of the first magnetic anisotropy portion formed of a magnetostrictive film formed on the surface of the rotating shaft is made narrower than the width of the second magnetic anisotropy.

【0005】[0005]

【発明の実施の形態】以下、本発明の磁歪式トルクセン
サの原理および作用を説明する。磁歪式トルクセンサで
は、回転軸に印加した負荷に伴って生じる歪みに応じて
磁歪合金材からなる磁気異方性部の磁化ベクトル(大き
さがM、軸長方向からの傾きθ)の回転が発生し、回転
軸の軸長の方向の変化となり、その変化量が透磁率の変
化となり、出力に反映される。すなわち、歪みが印加さ
れる前の磁化ベクトルの軸長方向からの傾きがθであ
り、歪みが印加された後の磁化ベクトルの軸長方向から
の傾きがθ’とすると、磁化ベクトルの大きさは、 M(cosθ−cosθ’) となって透磁率変化に反映し、出力変化となる。上記構
成で、差動構成をとるため、回転軸の表面に回転軸長の
方向と角度をなし、互いに反対方向に傾斜して第1およ
び第2の磁気異方性部を形成し、トルク印加に伴う透磁
率の変化を得るようにしている。特定方向のトルクが印
加されたとき、磁化ベクトルの回転はそれぞれ同じ方向
となる。つまり、第1の磁気異方性部の磁化ベクトルの
回転が右回りであれば、第2の磁気異方性部の磁化ベク
トルの回転も右回りとなる。しかし、曲げによる歪みの
場合はトルクの場合と異なり、曲げにより磁化ベクトル
の回転は対向してそれぞれ逆方向となる。これは、曲げ
モーメントが同じであれば磁化ベクトルの回転量は同じ
であるので、差動をとってキャンセルできる。そこで、
曲げによる歪みの大きい方の出力を、曲げによる歪みの
小さい方の出力に比べて小さくし、曲げによる歪みの小
さい方の出力と同じにすればよい。
BEST MODE FOR CARRYING OUT THE INVENTION The principle and operation of the magnetostrictive torque sensor of the present invention will be described below. In the magnetostrictive torque sensor, the rotation of the magnetization vector (magnitude M, inclination θ from the axial direction) of the magnetic anisotropy portion made of a magnetostrictive alloy material is rotated in accordance with the strain caused by the load applied to the rotation shaft. The change occurs in the direction of the axial length of the rotating shaft, and the change amount changes the magnetic permeability and is reflected in the output. That is, assuming that the inclination of the magnetization vector from the axial direction before the strain is applied is θ and the inclination from the axial direction of the magnetization vector after the distortion is applied is θ ′, the magnitude of the magnetization vector is Becomes M (cos [theta] -cos [theta] ') and is reflected in the change in magnetic permeability, resulting in an output change. In the above configuration, since the differential configuration is adopted, the surface of the rotary shaft forms an angle with the direction of the rotary shaft length, and the first and second magnetic anisotropic portions are formed by inclining in directions opposite to each other, and torque is applied. The change in magnetic permeability due to When the torque in a specific direction is applied, the rotations of the magnetization vectors are in the same direction. That is, when the rotation of the magnetization vector of the first magnetic anisotropic portion is clockwise, the rotation of the magnetization vector of the second magnetic anisotropic portion is also clockwise. However, in the case of strain due to bending, unlike in the case of torque, the rotation of the magnetization vector is opposite to each other due to bending. This is because if the bending moment is the same, the amount of rotation of the magnetization vector is the same, so it can be canceled by taking a differential. Therefore,
The output with the larger strain due to bending may be smaller than the output with the smaller strain due to bending, and may be the same as the output with the smaller strain due to bending.

【0006】このように、軸方向に並べて配置した第1
および第2の磁気異方性部を形成した歪み式トルクセン
サで、第1および第2の磁気異方性部の軸方向出力感度
を調整することによって、第1の磁気異方性部と第2の
磁気異方性部の曲げによる出力を同じにすることができ
る。上記具体的第1の手段では、磁気異方性部の軸長方
向長さを長くするほど、トルク誘起磁気異方性が形状異
方性に比べて大きくなり、出力が増加することを利用
し、回転軸の軸端から遠い位置にある第1の磁気異方性
部の軸方向長さを、第1の磁気異方性部より回転軸の軸
端に近い位置にある第2の磁気異方性部の軸方向長さよ
り短くし、第1の磁気異方性部と第2の磁気異方性部の
曲げによる出力を同じになるように調整する。これによ
り、第1の磁気異方性部と第2の磁気異方性部の曲げに
よる出力は同じになり、差動によりキャンセルできる。
上記具体的第2の手段では、磁気異方性部の軸長方向と
なす角度を僅かに変化させると、トルク誘導磁気異方性
と形状異方性とのバランスに従い、出力が変化すること
を利用し、曲げによる歪みの大きい第1の磁気異方性部
の軸長方向となす角度を第2の磁気異方性部の軸長方向
となす角度より僅かに変化させ、第1の磁気異方性部と
第2の磁気異方性部の曲げによる出力を同じになるよう
に調整する。上記具体的第3の手段では、磁気異方性部
のパターンの本数が多いほど出力値が多くなるとを利用
し、回転軸の軸端から遠い位置にある第1の溝の本数を
第2の溝の本数より少なくすることにより、第1の磁気
異方性部のパターンの本数を第2の磁気異方性部のパタ
ーンの本数より少なくし、第1の磁気異方性部と第2の
磁気異方性部の曲げによる出力を同じになるように調整
する。また、上記具体的第4の手段では、磁気異方性部
を磁歪膜によって形成したとき、磁歪膜の膜厚の増加に
したがって透磁率の変化が大きく、出力値が増加するこ
とを利用し、曲げによる歪みの大きい第1の磁気異方性
部の膜厚を第2の磁気異方性の膜厚より薄くし、第1の
磁気異方性部と第2の磁気異方性部の曲げによる出力を
同じになるように調整する。また、上記具体的第5の手
段では、磁気異方性部を磁歪膜によって形成したとき、
磁歪膜の枚数が増加するにしたがって透磁率の変化が大
きくなることを利用し、曲げによる歪みの大きい第1の
磁気異方性部の磁歪膜の枚数を第2の磁気異方性の磁歪
膜の枚数より少なくし、第1の磁気異方性部と第2の磁
気異方性部の曲げによる出力を同じになるように調整す
る。さらに、上記具体的第6の手段では、磁気異方性部
の磁歪膜の幅が増加するにしたがって透磁率の変化が大
きく、出力値が増加することを利用し、曲げによる歪み
の大きい第1の磁気異方性部の幅を第2の磁気異方性の
幅より狭くし、第1の磁気異方性部と第2の磁気異方性
部の曲げによる出力を同じになるように調整する。
As described above, the first members arranged side by side in the axial direction
And a strain type torque sensor in which the second magnetic anisotropy portion is formed, by adjusting the axial output sensitivities of the first and second magnetic anisotropy portions, The same output can be obtained by bending the two magnetic anisotropic portions. In the concrete first means, the torque-induced magnetic anisotropy becomes larger than the shape anisotropy as the length of the magnetic anisotropy portion in the axial direction increases, and the output increases. , The axial length of the first magnetic anisotropy portion located far from the axial end of the rotating shaft is set to the second magnetic anisotropy portion located closer to the axial end of the rotating shaft than the first magnetic anisotropic portion. The length is made shorter than the axial length of the anisotropic portion, and the outputs due to bending of the first magnetic anisotropic portion and the second magnetic anisotropic portion are adjusted to be the same. As a result, the outputs due to bending of the first magnetic anisotropic portion and the second magnetic anisotropic portion become the same, and can be canceled by the differential.
In the concrete second means, the output is changed in accordance with the balance between the torque-induced magnetic anisotropy and the shape anisotropy when the angle formed by the magnetic anisotropy portion and the axial direction is slightly changed. By using the first magnetic anisotropy portion, the angle formed with the axial length direction of the first magnetic anisotropic portion having a large strain due to bending is slightly changed from the angle formed with the axial length direction of the second magnetic anisotropic portion. The outputs of the bending of the anisotropic portion and the second magnetic anisotropic portion are adjusted to be the same. In the concrete third means, the output value increases as the number of patterns of the magnetic anisotropy portion increases, and the number of the first grooves located far from the shaft end of the rotary shaft is set to the second value. By making the number of grooves smaller than that of the first magnetic anisotropic portion, the number of patterns of the first magnetic anisotropic portion is made smaller than the number of patterns of the second magnetic anisotropic portion. The output by bending the magnetic anisotropy part is adjusted to be the same. Further, in the above-mentioned fourth specific means, when the magnetic anisotropy portion is formed of a magnetostrictive film, the change in permeability is large as the film thickness of the magnetostrictive film is increased, and the output value is increased, The thickness of the first magnetic anisotropy portion having a large strain due to bending is made thinner than the thickness of the second magnetic anisotropy portion, and the bending of the first magnetic anisotropy portion and the second magnetic anisotropy portion is performed. Adjust the output to be the same. Further, in the above-mentioned concrete fifth means, when the magnetic anisotropic portion is formed of a magnetostrictive film,
Taking advantage of the fact that the change in magnetic permeability increases as the number of magnetostrictive films increases, the number of magnetostrictive films in the first magnetic anisotropy portion having a large strain due to bending is changed to the magnetostrictive film having the second magnetic anisotropy. And the output by bending the first magnetic anisotropy portion and the second magnetic anisotropy portion are adjusted to be the same. Further, in the above-mentioned sixth specific means, the fact that the change in magnetic permeability increases as the width of the magnetostrictive film in the magnetic anisotropy portion increases and the output value increases is utilized. The width of the magnetic anisotropy part of is made narrower than the width of the second magnetic anisotropy, and the outputs by bending the first magnetic anisotropy part and the second magnetic anisotropy part are adjusted to be the same. To do.

【0007】以下、本発明を図に示す具体的実施例につ
いて説明する。図1は本発明の第1の実施例を示す正面
図である。図において、1はマルエージング鋼などの磁
歪合金材からなる回転軸、2は磁気異方性部で、回転軸
1の表面に回転軸長の方向とある角度をなし、互いに反
対方向に傾斜した第1の溝211と第2の溝212を設
け、軸端から遠い位置x1に設けた第1の溝11の軸方
向長さL1 は軸端に近い位置x2 に設けた第2の溝12
の軸方向長さL2 より短くしてある。したがって、第1
の磁気異方性部21は第1の溝11により形成され、第
2の磁気異方性部22は第2の溝12によって形成され
ている。31および32は励磁コイル、41および42
は検出コイルで、第1および第2の磁気異方性部21、
22の周囲にそれぞれ一定のギャップを保って励磁コイ
ル31、32および検出コイル41、42を巻回し、励
磁コイル31、32に励磁電流を通電する励磁回路(図
示せず)とを備え、検出コイル41、42からの信号に
より、回転軸1に加えられたトルクを検出するようにし
てある。次に、負荷荷重と磁歪式トルクセンサの出力と
の関係を説明する。本発明の構成の磁気異方性部を備え
た場合と、軸方向幅が同一の二つの磁気異方性部を持つ
従来例の構成の場合の回転軸1を、図2に示すように、
回転軸1を直径20mmのマルエージング鋼で作製し、
軸端からの位置x1 に第1の磁気異方性部、軸端からの
位置x2 に第2の磁気異方性部を設け(本実施例では、
1=70mm、x2 =50mm)て片持支持とし、そ
の先端に負荷W(本実施例では、W=1〜20kg)を
加え、歪みセンサの出力を求めると、次の表1に示すよ
うな実験結果となった。
The present invention will be described below with reference to specific embodiments shown in the drawings. FIG. 1 is a front view showing a first embodiment of the present invention. In the figure, 1 is a rotary shaft made of a magnetostrictive alloy material such as maraging steel, 2 is a magnetic anisotropy part, and the surface of the rotary shaft 1 forms an angle with the direction of the rotary shaft length and is inclined in opposite directions. The first groove 211 and the second groove 212 are provided, and the axial length L 1 of the first groove 11 provided at the position x 1 far from the shaft end is the second length provided at the position x 2 close to the shaft end. Groove 12
Is shorter than the axial length L 2 . Therefore, the first
The magnetic anisotropic portion 21 is formed by the first groove 11, and the second magnetic anisotropic portion 22 is formed by the second groove 12. 31 and 32 are exciting coils, and 41 and 42
Is a detection coil, and the first and second magnetic anisotropic portions 21,
22 is provided with an exciting circuit (not shown) that winds the exciting coils 31 and 32 and the detecting coils 41 and 42 around each 22 with a constant gap, and supplies an exciting current to the exciting coils 31 and 32. The torque applied to the rotary shaft 1 is detected by the signals from 41 and 42. Next, the relationship between the applied load and the output of the magnetostrictive torque sensor will be described. As shown in FIG. 2, the rotating shaft 1 in the case of including the magnetic anisotropic portion having the configuration of the present invention and in the configuration of the conventional example having two magnetic anisotropic portions having the same axial width is as shown in FIG.
The rotating shaft 1 is made of maraging steel with a diameter of 20 mm,
A first magnetic anisotropic portion is provided at a position x 1 from the axial end, and a second magnetic anisotropic portion is provided at a position x 2 from the axial end (in the present embodiment,
x 1 = 70 mm, x 2 = 50 mm) for cantilever support, load W (W = 1 to 20 kg in this embodiment) is applied to the tip of the cantilever support, and the output of the strain sensor is obtained. The experimental results were as follows.

【0008】[0008]

【表1】 [Table 1]

【0009】これにより、軸方向長さが同一の二つの磁
気異方性部を持つ従来例の構成の場合に、負荷荷重に対
して出力値が変化していたのに対し、本発明の構成では
出力値の変化が小さくなっていることがわかる。これ
は、磁気異方性部の軸長方向長さを長くするほど、トル
ク誘起磁気異方性が形状異方性に比べて大きくなり、出
力が増加することを利用し、回転軸1の軸端から遠い位
置x1 にある第1の磁気異方性部の軸方向幅L1 を、第
1の磁気異方性部より回転軸の軸端に近い位置x2 にあ
る第2の磁気異方性部の軸方向幅L2 より短くし、第1
の磁気異方性部と第2の磁気異方性部の曲げによる出力
を同じになるようにしたことによるものである。
As a result, in the case of the structure of the conventional example having two magnetic anisotropic portions having the same axial length, the output value changed with respect to the load, whereas the structure of the present invention. Shows that the change in the output value is small. This is because the torque-induced magnetic anisotropy becomes larger as compared with the shape anisotropy as the axial length of the magnetic anisotropy portion becomes longer, and the output increases. The axial width L 1 of the first magnetic anisotropy portion located at a position x 1 far from the end is the second magnetic anisotropy located at a position x 2 closer to the axial end of the rotation axis than the first magnetic anisotropic portion. The axial width L 2 of the anisotropic portion is made shorter than the first
This is because the same magnetic anisotropy portion and the second magnetic anisotropy portion have the same output due to bending.

【0010】図3は本発明の第2の実施例を示す正面図
である。この場合、上記第1の実施例で説明した構成の
うち、第1の磁気異方性部21と第2の磁気異方性部2
2のパターンの角度を変えたものである。すなわち、第
1の溝211の軸長方向とのなす角度θ1 を第2の溝2
12の軸長方向とのなす角度θ2 より大きくしてある
(本実施例では、θ1 =47°、θ2 =45°)。ここ
で、負荷荷重と磁歪式トルクセンサの出力との関係を説
明する。本発明の構成の磁気異方性部を備えた場合と、
軸方向幅が同一の二つの磁気異方性部を持つ従来例の構
成の場合の回転軸1を、図2に示すように、片持支持と
し、その先端に負荷を加え、第1の実施例と同様の実験
を行って、歪みセンサの出力を求めると、上記表1とほ
ぼ同じ結果となった。これにより、軸方向幅が同一の二
つの磁気異方性部を持つ従来例の構成の場合に、負荷荷
重に対して出力値が変化していたのに対し、本発明の構
成では出力値の変化が小さくなっていることがわかる。
これは、磁気異方性部の軸長方向となす角度を僅かに小
さくすると、トルク誘導磁気異方性が形状異方性に比べ
て大きくなることを利用し、曲げによる歪みの大きい第
1の磁気異方性部の軸長方向となす角度θ1 を第2の磁
気異方性部の軸長方向となす角度θ2 より僅かに大きく
し、第1の磁気異方性部と第2の磁気異方性部の曲げに
よる出力を同じになるようにしたことによる。
FIG. 3 is a front view showing a second embodiment of the present invention. In this case, the first magnetic anisotropy part 21 and the second magnetic anisotropy part 2 of the configuration described in the first embodiment are used.
The angle of the pattern 2 is changed. That is, the angle θ 1 formed with the axial direction of the first groove 211 is set to the second groove 2
The angle is larger than the angle θ 2 formed by 12 with the axial direction (in this embodiment, θ 1 = 47 °, θ 2 = 45 °). Here, the relationship between the applied load and the output of the magnetostrictive torque sensor will be described. In the case where the magnetic anisotropy portion having the configuration of the present invention is provided,
As shown in FIG. 2, the rotary shaft 1 in the case of the configuration of the conventional example having two magnetic anisotropic portions having the same axial width is cantilevered, and a load is applied to the tip thereof to perform the first embodiment. When the output of the strain sensor was obtained by performing the same experiment as in the example, the result was almost the same as in Table 1 above. As a result, in the case of the configuration of the conventional example having two magnetic anisotropic portions having the same axial width, the output value changed with respect to the load load, whereas in the configuration of the present invention, the output value It can be seen that the change is small.
This is because the torque-induced magnetic anisotropy becomes larger than the shape anisotropy when the angle formed by the magnetic anisotropy portion with respect to the axial direction is made slightly smaller. The angle θ 1 formed with the axial direction of the magnetic anisotropy portion is made slightly larger than the angle θ 2 formed with the axial direction of the second magnetic anisotropy portion so that This is because the outputs due to bending of the magnetic anisotropy part are made to be the same.

【0011】図4は本発明の第3の実施例を示す正面図
である。この場合、第1の磁気異方性部21と第2の磁
気異方性部22を構成する溝の本数を変えたものであ
る。すなわち、第1の溝211相互間の間隔の幅を第2
の溝212の間隔の幅より広くし、第1の溝11の本数
1 を第2の溝の本数P2より少なくしてある(本実施
例では、P1 =20、P2 =24)。ここで、負荷荷重
と磁歪式トルクセンサの出力との関係を説明する。本発
明の構成の磁気異方性部を備えた場合と、軸方向幅が同
一の二つの磁気異方性部を持つ従来例の構成の場合の回
転軸1を、図2に示すように、片持支持とし、その先端
に負荷を加え、歪みセンサの出力を求めると、上記表1
とほぼ同じ結果となった。これにより、軸方向幅が同一
の二つの磁気異方性部を持つ従来例の構成の場合に、負
荷荷重に対して出力値が変化していたのに対し、本発明
の構成では出力値の変化が小さくなっていることがわか
る。これは、磁気異方性部の磁気異方性を付与する溝の
本数が多いほど出力値が多くなるとを利用し、回転軸の
軸端から遠い位置にある第1の溝の本数を第2の溝の本
数より少なくし、第1の磁気異方性部と第2の磁気異方
性部の曲げによる出力を同じになるようにしたことによ
る。なお、上記第1、第2および第3の実施例では、回
転軸1に磁歪合金材を使用した例について説明したが、
回転軸1の表面に、スパッタ法や真空蒸着法、湿式メッ
キ法により磁歪膜を形成した場合にも、同様の結果が得
られた。また、磁歪膜として磁性薄帯を接着剤によって
回転軸1に張りつけた場合も同様の結果が得られた。
FIG. 4 is a front view showing a third embodiment of the present invention. In this case, the number of grooves forming the first magnetic anisotropic portion 21 and the second magnetic anisotropic portion 22 is changed. That is, the width of the space between the first grooves 211 is set to the second width.
Wider than the width of the spacing of the grooves 212 of, are the number P 1 of the first groove 11 and less than the number P 2 of the second groove (in this embodiment, P 1 = 20, P 2 = 24) . Here, the relationship between the applied load and the output of the magnetostrictive torque sensor will be described. As shown in FIG. 2, the rotating shaft 1 in the case of including the magnetic anisotropic portion having the configuration of the present invention and in the configuration of the conventional example having two magnetic anisotropic portions having the same axial width is as shown in FIG. Cantilever support, load is applied to the tip, and the output of the strain sensor is calculated.
It was almost the same result as. As a result, in the case of the configuration of the conventional example having two magnetic anisotropic portions having the same axial width, the output value changed with respect to the load load, whereas in the configuration of the present invention, the output value It can be seen that the change is small. This is because the output value increases as the number of grooves that give the magnetic anisotropy of the magnetic anisotropy portion increases, and the number of the first grooves located far from the shaft end of the rotating shaft is set to the second value. This is because the number of the grooves is smaller than the number of the grooves and the outputs by bending the first magnetic anisotropy portion and the second magnetic anisotropy portion are the same. In addition, in the said 1st, 2nd, and 3rd Example, although the example which used the magnetostrictive alloy material for the rotating shaft 1 was demonstrated,
Similar results were obtained when a magnetostrictive film was formed on the surface of the rotary shaft 1 by a sputtering method, a vacuum deposition method, or a wet plating method. Similar results were obtained when a magnetic ribbon as a magnetostrictive film was attached to the rotary shaft 1 with an adhesive.

【0012】図5は本発明の第4の実施例の要部を拡大
した断面で示した正面図である。この場合、上記第1の
実施例で説明した構成のうち、第1の磁気異方性部21
と第2の磁気異方性部22を磁歪膜で形成し、その膜厚
を変えたものである。すなわち、SUS304からなる
直径20mmの回転軸1に、スパッタ法、真空蒸着法ま
たは湿式メッキ法によりNi−Fe合金からなり、反対
方向に傾斜して磁気異方性を付与するように、回転軸長
方向とある角度をなしたパターンを有する磁歪膜を形成
した。このとき、第1の磁歪膜221の膜厚t1 を第2
の磁歪膜222の膜厚t2 より薄くしてある(本実施例
では、t1 =5μm、t2 =7μm)。磁性膜を作製す
る一つの方法であるスパッタ法の例を具体的に説明する
と、SUS304の回転軸を中性洗剤、純粋、アルコー
ルの順に超音波洗浄を施した後、真空槽内にセットし、
5×10-4Pa以下に排気した後、加熱し、400℃に
てNi−Fe合金膜を形成した。スパッタ条件は、ター
ゲット電圧325V,ターゲット電流1Aとした。ここ
で、負荷荷重と磁歪式トルクセンサの出力との関係を説
明する。本発明の構成の磁気異方性部を備えた場合と、
軸方向幅が同一の二つの磁気異方性部を持つ従来例の構
成の場合の回転軸1を、図2に示すように、片持支持と
し、その先端に負荷を加え、歪みセンサの出力を求める
と、上記表1とほぼ同じ結果となった。これにより、軸
方向幅が同一の二つの磁気異方性部を持つ従来例の構成
の場合に、負荷荷重に対して出力値が変化していたのに
対し、本発明の構成では出力値の変化が小さくなってい
ることがわかる。これは、磁気異方性部を磁歪膜によっ
て形成したとき、磁歪膜の膜厚の増加にしたがって出力
値が増加することを利用し、曲げによる歪みの大きい第
1の磁気異方性部の膜厚を第2の磁気異方性の膜厚より
薄くし、第1の磁気異方性部と第2の磁気異方性部の曲
げによる出力を同じになるようにしたことによる。
FIG. 5 is a front view showing an enlarged cross section of a main part of a fourth embodiment of the present invention. In this case, of the configurations described in the first embodiment, the first magnetic anisotropic portion 21
The second magnetic anisotropy portion 22 is formed of a magnetostrictive film and the film thickness is changed. That is, the rotating shaft 1 made of SUS304 and having a diameter of 20 mm is made of a Ni—Fe alloy by a sputtering method, a vacuum deposition method or a wet plating method, and the rotating shaft length is inclined so as to impart magnetic anisotropy by inclining in the opposite direction. A magnetostrictive film having a pattern forming an angle with the direction was formed. At this time, the film thickness t 1 of the first magnetostrictive film 221 is set to the second film thickness t 1 .
The thickness of the magnetostrictive film 222 is smaller than the film thickness t 2 (t 1 = 5 μm, t 2 = 7 μm in this embodiment). Explaining in detail an example of a sputtering method, which is one method of forming a magnetic film, the rotary shaft of SUS304 is ultrasonically cleaned in the order of neutral detergent, pure, and alcohol, and then set in a vacuum chamber,
After evacuating to 5 × 10 −4 Pa or less, it was heated and a Ni—Fe alloy film was formed at 400 ° C. The sputtering conditions were a target voltage of 325V and a target current of 1A. Here, the relationship between the applied load and the output of the magnetostrictive torque sensor will be described. In the case where the magnetic anisotropy portion having the configuration of the present invention is provided,
As shown in FIG. 2, the rotating shaft 1 in the case of the configuration of the conventional example having two magnetic anisotropy portions having the same axial width is cantilevered, and a load is applied to the tip thereof to output the strain sensor. Was obtained, the result was almost the same as in Table 1 above. As a result, in the case of the configuration of the conventional example having two magnetic anisotropic portions having the same axial width, the output value changed with respect to the load load, whereas in the configuration of the present invention, the output value It can be seen that the change is small. This utilizes the fact that when the magnetic anisotropy portion is formed of a magnetostrictive film, the output value increases as the film thickness of the magnetostrictive film increases, and the film of the first magnetic anisotropic portion having a large strain due to bending is used. This is because the thickness is made smaller than the thickness of the second magnetic anisotropy so that the first magnetic anisotropy portion and the second magnetic anisotropy portion have the same output due to bending.

【0013】図6は本発明の第5の実施例の要部を拡大
した断面で示した正面図である。この場合、第4の実施
例と同じ条件で第1の磁気異方性部21と第2の磁気異
方性部22を磁歪膜で形成し、第1の磁歪膜221と第
2の磁歪膜222の磁性膜の枚数を変えたものである。
すなわち、第1の磁歪膜221の磁性膜の枚数n1 を第
2の磁歪膜222の磁性膜の枚数n2 より少なくしてあ
る(本実施例では、膜厚を5μmとし、n1 =20、n
2 =24)。ここで、負荷荷重と磁歪式トルクセンサの
出力との関係を説明する。本発明の構成の磁気異方性部
を備えた場合と、軸方向幅が同一の二つの磁気異方性部
を持つ従来例の構成の場合の回転軸1を、図2に示すよ
うに、片持支持とし、その先端に負荷を加え、歪みセン
サの出力を求めると、上記表1とほぼ同じ結果となっ
た。これにより、軸方向幅が同一の二つの磁気異方性部
を持つ従来例の構成の場合に、負荷荷重に対して出力値
が変化していたのに対し、本発明の構成では出力値の変
化が小さくなっていることがわかる。これは、磁気異方
性部を磁歪膜によって形成したとき、磁歪膜の枚数が増
加するにしたがって透磁率の変化が大きくなることを利
用し、曲げによる歪みの大きい第1の磁気異方性部の磁
歪膜の枚数を第2の磁気異方性の磁歪膜の枚数より少な
くし、第1の磁気異方性部と第2の磁気異方性部の曲げ
による出力を同じになるようにしたことによる。
FIG. 6 is a front view showing an enlarged cross section of the main part of the fifth embodiment of the present invention. In this case, the first magnetic anisotropic portion 21 and the second magnetic anisotropic portion 22 are formed of a magnetostrictive film under the same conditions as in the fourth embodiment, and the first magnetostrictive film 221 and the second magnetostrictive film are formed. The number of magnetic films 222 is changed.
That is, the number n 1 of magnetic films of the first magnetostrictive film 221 is made smaller than the number n 2 of magnetic films of the second magnetostrictive film 222 (in this embodiment, the film thickness is 5 μm and n 1 = 20). , N
2 = 24). Here, the relationship between the applied load and the output of the magnetostrictive torque sensor will be described. As shown in FIG. 2, the rotating shaft 1 in the case of including the magnetic anisotropic portion having the configuration of the present invention and in the configuration of the conventional example having two magnetic anisotropic portions having the same axial width is as shown in FIG. When the output of the strain sensor was obtained by applying a load to the tip of the cantilever support, almost the same results as in Table 1 above were obtained. As a result, in the case of the configuration of the conventional example having two magnetic anisotropic portions having the same axial width, the output value changed with respect to the load load, whereas in the configuration of the present invention, the output value It can be seen that the change is small. This is because when the magnetic anisotropy portion is formed of a magnetostrictive film, the change in magnetic permeability increases as the number of magnetostrictive films increases, and the first magnetic anisotropy portion having a large strain due to bending is used. The number of the magnetostrictive films of is smaller than the number of the magnetostrictive films of the second magnetic anisotropy so that the first magnetic anisotropy portion and the second magnetic anisotropy portion have the same output by bending. It depends.

【0014】図7は本発明の第6の実施例を示す正面図
である。この場合、上記第4の実施例と同じ条件で、第
1の磁気異方性部21と第2の磁気異方性部22を磁歪
膜で形成し、その磁気異方性部の幅を変えたものであ
る。すなわち、第1の磁歪膜221の幅B1 を第2の磁
歪膜222の幅B2 より細くしてある(本実施例では、
1 =1mm、B2 =1.5mm)。ここで、負荷荷重
と磁歪式トルクセンサの出力との関係を説明する。本発
明の構成の磁気異方性部を備えた場合と、軸方向幅が同
一の二つの磁気異方性部を持つ従来例の構成の場合の回
転軸1を、図2に示すように、片持支持とし、その先端
に負荷を加え、歪みセンサの出力を求めると、上記表1
とほぼ同じ結果となった。
FIG. 7 is a front view showing a sixth embodiment of the present invention. In this case, the first magnetic anisotropy portion 21 and the second magnetic anisotropy portion 22 are formed of a magnetostrictive film under the same conditions as in the fourth embodiment, and the width of the magnetic anisotropy portion is changed. It is a thing. That is, the width B 1 of the first magnetostrictive film 221 is made narrower than the width B 2 of the second magnetostrictive film 222 (in this embodiment,
B 1 = 1 mm, B 2 = 1.5 mm). Here, the relationship between the applied load and the output of the magnetostrictive torque sensor will be described. As shown in FIG. 2, the rotating shaft 1 in the case of including the magnetic anisotropic portion having the configuration of the present invention and in the configuration of the conventional example having two magnetic anisotropic portions having the same axial width is as shown in FIG. Cantilever support, load is applied to the tip, and the output of the strain sensor is calculated.
It was almost the same result as.

【0015】これにより、軸方向幅が同一の二つの磁気
異方性部を持つ従来例の構成の場合に、負荷荷重に対し
て出力値が変化していたのに対し、本発明の構成では出
力値の変化が小さくなっていることがわかる。これは、
磁気異方性部の磁歪膜の幅が増加するにしたがって出力
値が増加することを利用し、曲げによる歪みの大きい第
1の磁気異方性部の幅を第2の磁気異方性の幅より狭く
し、第1の磁気異方性部と第2の磁気異方性部の曲げに
よる出力を同じになるようにしたことによる。
As a result, in the case of the configuration of the conventional example having two magnetic anisotropic portions having the same axial width, the output value changed with respect to the load load, whereas in the configuration of the present invention. It can be seen that the change in output value is small. this is,
By utilizing the fact that the output value increases as the width of the magnetostrictive film of the magnetic anisotropy portion increases, the width of the first magnetic anisotropy portion having a large strain due to bending is set to the width of the second magnetic anisotropy portion. This is because the output is made narrower so that the first magnetic anisotropic portion and the second magnetic anisotropic portion have the same output due to bending.

【0016】[0016]

【発明の効果】以上述べたように、本発明によれば、第
1の磁気異方性部と第2の磁気異方性部の曲げによる歪
みセンサの出力が同じになるようにセンサ出力感度を変
えてあるので、回転軸の曲げによる影響はキャンセルさ
れ、曲げによる出力変動のない磁歪式トルクセンサを提
供できる効果がある。
As described above, according to the present invention, the sensor output sensitivity is adjusted so that the outputs of the strain sensors due to the bending of the first magnetic anisotropic portion and the second magnetic anisotropic portion become the same. Since the influence of bending of the rotating shaft is canceled, there is an effect that a magnetostrictive torque sensor having no output fluctuation due to bending can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施例を示す正面図である。FIG. 1 is a front view showing a first embodiment of the present invention.

【図2】 本発明の実施例の実験状態を示す正面図であ
る。
FIG. 2 is a front view showing an experimental state of an example of the present invention.

【図3】 本発明の第2の実施例を示す正面図である。FIG. 3 is a front view showing a second embodiment of the present invention.

【図4】 本発明の第3の実施例を示す正面図である。FIG. 4 is a front view showing a third embodiment of the present invention.

【図5】 本発明の第4の実施例の要部を示す正断面図
である。
FIG. 5 is a front sectional view showing a main part of a fourth embodiment of the present invention.

【図6】 本発明の第5の実施例を示す正面図である。FIG. 6 is a front view showing a fifth embodiment of the present invention.

【図7】 本発明の第6の実施例を示す正面図である。FIG. 7 is a front view showing a sixth embodiment of the present invention.

【図8】 従来例を示す正面図である。FIG. 8 is a front view showing a conventional example.

【符号の説明】[Explanation of symbols]

1:回転軸、21:第1の磁気異方性部、 22:第2
の磁気異方性部、211:第1の溝、212:第2の
溝、221:第1の磁歪膜、222:第2の磁歪膜、3
1、32:励磁コイル、41、42:検出コイル
1: rotation axis, 21: first magnetic anisotropic portion, 22: second
Magnetic anisotropy part, 211: first groove, 212: second groove, 221: first magnetostrictive film, 222: second magnetostrictive film, 3
1, 32: Excitation coil, 41, 42: Detection coil

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 回転軸の表面に軸長方向に対して傾斜角
を持った複数のパターンで形成され、軸端から遠い位置
に設けた第1の磁気異方性部と、前記第1の磁気異方性
部と反対方向に傾斜し、かつ前記第1の磁気異方性部よ
り軸端に近い位置に設けた第2の磁気異方性部と、前記
第1および第2の磁気異方性部に同心円上に配置した励
磁コイルおよび検出コイルと、前記励磁コイルに励磁電
流を通電する励磁回路とを備え、前記検出コイルからの
信号により前記回転軸に加えられたトルクを検出する磁
歪式トルクセンサにおいて、前記第1の磁気異方性部の
出力感度を前記第2の磁気異方性部の出力感度より小さ
くしたことを特徴とする磁歪式トルクセンサ。
1. A first magnetic anisotropy portion formed on a surface of a rotating shaft in a plurality of patterns having an inclination angle with respect to the axial direction, the first magnetic anisotropic portion being provided at a position distant from the axial end, and the first magnetic anisotropic portion. A second magnetic anisotropy portion that is inclined in a direction opposite to the magnetic anisotropy portion and is provided closer to the axial end than the first magnetic anisotropy portion, and the first and second magnetic anisotropy portions. Magnetostriction including an exciting coil and a detecting coil arranged concentrically in the isotropic portion, and an exciting circuit for supplying an exciting current to the exciting coil, and detecting a torque applied to the rotating shaft by a signal from the detecting coil. In the torque sensor, the magnetostrictive torque sensor is characterized in that the output sensitivity of the first magnetic anisotropic portion is smaller than the output sensitivity of the second magnetic anisotropic portion.
【請求項2】 前記第1の磁気異方性部の軸方向長さを
前記第2の磁気異方性部の軸方向長さより短くした請求
項1記載の磁歪式トルクセンサ。
2. The magnetostrictive torque sensor according to claim 1, wherein the axial length of the first magnetic anisotropic portion is shorter than the axial length of the second magnetic anisotropic portion.
【請求項3】 前記第2の磁気異方性部の出力が最大の
とき、前記第1の磁気異方性部の軸長方向となす角度
は、前記第2の磁気異方性部の軸長方向となす角度と異
なる角度とした請求項1記載の磁歪式トルクセンサ。
3. When the output of the second magnetic anisotropy portion is maximum, the angle formed with the axial length direction of the first magnetic anisotropic portion is the axis of the second magnetic anisotropic portion. The magnetostrictive torque sensor according to claim 1, wherein the angle is different from the angle formed with the long direction.
【請求項4】 前記回転軸の少なくとも一部は、磁歪合
金材からなり、前記第1の磁気異方性部および前記第2
の磁気異方性部のそれぞれのパターンは、前記回転軸の
表面に軸長方向に対して傾斜角を持った複数の第1の溝
および第2の溝で形成した請求項1から3までのいずれ
か1項に記載の磁歪式トルクセンサ。
4. The at least part of the rotating shaft is made of a magnetostrictive alloy material, and the first magnetic anisotropic part and the second magnetic anisotropic part are provided.
4. The respective patterns of the magnetic anisotropy part are formed by a plurality of first grooves and second grooves having an inclination angle with respect to the axial direction on the surface of the rotating shaft. The magnetostrictive torque sensor according to any one of items.
【請求項5】 前記第1の磁気異方性部の第1の溝の本
数を前記第2の磁気異方性部の第2の溝の本数より少な
くした請求項4記載の磁歪式トルクセンサ。
5. The magnetostrictive torque sensor according to claim 4, wherein the number of the first grooves of the first magnetic anisotropic portion is smaller than the number of the second grooves of the second magnetic anisotropic portion. .
【請求項6】 前記第1の磁気異方性部および前記第2
の磁気異方性部を磁性膜で形成した請求項1から3まで
のいずれか1項に記載の磁歪式トルクセンサ。
6. The first magnetic anisotropy portion and the second magnetic anisotropic portion.
The magnetostrictive torque sensor according to any one of claims 1 to 3, wherein the magnetic anisotropic portion is formed of a magnetic film.
【請求項7】 前記第1の磁気異方性部の膜厚を前記第
2の磁気異方性の膜厚より薄くした請求項4記載の磁歪
式トルクセンサ。
7. The magnetostrictive torque sensor according to claim 4, wherein the film thickness of the first magnetic anisotropy portion is smaller than the film thickness of the second magnetic anisotropy.
【請求項8】 前記第1の磁気異方性部の磁歪膜の枚数
を前記第2の磁気異方性の磁歪膜の枚数より少なくした
請求項4記載の磁歪式トルクセンサ。
8. The magnetostrictive torque sensor according to claim 4, wherein the number of magnetostrictive films in the first magnetic anisotropy portion is smaller than the number of magnetostrictive films in the second magnetic anisotropy.
【請求項9】 前記第1の磁気異方性部の幅を前記第2
の磁気異方性の幅より狭くした請求項4記載の磁歪式ト
ルクセンサ。
9. The width of the first magnetic anisotropy portion is set to the second width.
The magnetostrictive torque sensor according to claim 4, wherein the width of the magnetic anisotropy is smaller than that of the above.
JP33830795A 1995-12-01 1995-12-01 Magnetostriction type torque sensor Pending JPH09152382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33830795A JPH09152382A (en) 1995-12-01 1995-12-01 Magnetostriction type torque sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33830795A JPH09152382A (en) 1995-12-01 1995-12-01 Magnetostriction type torque sensor

Publications (1)

Publication Number Publication Date
JPH09152382A true JPH09152382A (en) 1997-06-10

Family

ID=18316912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33830795A Pending JPH09152382A (en) 1995-12-01 1995-12-01 Magnetostriction type torque sensor

Country Status (1)

Country Link
JP (1) JPH09152382A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017111153A (en) * 2015-12-17 2017-06-22 メトーデ エレクトロニクス マルタ リミテッド Apparatus for determining external stray magnetic fields on magnetic field sensor
CN108839751A (en) * 2018-05-23 2018-11-20 东莞市京橙电机科技有限公司 Coaxial central driving motor system and vehicle using motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017111153A (en) * 2015-12-17 2017-06-22 メトーデ エレクトロニクス マルタ リミテッド Apparatus for determining external stray magnetic fields on magnetic field sensor
CN108839751A (en) * 2018-05-23 2018-11-20 东莞市京橙电机科技有限公司 Coaxial central driving motor system and vehicle using motor
CN108839751B (en) * 2018-05-23 2024-03-22 铂金橙智能科技(太仓)有限公司 Coaxial centrally-mounted driving motor system and moped

Similar Documents

Publication Publication Date Title
US7621189B2 (en) Apparatus and method for generating and sensing torsional vibrations using magnetostriction
JPS6275328A (en) Torque sensor
JPH08285706A (en) Torque sensor and strain detection element
JPH09152382A (en) Magnetostriction type torque sensor
JP3702451B2 (en) Magnetostrictive torque sensor
US5020378A (en) Device for non-contact measuring of stresses in a bar-shaped body
JPH09159551A (en) Magnetostrictive torque sensor
JPH09166505A (en) Manufacture of magnetostrictive torque sensor
JP2002090234A (en) Torque detecting device
JPH1028354A (en) Motor with torque sensor
JPH05231967A (en) Magnetostrictive torque sensor
JPS63182535A (en) Torque sensor
JPS63117230A (en) Torque detector
JPH05187934A (en) Magnetostriction type strain sensor
JPH10153502A (en) Magnetostrictive torque sensor
JPS59120905A (en) Device for measuring flatness of metallic strip under tension
JPS6044839A (en) Torque detecting device
JPH09243476A (en) Magnetostrictive torque sensor
JP2000019033A (en) Magnetic field detecting sensor
JPH05231966A (en) Magnetostrictive torque sensor
JP2022121929A (en) Magnetostrictive sensor and method for manufacturing the same
JPH09196778A (en) Magnetostrictive torque sensor
JPH0345181A (en) Control of driving of variable air gap motor
JPH09166504A (en) Magnetostrictive distortion sensor
JP2005274191A (en) Harmony speed reducer