JPH09152223A - Thermal storage type air conditioner - Google Patents

Thermal storage type air conditioner

Info

Publication number
JPH09152223A
JPH09152223A JP31418095A JP31418095A JPH09152223A JP H09152223 A JPH09152223 A JP H09152223A JP 31418095 A JP31418095 A JP 31418095A JP 31418095 A JP31418095 A JP 31418095A JP H09152223 A JPH09152223 A JP H09152223A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat
heat storage
compressor
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31418095A
Other languages
Japanese (ja)
Inventor
Kazuhiko Machida
和彦 町田
Shigeo Aoyama
繁男 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP31418095A priority Critical patent/JPH09152223A/en
Publication of JPH09152223A publication Critical patent/JPH09152223A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make it possible to rapidly suppress the abnormal rise of the pressure of a compressor by constituting a thermal storage heat exchanger which can be operated as a water-cooled condenser when the discharge or suction pressure of the compressor is abnormally raised at the time of cooling operation. SOLUTION: When the cooling operation is detected by cooling mode detecting means 18 in the thermal storage type air conditioner, the temperature of a heat storage material 9 is detected by heat storage material temperature detecting means 19, and the pressure of the suction or discharge unit of a compressor 2 is detected by compressor pressure detecting means 20. Then, when the detected pressure exceeds a prescribed pressure, storage heat use deciding means 21 judges that the pressure of the compressor 2 is overloaded, further judges that a thermal storage heat exchanger 8a can operate as a condenser when the material 9 temperature is a prescribed temperature or lower, opens an expansion valve 5b and a two-way valve NV2 by storage heat use drive means 22, and closes a two-way valve NV1. Thus, the exchanger 8a is operated as a water-cooled condenser, thereby rapidly suppressing the abnormal pressure rise of the compressor 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空気を熱源とする
空気調和機において、夜間電力を利用するための蓄熱・
放熱機能、及びその制御機能を備えた蓄熱式空気調和機
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner using air as a heat source.
The present invention relates to a heat storage type air conditioner having a heat radiation function and a control function thereof.

【0002】[0002]

【従来の技術】蓄熱式空気調和機については、既にさま
ざまな開発がなされており、例えば、特開平3−144
236号公報に示されているような蓄熱式空気調和機が
ある。
2. Description of the Related Art Various types of regenerative air conditioners have already been developed.
There is a regenerative air conditioner as disclosed in JP-A-236.

【0003】その基本的な技術について述べると、図3
に示すように、室外機1は、圧縮機2、第1四方弁3
a、熱源側熱交換器4、第1膨張弁5a、第1切替弁K
V1、第1補助熱交換器7aと第2補助熱交換器7bと
からなる冷媒対冷媒熱交換器HEX、蓄熱用熱交換器8
aと放熱用熱交換器8bとからなる蓄熱槽STRと蓄熱
材である水9、冷媒の流路を切替える第2切替弁KV
2、冷媒量調節タンク11及び冷媒を搬送する冷媒搬送
ポンプPMとから構成されている。また、複数の室内機
13a,13bは、利用側熱交換器14a,14bから
構成されている。
The basic technique will be described with reference to FIG.
1, the outdoor unit 1 includes a compressor 2, a first four-way valve 3
a, heat source side heat exchanger 4, first expansion valve 5a, first switching valve K
V1, a refrigerant-to-refrigerant heat exchanger HEX comprising a first auxiliary heat exchanger 7a and a second auxiliary heat exchanger 7b, and a heat storage heat exchanger 8
and a heat storage tank STR composed of a heat exchanger 8b and a heat exchanger 8b.
2. It is composed of a refrigerant amount adjusting tank 11 and a refrigerant transport pump PM for transporting the refrigerant. Further, the plurality of indoor units 13a and 13b are configured by use-side heat exchangers 14a and 14b.

【0004】また、熱源側冷凍サイクルは、圧縮機2、
第1四方弁3a、熱源側熱交換器4、第1膨張弁5a、
第1切替弁KV1、第1補助熱交換器7a、蓄熱用熱交
換器8aとから構成されている。
[0004] The heat source side refrigeration cycle includes a compressor 2,
A first four-way valve 3a, a heat source side heat exchanger 4, a first expansion valve 5a,
It comprises a first switching valve KV1, a first auxiliary heat exchanger 7a, and a heat storage heat exchanger 8a.

【0005】利用側冷凍サイクルは、第2補助熱交換器
7bと放熱用熱交換器8b、冷媒の流路を切替える第2
切替弁KV2、冷媒量調節タンク11、冷媒を搬送する
冷媒搬送ポンプPM、室内機13a,13bとから構成
されている。
The use-side refrigeration cycle includes a second auxiliary heat exchanger 7b, a heat-dissipating heat exchanger 8b, and a second auxiliary heat exchanger 8b for switching the flow path of the refrigerant.
It comprises a switching valve KV2, a refrigerant amount adjusting tank 11, a refrigerant transport pump PM for transporting the refrigerant, and indoor units 13a and 13b.

【0006】次に、その冷凍サイクルについて説明す
る。この冷凍サイクルは、夜間に製氷する冷房蓄熱運転
(または、温水を作る暖房蓄熱運転)と、昼間の冷房
(または、暖房)運転に大きく分けることができる。
尚、暖房蓄熱運転と昼間の暖房運転については、運転モ
−ドのみの説明にとどめ詳細な説明は割愛する。
Next, the refrigeration cycle will be described. This refrigeration cycle can be broadly divided into a cooling heat storage operation for making ice at night (or a heating heat storage operation for producing hot water) and a daytime cooling (or heating) operation.
The heating heat storage operation and daytime heating operation will be described only in the operation mode, and will not be described in detail.

【0007】A)夜間蓄熱運転 熱源側冷凍サイクルにおいて、蓄熱槽STRが作用し、
冷媒対冷媒熱交換器HEXは作用しないように第1切替
弁KV1を切替える。この時、冷媒搬送ポンプPMは停
止しており、利用側サイクルは作用しない。この熱源側
冷凍サイクルの作用について、以下説明する。
A) Night heat storage operation In the heat source side refrigeration cycle, the heat storage tank STR operates,
The first switching valve KV1 is switched so that the refrigerant-to-refrigerant heat exchanger HEX does not operate. At this time, the refrigerant transport pump PM is stopped, and the use side cycle does not operate. The operation of the heat source side refrigeration cycle will be described below.

【0008】尚、第1四方弁3aのモ−ドについては、
圧縮機2の吐出側と熱源側熱交換器4とを、かつ圧縮機
2の吸入側と蓄熱槽STRとを連通する場合を冷房モ−
ド、圧縮機2の吐出側と蓄熱槽STRとを、かつ圧縮機
2の吸入側と熱源側熱交換器4とを連通する場合を暖房
モ−ドと定義する。
Regarding the mode of the first four-way valve 3a,
The case where the discharge side of the compressor 2 communicates with the heat source side heat exchanger 4 and the suction side of the compressor 2 communicates with the heat storage tank STR is a cooling mode.
A case in which the discharge side of the compressor 2 communicates with the heat storage tank STR, and the case where the suction side of the compressor 2 communicates with the heat source side heat exchanger 4 are defined as a heating mode.

【0009】また、第1切替弁KV1については熱源側
冷凍サイクル内にて蓄熱槽STRと第1膨張弁5aとを
連通する設定を第1STR回路、冷媒対冷媒熱交換器H
EXと第1膨張弁5aとを連通する設定を第1HEX回
路と定義する。
As for the first switching valve KV1, the first STR circuit and the refrigerant-refrigerant heat exchanger H are set so that the heat storage tank STR and the first expansion valve 5a communicate with each other in the heat source side refrigeration cycle.
The setting for communicating the EX with the first expansion valve 5a is defined as a first HEX circuit.

【0010】A−1)冷房蓄熱運転 第1四方弁3aを冷房モ−ド、第1膨張弁5aを所定の
開度、第1切替弁KV1を第1STR回路とする。この
時、圧縮機2から送られる高温高圧の冷媒は、熱源側熱
交換器4にて凝縮し、第1膨張弁5aで減圧されて液あ
るいは二相状態となり、蓄熱槽STRの蓄熱用熱交換器
8a内にて蒸発して蓄熱材である水9から吸熱した後、
圧縮機2へ戻る。
A-1) Cooling heat storage operation The first four-way valve 3a is a cooling mode, the first expansion valve 5a is a predetermined opening degree, and the first switching valve KV1 is a first STR circuit. At this time, the high-temperature and high-pressure refrigerant sent from the compressor 2 is condensed in the heat source side heat exchanger 4 and decompressed by the first expansion valve 5a to be in a liquid or two-phase state, and heat exchange for heat storage in the heat storage tank STR is performed. After evaporating in the vessel 8a and absorbing heat from the water 9 as a heat storage material,
Return to the compressor 2.

【0011】これにより、蓄熱槽STRの蓄熱用熱交換
器8aの周囲に冷水及び氷が作られ、蓄熱されていく。
As a result, cold water and ice are produced around the heat storage heat exchanger 8a of the heat storage tank STR, and heat is stored.

【0012】B)昼間運転 昼間時の冷房(または暖房)運転は、圧縮機2と熱源側
熱交換器4と冷媒対冷媒熱交換器HEXと冷媒搬送ポン
プPMと利用側熱交換器14a、14bを作用させる通
常冷房(または通常暖房)運転と、通常冷房(または通
常冷暖房)運転に蓄熱槽STRを加えたピ−ク負荷冷房
(またはピ−ク負荷暖房)運転とに分けることができ
る。
B) Daytime operation During the daytime cooling (or heating) operation, the compressor 2, the heat source side heat exchanger 4, the refrigerant-refrigerant heat exchanger HEX, the refrigerant transfer pump PM, and the use side heat exchangers 14a, 14b. Can be divided into a normal cooling (or normal heating) operation in which the above-mentioned action is applied and a peak load cooling (or peak load heating) operation in which the heat storage tank STR is added to the normal cooling (or normal cooling and heating) operation.

【0013】これらの運転パタ−ンは、室内負荷や夜間
蓄熱運転で蓄熱槽STR内に蓄えられた蓄熱量の大きさ
に応じて使い分ける。例えば、早朝の室内負荷が小さい
時には通常冷房運転とし、真昼時の室内負荷が大きい時
にはピ−ク負荷冷房運転に切り替え、蓄熱槽STR内の
蓄熱量か無くなると再び通常冷房運転に切り替えること
で真昼のピ−ク負荷に対応できる。
These operation patterns are selectively used according to the amount of heat stored in the heat storage tank STR during indoor load or night heat storage operation. For example, when the indoor load in the early morning is small, the normal cooling operation is performed, when the indoor load at noon is large, the operation is switched to the peak load cooling operation, and when the amount of heat stored in the heat storage tank STR is exhausted, the normal cooling operation is switched to the normal cooling operation again. Peak load.

【0014】これらの運転パタ−ンにおける冷凍サイク
ルの作用について、以下説明する。また、第2切替弁K
V2については利用側冷凍サイクル内にて冷媒対冷媒熱
交換器HEXと利用側熱交換器14a,14bとを連通
する設定を第2HEX回路、冷媒対冷媒熱交換器HEX
と蓄熱槽STRと利用側熱交換器14a,14bとを連
通する設定を第2(HEX+STR)回路と定義する。
The operation of the refrigerating cycle in these operation patterns will be described below. Also, the second switching valve K
Regarding V2, the setting for communication between the refrigerant-to-refrigerant heat exchanger HEX and the use-side heat exchangers 14a and 14b in the use-side refrigeration cycle is set in the second HEX circuit and the refrigerant-to-refrigerant heat exchanger HEX.
The setting for communicating the heat storage tank STR with the use side heat exchangers 14a and 14b is defined as a second (HEX + STR) circuit.

【0015】B−1)通常冷房運転 熱源側冷凍サイクルは、第1四方弁3aを冷房モ−ド、
第1膨張弁5aを所定の開度、第1切替弁KV1を第1
HEX回路とする。この時、圧縮機2から送られる高温
高圧の冷媒は、熱源側熱交換器4にて凝縮し、第1膨張
弁5aで減圧されて液あるいは二相状態となり、第1補
助熱交換器7aにて蒸発して、圧縮機2へ戻る。
B-1) Normal cooling operation In the heat source side refrigeration cycle, the first four-way valve 3a is set in the cooling mode,
The first expansion valve 5a is set to a predetermined opening degree, and the first switching valve KV1 is set to the first opening degree.
HEX circuit. At this time, the high-temperature and high-pressure refrigerant sent from the compressor 2 is condensed in the heat source side heat exchanger 4 and decompressed by the first expansion valve 5a to be in a liquid or two-phase state, and is sent to the first auxiliary heat exchanger 7a. To return to the compressor 2.

【0016】利用側冷凍サイクルは、第2切替弁KV2
を第2HEX回路とする。この時、第2切替弁KV2か
ら流出したガス冷媒は、第2補助熱交換器7bにて凝縮
して液化または二相化冷媒となり、冷媒量調節タンク1
1を通って冷媒搬送ポンプPMによって、利用側熱交換
器14a,14bへ送られる。ここで、室内空気から吸
熱蒸発して冷房する。
The use side refrigeration cycle is the second switching valve KV2.
Is a second HEX circuit. At this time, the gas refrigerant flowing out of the second switching valve KV2 is condensed in the second auxiliary heat exchanger 7b to become a liquefied or two-phase refrigerant, and the refrigerant amount adjustment tank 1
1 and is sent to the use side heat exchangers 14a and 14b by the refrigerant transport pump PM. Here, cooling is performed by absorbing heat from room air.

【0017】その後、冷媒は、再び第2切替弁KV2を
通過して、第2補助熱交換器7bへ流入する。
After that, the refrigerant passes through the second switching valve KV2 again and flows into the second auxiliary heat exchanger 7b.

【0018】B−2)ピ−ク負荷冷房運転 B−1の通常冷房運転に蓄熱槽STRの放熱用熱交換器
8bを加えた運転である。
B-2) Peak load cooling operation This is an operation in which the heat radiating heat exchanger 8b of the heat storage tank STR is added to the normal cooling operation of B-1.

【0019】熱源側冷凍サイクルは、B−1の通常冷房
運転時と同じであるので省略し、利用側冷凍サイクルに
ついて説明する。
Since the heat source side refrigeration cycle is the same as that in the normal cooling operation of B-1, the description will be omitted and the use side refrigeration cycle will be described.

【0020】利用側冷凍サイクルは、第2切替弁KV2
を第2(HEX+STR)回路とする。この時、利用側
熱交換器14a,14bから流出したガス冷媒は、第2
切替弁KV2へ流入する。第2切替弁KV2の弁開度
は、蓄熱槽STRと冷媒対冷媒熱交換器HEXの能力に
合わせて調整されている。
The use side refrigeration cycle is the second switching valve KV2.
Is a second (HEX + STR) circuit. At this time, the gas refrigerant flowing out of the use side heat exchangers 14a and 14b
It flows into the switching valve KV2. The valve opening degree of the second switching valve KV2 is adjusted according to the capacities of the heat storage tank STR and the refrigerant-refrigerant heat exchanger HEX.

【0021】第2切替弁KV2から、ガス冷媒の一部が
第2補助熱交換器7bへ送られ、第1補助熱交換器7a
により液化冷却されて、冷媒量調節タンク11へ送られ
る。残りのガス冷媒は、放熱用熱交換器8bへ送られ、
夜間の冷房蓄熱運転によって蓄熱用熱交換器8aの周囲
に作られた冷水及び氷によって、冷却凝縮され液冷媒と
なり、冷媒量調節タンク11へ送られる。
A part of the gas refrigerant is sent from the second switching valve KV2 to the second auxiliary heat exchanger 7b, and the first auxiliary heat exchanger 7a.
And is sent to the refrigerant amount adjusting tank 11. The remaining gas refrigerant is sent to the heat exchanger for heat dissipation 8b,
The cold water and ice formed around the heat storage heat exchanger 8a in the cooling heat storage operation at night cools and condenses the liquid refrigerant to be sent to the refrigerant amount adjustment tank 11.

【0022】この時、蓄熱槽からの放熱量は、空調負荷
予測制御等によって予め定められており、放熱用熱交換
器8b出口の目標過冷却度SC1に従って、第2切替弁
KV2の弁を開閉するなどの手段で、放熱用熱交換器8
b内に流入する冷媒循環量を調節して制御されている。
At this time, the amount of heat radiated from the heat storage tank is predetermined by air conditioning load prediction control or the like, and the valve of the second switching valve KV2 is opened / closed according to the target degree of supercooling SC1 at the outlet of the heat radiating heat exchanger 8b. The heat exchanger 8 for heat dissipation
It is controlled by adjusting the amount of circulating refrigerant flowing into b.

【0023】冷媒量調節タンク11内の液冷媒は、冷媒
搬送ポンプPMによって、利用側熱交換器14a,14
bへ送られ、室内空気から吸熱し蒸発して冷房する。
The liquid refrigerant in the refrigerant amount adjusting tank 11 is transferred to the use side heat exchangers 14a, 14a by the refrigerant transfer pump PM.
b to absorb heat from room air, evaporate and cool.

【0024】その後、ガス化した冷媒は、再び第2切替
弁KV2を通過して、第2補助熱交換器7bと放熱用熱
交換器8bへ流入する。
After that, the gasified refrigerant passes through the second switching valve KV2 again and flows into the second auxiliary heat exchanger 7b and the heat radiation heat exchanger 8b.

【0025】この場合、熱源側冷凍サイクルの能力と、
蓄熱槽STRの放熱用熱交換器8bでの放熱能力とのほ
ぼ和となり、冷房能力が増大する。
In this case, the capacity of the heat source side refrigeration cycle,
This is almost the sum of the heat dissipation capacity of the heat storage tank STR and the heat dissipation capacity of the heat exchanger 8b, and the cooling capacity is increased.

【0026】これら通常冷房運転やピ−ク負荷冷房運転
は、室内負荷や夜間蓄熱運転で蓄熱槽STR内に蓄えら
れた蓄熱量の大きさに応じて使い分ける。例えば、早朝
の室内負荷が小さい時には通常冷房運転とし、真昼時の
室内負荷が大きい時にはピ−ク負荷冷房運転に切り替
え、蓄熱槽STR内の蓄熱量か無くなると再び通常冷房
運転に切り替えることで真昼のピ−ク負荷に対応でき
る。
The normal cooling operation and the peak load cooling operation are selectively used according to the amount of heat stored in the heat storage tank STR in the indoor load or night heat storage operation. For example, when the indoor load in the early morning is small, the normal cooling operation is performed, when the indoor load at noon is large, the operation is switched to the peak load cooling operation, and when the amount of heat stored in the heat storage tank STR is exhausted, the normal cooling operation is switched to the normal cooling operation again. Peak load.

【0027】以上のように、夜間の余剰電力エネルギー
を熱に変換して蓄熱しておき、昼間にその電力を利用す
ることにより、昼間の高負荷時刻における電力ピークを
抑え、電力利用の平準化が図れる。
As described above, the surplus power energy at night is converted into heat and stored, and the power is used in the daytime to suppress the power peak at the time of high load in the daytime and level the power usage. Can be achieved.

【0028】尚、本従来例は、単数の熱源側冷凍サイク
ルと利用側サイクルから構成されており、熱源側冷凍サ
イクル1台当たりの冷暖房能力を大きく見積もって約6
0kW:床面積約500平方メ−トル相当を空調可能で
ある。総床面積が1000平方メ−トルを越える大規模
ビルには、複数個の熱源側冷凍サイクルと利用側サイク
ルで構成することで空調負荷に対応する。
This prior art example is composed of a single heat source side refrigeration cycle and a user side cycle, and the heating / cooling capacity per heat source side refrigeration cycle is roughly estimated to be about 6
0 kW: Air conditioning is possible for a floor area equivalent to about 500 square meters. For a large-scale building having a total floor area exceeding 1,000 square meters, a plurality of heat source-side refrigeration cycles and a use-side cycle are configured to cope with the air conditioning load.

【0029】[0029]

【発明が解決しようとする課題】しかしながら、前述の
従来例における冷媒対冷媒熱交換器HEXを使用する冷
房運転では、真夏日の様に外気温が非常に高い場合や室
内負荷が著しく大きくなる場合においては、圧縮機2の
吐出又は吸入圧力がスペックを越えて異常上昇するた
め、圧縮機2の寿命の低下し、場合によっては故障に至
るという問題があった。
However, in the cooling operation using the refrigerant-to-refrigerant heat exchanger HEX in the above-mentioned conventional example, when the outside air temperature is extremely high, such as on a midsummer day, or when the indoor load becomes significantly large. In the above, since the discharge or suction pressure of the compressor 2 exceeds the specification abnormally, there is a problem that the life of the compressor 2 is shortened and, in some cases, a failure occurs.

【0030】そこで、本発明は上記欠点を鑑み、冷房
時、圧縮機の吐出又は吸入圧力が異常上昇する場合に、
蓄熱用熱交換器を水冷凝縮器として作用させることで、
圧縮機の圧力の異常上昇を抑えて圧縮機の信頼性を確保
し、且つ蓄熱槽の冷熱を有効利用する。
In view of the above-mentioned drawbacks, the present invention has the following advantages when the discharge or suction pressure of the compressor rises abnormally during cooling:
By operating the heat storage heat exchanger as a water-cooled condenser,
The reliability of the compressor is secured by suppressing an abnormal rise in the pressure of the compressor, and the cold heat of the heat storage tank is effectively used.

【0031】[0031]

【課題を解決するための手段】上記課題を解決する本発
明の技術的手段は、圧縮機と、第1四方弁と、熱源側熱
交換器と、第1膨張弁と、第1補助熱交換器と第2補助
熱交換器とからなる冷媒対冷媒熱交換器の第1補助熱交
換器とを順次環状に連接し、かつ第2膨張弁及び蓄熱用
熱交換器と放熱用熱交換器と蓄熱材とからなる蓄熱槽の
蓄熱用熱交換器とを直列に接続したものを、前記第1膨
張弁と前記第1補助熱交換器との直列接続部分に並列に
接続してなる熱源側冷凍サイクルと、冷媒搬送ポンプと
第2四方弁と冷媒タンクとを順次環状に連接したポンプ
ユニットと、室内流量弁と利用側熱交換器とからなる複
数の室内ユニットと、前記第2補助熱交換器と第1流量
弁とを直列に接続したものに対し、前記放熱用熱交換器
と第2流量弁とを直列接続したものを並列に接続したも
のとを環状に接続してなる利用側冷凍サイクルとからな
り、前記蓄熱用熱交換器と前記第1補助熱交換器の間に
位置する第1二方弁と、一端を前記蓄熱用熱交換器と前
記第1二方弁との間に他端を前記第1四方弁と前記熱源
側熱交換器の間に位置するバイパスと、前記バイパスの
途中に有する第2二方弁を備え、前記第2補助熱交換器
を使用する冷房運転モ−ドであることを検知する冷房モ
−ド検知手段と、前記蓄熱材の温度を検知する蓄熱材温
度検知手段と、前記圧縮機の吸入部若しくは吐出部の圧
力を検知する圧縮機圧力検知手段と、前記圧縮機の圧力
が過負荷であることを判断し、且つ前記蓄熱用熱交換器
を凝縮器として作用可能であると判断する蓄熱利用判定
手段と、前記第2膨張弁と前記第1二方弁と前記第2二
方弁を駆動する蓄熱利用駆動手段とから構成され、前記
冷房モ−ド検知手段によって前記第2補助熱交換器を使
用するサイクルでの冷房運転であると検知した場合に、
前記蓄熱材温度検知手段によって前記蓄熱材の温度を検
知し、前記圧縮機圧力検知手段により前記圧縮機の吸入
部若しくは吐出部の圧力を検知し、蓄熱利用判定手段に
より前記圧縮機の吸入部若しくは吐出部の圧力が予め定
められた第1所定圧力を越えたならば前記圧縮機の圧力
が過負荷であることを判断し、且つ前記蓄熱材の温度が
予め定められた第1所定温度以下であるならば前記蓄熱
用熱交換器を凝縮器として作用可能であると判断し、蓄
熱利用駆動手段により前記第2膨張弁と前記第2二方弁
を開き、前記第1二方弁を閉じるものである。
The technical means of the present invention for solving the above-mentioned problems is a compressor, a first four-way valve, a heat source side heat exchanger, a first expansion valve, and a first auxiliary heat exchange. And a first auxiliary heat exchanger of the refrigerant-to-refrigerant heat exchanger, which is composed of a heat exchanger and a second auxiliary heat exchanger, are sequentially connected in an annular shape, and a second expansion valve, a heat storage heat exchanger, and a heat radiation heat exchanger Refrigerant on the heat source side in which a heat storage heat exchanger of a heat storage tank made of a heat storage material is connected in series to a series connection portion of the first expansion valve and the first auxiliary heat exchanger. A cycle, a pump unit in which a refrigerant transfer pump, a second four-way valve and a refrigerant tank are sequentially connected in an annular shape, a plurality of indoor units including an indoor flow valve and a utilization side heat exchanger, and the second auxiliary heat exchanger And the first flow valve are connected in series, the heat radiating heat exchanger and the second flow valve are connected to each other. A first two-way valve, which is composed of a utilization side refrigeration cycle formed by annularly connecting those connected in parallel and those connected in parallel, and located between the heat storage heat exchanger and the first auxiliary heat exchanger. And a bypass having one end between the heat storage heat exchanger and the first two-way valve and the other end located between the first four-way valve and the heat source side heat exchanger, and in the middle of the bypass. A cooling mode detecting means having a second two-way valve for detecting a cooling operation mode using the second auxiliary heat exchanger, and a heat storage material temperature detecting means for detecting the temperature of the heat storage material. And a compressor pressure detecting means for detecting the pressure of the suction part or the discharge part of the compressor, and determining that the pressure of the compressor is overloaded, and acting the heat storage heat exchanger as a condenser. Heat storage utilization determining means for determining that it is possible, the second expansion valve, and the first In the case where the cooling operation is constituted by a one-way valve and a heat storage utilization drive means for driving the second two-way valve, and the cooling mode detection means detects a cooling operation in a cycle using the second auxiliary heat exchanger. To
The heat storage material temperature detection means detects the temperature of the heat storage material, the compressor pressure detection means detects the pressure of the suction portion or the discharge portion of the compressor, and the heat storage utilization determination means detects the suction portion of the compressor or If the pressure of the discharge part exceeds a predetermined first predetermined pressure, it is judged that the pressure of the compressor is overloaded, and if the temperature of the heat storage material is equal to or lower than the predetermined first predetermined temperature. If there is, it is judged that the heat storage heat exchanger can act as a condenser, and the heat storage utilization drive means opens the second expansion valve and the second two-way valve and closes the first two-way valve. Is.

【0032】[0032]

【発明の実施の形態】本発明の蓄熱式空気調和機は、冷
房モ−ド検知手段によって第2補助熱交換器を使用する
サイクルでの冷房運転であると検知した場合に、蓄熱材
温度検知手段によって蓄熱材の温度を検知し、圧縮機圧
力検知手段により圧縮機の吸入部若しくは吐出部の圧力
を検知し、蓄熱利用判定手段により前記圧縮機の吸入部
若しくは吐出部の圧力が予め定められた第1所定圧力を
越えたならば前記圧縮機の圧力が過負荷であることを判
断し、且つ前記蓄熱材の温度が予め定められた第1所定
温度以下であるならば蓄熱用熱交換器を凝縮器として作
用可能であると判断し、蓄熱利用駆動手段により前記第
2膨張弁と前記第2二方弁を開き、前記第1二方弁を閉
じる。
BEST MODE FOR CARRYING OUT THE INVENTION The heat storage type air conditioner of the present invention detects the temperature of the heat storage material when the cooling mode detection means detects the cooling operation in the cycle using the second auxiliary heat exchanger. Means for detecting the temperature of the heat storage material, compressor pressure detecting means for detecting the pressure of the suction portion or discharge portion of the compressor, and heat storage utilization determining means for predetermining the pressure of the suction portion or discharge portion of the compressor. If it exceeds the first predetermined pressure, it is judged that the pressure of the compressor is overloaded, and if the temperature of the heat storage material is below a predetermined first predetermined temperature, the heat storage heat exchanger. Is determined to be operable as a condenser, the heat storage utilization drive means opens the second expansion valve and the second two-way valve, and closes the first two-way valve.

【0033】以上の様な操作により、冷房運転時、圧縮
機の吐出又は吸入圧力が異常上昇する場合に、蓄熱用熱
交換器を水冷凝縮器として作用させることで、圧縮機の
圧力の異常上昇を早急に抑えることが可能になるため圧
縮機の信頼性を確保でき、且つ蓄熱槽の冷熱を有効利用
するという効果がある。
By the above operation, when the discharge or suction pressure of the compressor rises abnormally during the cooling operation, the heat exchanger for heat storage acts as a water-cooled condenser so that the pressure of the compressor rises abnormally. Since it is possible to quickly suppress the above, it is possible to ensure the reliability of the compressor and to effectively utilize the cold heat of the heat storage tank.

【0034】以下、本発明の実施の形態を添付図面に基
づいて説明を行うが、従来と同一構成については同一符
号を付し、その詳細な説明を省略する。
Embodiments of the present invention will be described below with reference to the accompanying drawings. The same components as those of the conventional one will be designated by the same reference numerals and detailed description thereof will be omitted.

【0035】図1は本発明の実施の形態の冷凍サイクル
図である。本実施の形態の蓄熱式空気調和機は、室外ユ
ニット1’と、ポンプユニットPUと、複数の室内ユニ
ット13a,13bと、蓄熱槽STRとから構成されて
いる。
FIG. 1 is a refrigeration cycle diagram of an embodiment of the present invention. The heat storage type air conditioner of the present embodiment includes an outdoor unit 1 ′, a pump unit PU, a plurality of indoor units 13a and 13b, and a heat storage tank STR.

【0036】室外ユニット1’は、圧縮機2、第1四方
弁3a、熱源側熱交換器4、第1膨張弁5a、第2膨張
弁5b、第1補助熱交換器7aと第2補助熱交換器7b
とからなる冷媒対冷媒熱交換器HEX、第2補助熱交換
器7b用の第1流量弁RV1、放熱用熱交換器8b用の
第2流量弁RV2、第1二方弁NV1、第2二方弁NV
2、バイパスBPから構成されている。
The outdoor unit 1'includes a compressor 2, a first four-way valve 3a, a heat source side heat exchanger 4, a first expansion valve 5a, a second expansion valve 5b, a first auxiliary heat exchanger 7a and a second auxiliary heat. Exchanger 7b
A refrigerant-to-refrigerant heat exchanger HEX, a first flow valve RV1 for the second auxiliary heat exchanger 7b, a second flow valve RV2 for the heat radiating heat exchanger 8b, a first two-way valve NV1, and a second two. Way valve NV
2. It is composed of a bypass BP.

【0037】蓄熱槽STRは、蓄熱材9と蓄熱用熱交換
器8aと放熱用熱交換器8bとからなりたっている。
The heat storage tank STR comprises a heat storage material 9, a heat storage heat exchanger 8a, and a heat radiation heat exchanger 8b.

【0038】ポンプユニットPUは冷媒タンク11、冷
媒搬送ポンプPM、及び第2四方弁3bとからなり、室
内ユニット13a,13bは、利用側交換器14a,1
4b、室内流量弁15a,15bとから構成されてい
る。
The pump unit PU comprises a refrigerant tank 11, a refrigerant transfer pump PM, and a second four-way valve 3b. The indoor units 13a, 13b are used side exchangers 14a, 1b.
4b and the indoor flow valves 15a and 15b.

【0039】上記構成において、熱源側冷凍サイクル
は、圧縮機2と、第1四方弁3aと、熱源側熱交換器4
と、第1膨張弁5aと、第1補助熱交換器7aと第2補
助熱交換器7bとからなる冷媒対冷媒熱交換器HEXの
第1補助熱交換器7aとを順次環状に連接し、かつ第2
膨張弁5b及び蓄熱用熱交換器8aと放熱用熱交換器8
bと蓄熱材9とからなる蓄熱用熱交換器8aとを直列に
接続したものを、前記第1膨張弁5aと前記冷媒対冷媒
熱交換器HEXの第1補助熱交換器7aとの直列接続部
分に並列に接続してなる。
In the above construction, the heat source side refrigeration cycle includes the compressor 2, the first four-way valve 3a, and the heat source side heat exchanger 4.
And the first expansion valve 5a and the first auxiliary heat exchanger 7a of the refrigerant-to-refrigerant heat exchanger HEX including the first auxiliary heat exchanger 7a and the second auxiliary heat exchanger 7b are sequentially connected in a ring shape, And second
Expansion valve 5b, heat storage heat exchanger 8a, and heat radiation heat exchanger 8
b is connected in series with a heat storage heat exchanger 8a composed of a heat storage material 9, and the first expansion valve 5a and the first auxiliary heat exchanger 7a of the refrigerant-refrigerant heat exchanger HEX are connected in series. Connected in parallel to the parts.

【0040】利用側冷凍サイクルは、冷媒搬送ポンプP
Mと第2四方弁3bと冷媒タンク11とを順次環状に連
接したポンプユニットPUと、室内流量弁15a,15
bと利用側熱交換器14a,14bとからなる複数の室
内ユニット13a,13bと、前記第2補助熱交換器7
bと第1流量弁5aとを直列に接続したものに対し、前
記放熱用熱交換器8bと第2流量弁RV2とを直列接続
したものを並列に接続したものとを環状に接続してな
る。
The refrigeration cycle on the use side is the refrigerant transfer pump P.
M, a second four-way valve 3b, and a pump unit PU in which the refrigerant tank 11 is sequentially connected in a ring shape, and the indoor flow valves 15a, 15
b and a plurality of indoor units 13a and 13b each comprising a use-side heat exchanger 14a and 14b, and the second auxiliary heat exchanger 7
b is connected in series with the first flow valve 5a, whereas the heat radiation heat exchanger 8b is connected in series with the second flow valve RV2 connected in series and is connected in an annular shape. .

【0041】また、蓄熱用熱交換器8aと第1補助熱交
換器7aの間に位置する第1二方弁NV1と、一端を前
記蓄熱用熱交換器8aと第1二方弁NV1との間に他端
を第1四方弁3aと熱源側熱交換器4の間に位置するバ
イパスBPと、バイパスBPの途中に有する第2二方弁
NV2を備えている。
A first two-way valve NV1 located between the heat storage heat exchanger 8a and the first auxiliary heat exchanger 7a and one end of the heat storage heat exchanger 8a and the first two-way valve NV1 are connected. A bypass BP having the other end located between the first four-way valve 3a and the heat source side heat exchanger 4 and a second two-way valve NV2 provided in the middle of the bypass BP are provided.

【0042】また、第2補助熱交換器7bを使用する冷
房運転モ−ドであることを検知する冷房モ−ド検知手段
18と、蓄熱材9(例えば水)の温度TWを検知する蓄
熱材温度検知手段19と、圧縮機2の吸入部若しくは吐
出部の圧力P(本実施の形態では圧縮機2の吸入圧力P
とする)を検知する圧縮機圧力検知手段20と、圧縮機
2が過負荷状態であることを判断し、且つ蓄熱用熱交換
器8aを凝縮器として作用可能であると判断する蓄熱利
用判定手段21と、第2膨張弁5bと第1二方弁NV1
と第2二方弁NV2を駆動する蓄熱利用駆動手段22と
から構成された第1制御装置CN1を備えている。
Further, a cooling mode detecting means 18 for detecting the cooling operation mode using the second auxiliary heat exchanger 7b, and a heat storage material for detecting the temperature TW of the heat storage material 9 (for example, water). The pressure P between the temperature detection means 19 and the suction part or the discharge part of the compressor 2 (in the present embodiment, the suction pressure P of the compressor 2).
And a heat storage utilization determining means for determining that the compressor 2 is in an overloaded state and determining that the heat storage heat exchanger 8a can act as a condenser. 21, the second expansion valve 5b and the first two-way valve NV1
And a first control device CN1 including a heat storage utilization drive means 22 for driving the second two-way valve NV2.

【0043】ここで、圧力センサーPSは、圧縮機2の
吸入部圧力Pを検知する圧縮機吸入圧力検知手段20の
一具体例として示している。また、サ−ミスタSMは、
蓄熱材である水9の温度TWを検知する蓄熱材温度検知
手段19の一具体例として示している。
The pressure sensor PS is shown as a specific example of the compressor suction pressure detection means 20 for detecting the suction portion pressure P of the compressor 2. The thermistor SM is
It is shown as a specific example of the heat storage material temperature detection means 19 for detecting the temperature TW of the water 9 which is the heat storage material.

【0044】従来例に説明した時と同様に、熱源側冷凍
サイクル内にて蓄熱槽STRと第1膨張弁5aとを連通
する設定を第1STR回路、冷媒対冷媒熱交換器HEX
と第1膨張弁5aとを連通する設定を第1HEX回路と
定義し、利用側冷凍サイクル内にて冷媒対冷媒熱交換器
HEXと利用側熱交換器14a,14bとを連通する設
定を第2HEX回路、冷媒対冷媒熱交換器HEXと蓄熱
槽HEXと利用側熱交換器14a,14bとを連通する
設定を第2(HEX+STR)回路と定義する。
As in the case of the conventional example, the first STR circuit and the refrigerant-refrigerant heat exchanger HEX are set so that the heat storage tank STR and the first expansion valve 5a communicate with each other in the heat source side refrigeration cycle.
Is defined as a first HEX circuit, and a setting for communicating the refrigerant-refrigerant heat exchanger HEX with the usage-side heat exchangers 14a, 14b in the usage-side refrigeration cycle is defined as a second HEX circuit. The setting for connecting the circuit, the refrigerant-to-refrigerant heat exchanger HEX, the heat storage tank HEX, and the use side heat exchangers 14a and 14b is defined as a second (HEX + STR) circuit.

【0045】次に、この実施の形態の構成における作用
を説明する。但し、第1制御装置CN1の作用以外は、
従来例と同一作用であることから、各運転パタ−ンの作
用については説明を省略する。そして、従来例と異なる
第1制御装置CN1の作用について、図2のフローチャ
ートを用いて説明する。
Next, the operation of the structure of this embodiment will be described. However, except for the operation of the first control device CN1,
Since the operation is the same as that of the conventional example, the description of the operation of each operation pattern is omitted. The operation of the first control device CN1 different from the conventional example will be described with reference to the flowchart of FIG.

【0046】STEP1は、冷房モ−ド検知手段18に
よって、第2補助熱交換器7bを使用する冷房運転モ−
ド(即ち熱源側冷凍サイクルは第1HEX回路であり、
利用側冷凍サイクルは第2HEX回路で冷房運転を行っ
ていること)であると検知してSTEP2に移行し、そ
れ以外はル−チンから抜ける。
In STEP 1, the cooling mode detecting means 18 causes the cooling operation mode using the second auxiliary heat exchanger 7b.
(That is, the heat source side refrigeration cycle is the first HEX circuit,
It is detected that the use side refrigeration cycle is performing the cooling operation in the second HEX circuit), the process proceeds to STEP2, and otherwise the routine is exited from the routine.

【0047】STEP2は、蓄熱材温度検知手段19に
よって、蓄熱材である水9の水温TWを検知し、STE
P3へ移行する。
In STEP 2, the heat storage material temperature detecting means 19 detects the water temperature TW of the water 9 as the heat storage material, and STE
Move to P3.

【0048】STEP3は、圧縮機圧力検知手段20に
よって、圧縮機2の吸入圧力Pを検知し、STEP4へ
移行する。
At STEP 3, the suction pressure P of the compressor 2 is detected by the compressor pressure detecting means 20, and the process proceeds to STEP 4.

【0049】STEP4は、蓄熱利用判定手段20によ
り、水温TWが予め定められた第1所定温度T1以下
(例えばTW≦20℃)、且つ吸入圧力Pが予め定めら
れた第1所定圧力P1を越える(例えばP>0.65M
Pa)ならば、蓄熱材である水9を熱源とする凝縮器と
して蓄熱用熱交換器8aを作用させると判断しSTEP
5へ移行し、それ以外ならばル−チンから抜ける。
In STEP 4, the heat storage utilization determining means 20 determines that the water temperature TW is equal to or lower than a first predetermined temperature T1 (for example, TW ≦ 20 ° C.) and the suction pressure P exceeds a predetermined first predetermined pressure P1. (For example, P> 0.65M
If it is Pa), it is determined that the heat storage heat exchanger 8a acts as a condenser using water 9 which is a heat storage material as a heat source, and STEP
Go to 5, otherwise exit the routine.

【0050】STEP5は、凝縮器として蓄熱用熱交換
器8aを作用させるために、第2二方弁NV2と第2膨
張弁5bを開き、且つ第1二方弁NV1を閉じて、ST
EP6に移行する。この回路により圧縮機2を出た高温
のガス冷媒は、室外熱交換器4とバイパスBPへ流れて
いく。そして、室外熱交換器4と蓄熱用熱交換器8aの
両熱交換器を凝縮器として作用させることで凝縮器全体
としての放熱量が大きくなり、且つ水冷凝縮器となる蓄
熱用熱交換器8aの熱通過率が空冷凝縮器に比べて大き
くなるため放熱能力がさらに大きく見込める。
In STEP 5, the second two-way valve NV2 and the second expansion valve 5b are opened and the first two-way valve NV1 is closed in order to operate the heat storage heat exchanger 8a as a condenser, and ST
Move to EP6. The high temperature gas refrigerant that has exited the compressor 2 by this circuit flows to the outdoor heat exchanger 4 and the bypass BP. Then, by operating both the outdoor heat exchanger 4 and the heat storage heat exchanger 8a as condensers, the heat radiation amount of the condenser as a whole increases and the heat storage heat exchanger 8a becomes a water-cooled condenser. Since the heat transfer rate of is larger than that of the air-cooled condenser, the heat dissipation capacity can be expected to be even larger.

【0051】従って、圧縮機2の圧力Pの異常上昇を早
急に抑えることが可能になるため圧縮機2の信頼性を確
保でき、且つ通常の冷房運転に要する上限水温TWが7
℃までに対して、蓄熱槽STRの水温TWが20℃まで
利用できるため、蓄熱槽STRの冷熱を有効利用できる
という効果がある。
Therefore, since the abnormal increase in the pressure P of the compressor 2 can be suppressed promptly, the reliability of the compressor 2 can be secured, and the upper limit water temperature TW required for the normal cooling operation is 7
Since the water temperature TW of the heat storage tank STR can be used up to 20 ° C. up to 0 ° C., the cold heat of the heat storage tank STR can be effectively used.

【0052】STEP6では、蓄熱利用判定手段21に
より、水温TWが第1所定温度T1を越え(例えばTW
>20℃)若しくは吸入圧力Pが予め定められた第2所
定圧力P2以下(例えばP≦0.60MPa)ならば、
凝縮器として蓄熱用熱交換器8aを作用させる必要なし
と判断し、STEP7へ移行し、それ以外ならばSTE
P5の頭に戻る。
In STEP 6, the heat storage utilization determining means 21 causes the water temperature TW to exceed the first predetermined temperature T1 (for example, TW).
> 20 ° C.) or the suction pressure P is equal to or lower than a second predetermined pressure P2 (for example, P ≦ 0.60 MPa),
It is determined that it is not necessary to operate the heat storage heat exchanger 8a as a condenser, and the process proceeds to STEP7.
Return to the head of P5.

【0053】STEP7では、熱源側冷凍サイクルを第
1HEX回路に戻し、冷房運転を継続する。
In STEP 7, the heat source side refrigeration cycle is returned to the first HEX circuit and the cooling operation is continued.

【0054】この様にして、STEP1からSTEP7
のルーチンを、冷暖房装置の運転中繰り返すことによっ
て、室外熱交換器4と蓄熱用熱交換器8aの両熱交換器
を凝縮器として作用させることで凝縮器での放熱量が大
きくなり、且つ水冷凝縮器となる蓄熱用熱交換器8aの
熱通過率が空冷凝縮器に比べて大きくなるため放熱能力
がさらに大きく見込める。従って、圧縮機2の吸入圧力
Pが異常上昇する場合に、蓄熱用熱交換器8aを水冷凝
縮器として作用させることで、圧縮機2の圧力Pの異常
上昇を早急に抑えることが可能になるため圧縮機2の信
頼性を確保でき、且つ蓄熱槽STRの冷熱を有効利用す
るという効果がある。
In this way, STEP1 to STEP7
By repeating this routine during the operation of the cooling and heating device, both the outdoor heat exchanger 4 and the heat storage heat exchanger 8a act as condensers, so that the amount of heat radiated in the condenser increases and the water cooling Since the heat transfer coefficient of the heat storage heat exchanger 8a, which serves as a condenser, is larger than that of the air-cooled condenser, the heat dissipation ability can be expected to be even larger. Therefore, when the suction pressure P of the compressor 2 is abnormally increased, the heat storage heat exchanger 8a is caused to act as a water-cooled condenser, so that the abnormal increase of the pressure P of the compressor 2 can be promptly suppressed. Therefore, there is an effect that the reliability of the compressor 2 can be secured and the cold heat of the heat storage tank STR can be effectively used.

【0055】以上の様に、本実施の形態では蓄熱式空気
調和機において、蓄熱用熱交換器8aと第1補助熱交換
器7aの間に位置する第1二方弁NV1と、一端を蓄熱
用熱交換器8aと第1二方弁NV1との間に他端を第1
四方弁3aと熱源側熱交換器4の間に位置するバイパス
BPと、バイパスBPの途中に有する第2二方弁NV2
を備えている。
As described above, in this embodiment, in the heat storage type air conditioner, the first two-way valve NV1 located between the heat storage heat exchanger 8a and the first auxiliary heat exchanger 7a and one end of the heat storage air conditioner are stored. The other end between the first heat exchanger 8a and the first two-way valve NV1
A bypass BP located between the four-way valve 3a and the heat source side heat exchanger 4, and a second two-way valve NV2 provided in the middle of the bypass BP.
It has.

【0056】また、冷房モ−ド検知手段18によって第
2補助熱交換器7bを使用するサイクルでの冷房運転で
あると検知した場合に、蓄熱材温度検知手段19によっ
て蓄熱材9の温度TWを検知し、圧縮機圧力検知手段2
0により圧縮機2の吸入圧力Pを検知し、蓄熱利用判定
手段21により圧縮機2の吸入圧力Pが予め定められた
第1所定圧力P1を越えたならば圧縮機2の圧力Pが過
負荷であることを判断し、且つ蓄熱材9の温度TWが予
め定められた第1所定温度T1以下であるならば蓄熱用
熱交換器8aを凝縮器として作用可能であると判断し、
蓄熱利用駆動手段22により第2膨張弁5bと第2二方
弁NV2を開き、第1二方弁NV1を閉じる。
When the cooling mode detecting means 18 detects that the cooling operation is in the cycle using the second auxiliary heat exchanger 7b, the heat storage material temperature detecting means 19 determines the temperature TW of the heat storage material 9. Compressor pressure detection means 2
If the suction pressure P of the compressor 2 is detected by 0 and the suction pressure P of the compressor 2 exceeds the predetermined first predetermined pressure P1 by the heat storage utilization judging means 21, the pressure P of the compressor 2 is overloaded. If the temperature TW of the heat storage material 9 is equal to or lower than a first predetermined temperature T1 determined in advance, it is determined that the heat storage heat exchanger 8a can act as a condenser,
The heat storage utilization drive means 22 opens the second expansion valve 5b and the second two-way valve NV2, and closes the first two-way valve NV1.

【0057】以上のような操作により、室外熱交換器4
と蓄熱用熱交換器8aの両熱交換器を凝縮器として作用
させることで凝縮器での放熱量が大きくなり、且つ水冷
凝縮器となる蓄熱用熱交換器8aの熱通過率が空冷凝縮
器に比べて大きくなるため放熱能力がさらに大きく見込
める。従って、圧縮機2の吸入圧力Pが異常上昇する場
合に、蓄熱用熱交換器8aを水冷凝縮器として作用させ
ることで、圧縮機2の圧力Pの異常上昇を早急に抑える
ことが可能になるため圧縮機2の信頼性を確保でき、且
つ蓄熱槽STRの冷熱を有効利用するという効果があ
る。
By the above operation, the outdoor heat exchanger 4
By operating both heat exchangers for heat storage and heat exchanger 8a for heat storage as condensers, the amount of heat radiated in the condenser is increased, and the heat passage rate of heat exchanger 8a for heat storage, which is a water-cooled condenser, is an air-cooled condenser. It is expected to have a larger heat dissipation capacity because it is larger than Therefore, when the suction pressure P of the compressor 2 is abnormally increased, the heat storage heat exchanger 8a is caused to act as a water-cooled condenser, so that the abnormal increase of the pressure P of the compressor 2 can be promptly suppressed. Therefore, there is an effect that the reliability of the compressor 2 can be secured and the cold heat of the heat storage tank STR can be effectively used.

【0058】なお、本実施の形態では、圧縮機2の過負
荷状態における検知として圧縮機2の吸入圧力Pを用い
ているが、過負荷状態では吸入圧力Pの上昇に応じて圧
縮機2の吐出圧力も同様に上昇するので、吐出圧力(但
し、第1所定圧力P1=2.3MPa,第2所定圧力P
2=1.8MPaとする)を用いても、本実施の形態と
同様の効果が得られることは言うまでもない。
In the present embodiment, the suction pressure P of the compressor 2 is used as the detection when the compressor 2 is overloaded. However, in the overload state, the suction pressure P of the compressor 2 is increased according to the rise of the suction pressure P. Since the discharge pressure also rises, the discharge pressure (however, the first predetermined pressure P1 = 2.3 MPa, the second predetermined pressure P
It is needless to say that the same effect as that of the present embodiment can be obtained by using (2 = 1.8 MPa).

【0059】[0059]

【発明の効果】以上のように本発明の蓄熱式空気調和機
は、蓄熱槽を介して、熱源側冷凍サイクルと、利用側冷
凍サイクルとからなる蓄熱式空気調和機において、蓄熱
用熱交換器と第1補助熱交換器の間に位置する第1二方
弁と、一端を前記蓄熱用熱交換器と前記第1二方弁との
間に他端を第1四方弁と熱源側熱交換器の間に位置する
バイパスと、前記バイパスの途中に有する第2二方弁を
備え、第2補助熱交換器を使用する冷房運転モ−ドであ
ることを検知する冷房モ−ド検知手段と、蓄熱材の温度
を検知する蓄熱材温度検知手段と、圧縮機の吸入部若し
くは吐出部の圧力を検知する圧縮機圧力検知手段と、前
記圧縮機の圧力が過負荷であることを判断し、且つ前記
蓄熱用熱交換器を凝縮器として作用可能であると判断す
る蓄熱利用判定手段と、第2膨張弁と前記第1二方弁と
前記第2二方弁を駆動する蓄熱利用駆動手段とから構成
された第1制御装置とを備えたものである。
As described above, the heat storage type air conditioner of the present invention is a heat storage type air conditioner comprising a heat source side refrigeration cycle and a use side refrigeration cycle through a heat storage tank. And a first auxiliary heat exchanger, a first two-way valve, one end between the heat storage heat exchanger and the first two-way valve, the other end between the first four-way valve and the heat source side heat exchange A bypass located between the air conditioners and a second two-way valve provided in the middle of the bypass, and a cooling mode detection means for detecting the cooling operation mode using the second auxiliary heat exchanger. , A heat storage material temperature detecting means for detecting the temperature of the heat storage material, a compressor pressure detecting means for detecting the pressure of the suction part or the discharge part of the compressor, and determining that the pressure of the compressor is overloaded, Further, a heat storage utilization judging means for judging that the heat storage heat exchanger can act as a condenser. When, in which a first control device that is composed of a heat storage utilizing driving means for driving the second expansion valve and the first two-way valve the second two-way valve.

【0060】そして、前記冷房モ−ド検知手段によって
前記第2補助熱交換器を使用するサイクルでの冷房運転
であると検知した場合に、前記蓄熱材温度検知手段によ
って前記蓄熱材の温度を検知し、前記圧縮機圧力検知手
段により前記圧縮機の吸入部若しくは吐出部の圧力を検
知し、蓄熱利用判定手段により前記圧縮機の吸入部若し
くは吐出部の圧力が予め定められた第1所定圧力を越え
たならば前記圧縮機の圧力が過負荷であることを判断
し、且つ前記蓄熱材の温度が予め定められた第1所定温
度以下であるならば前記蓄熱用熱交換器を凝縮器として
作用可能であると判断し、蓄熱利用駆動手段により前記
第2膨張弁と前記第2二方弁を開き、前記第1二方弁を
閉じるものである。
Then, when the cooling mode detecting means detects that the cooling operation is in a cycle using the second auxiliary heat exchanger, the heat storage material temperature detecting means detects the temperature of the heat storage material. Then, the pressure of the suction part or the discharge part of the compressor is detected by the compressor pressure detection means, and the pressure of the suction part or the discharge part of the compressor is set to a first predetermined pressure by the heat storage utilization determination means. If it exceeds, it is determined that the pressure of the compressor is overloaded, and if the temperature of the heat storage material is equal to or lower than the first predetermined temperature, the heat storage heat exchanger acts as a condenser. When it is determined that it is possible, the heat storage utilization drive means opens the second expansion valve and the second two-way valve and closes the first two-way valve.

【0061】以上の様な操作により、冷房運転時、圧縮
機の吐出又は吸入圧力が異常上昇する場合に、蓄熱用熱
交換器を水冷凝縮器として作用させることで、圧縮機の
圧力の異常上昇を早急に抑えることが可能になるため圧
縮機の信頼性を確保でき、且つ蓄熱槽の冷熱を有効利用
するという効果がある。
By the above operation, when the discharge or suction pressure of the compressor rises abnormally during the cooling operation, the heat exchanger for heat storage acts as a water-cooled condenser to raise the pressure of the compressor abnormally. Since it is possible to quickly suppress the above, it is possible to ensure the reliability of the compressor and to effectively utilize the cold heat of the heat storage tank.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1による蓄熱式空気調和機
の冷凍システム図
FIG. 1 is a refrigeration system diagram of a heat storage type air conditioner according to a first embodiment of the present invention.

【図2】同実施の形態の第1制御装置の動作フローチャ
ート
FIG. 2 is an operation flowchart of the first control device of the same embodiment.

【図3】従来例を示す蓄熱式空気調和機の冷凍システム
FIG. 3 is a refrigeration system diagram of a heat storage type air conditioner showing a conventional example.

【符号の説明】[Explanation of symbols]

2 圧縮機 3a 第1四方弁 3b 第2四方弁 4 熱源側熱交換器 5a 第1膨張弁 5b 第2膨張弁 7a 第1補助熱交換器 7b 第2補助熱交換器 8a 蓄熱用熱交換器 8b 放熱用熱交換器 9 蓄熱材 11 冷媒タンク 13a,13b 室内ユニット 14a,14b 利用側熱交換器 15a,15b 室内流量弁 18 冷房モ−ド検知手段 19 蓄熱材温度検知手段 20 圧縮機圧力検知手段 21 蓄熱利用判定手段 22 蓄熱利用駆動手段 23 第1二方弁駆動手段 BP バイパス PU ポンプユニット STR 蓄熱槽 HEX 冷媒対冷媒熱交換器 PM 冷媒搬送ポンプ RV1 第1流量弁 RV2 第2流量弁 NV1 第1二方弁 NV2 第2二方弁 CN1 第1制御装置 2 Compressor 3a First four-way valve 3b Second four-way valve 4 Heat source side heat exchanger 5a First expansion valve 5b Second expansion valve 7a First auxiliary heat exchanger 7b Second auxiliary heat exchanger 8a Heat storage heat exchanger 8b Radiation heat exchanger 9 Heat storage material 11 Refrigerant tank 13a, 13b Indoor unit 14a, 14b Use side heat exchanger 15a, 15b Indoor flow valve 18 Cooling mode detection means 19 Heat storage material temperature detection means 20 Compressor pressure detection means 21 Heat storage utilization determination means 22 Heat storage utilization drive means 23 First two-way valve drive means BP Bypass PU Pump unit STR Heat storage tank HEX Refrigerant-refrigerant heat exchanger PM Refrigerant transfer pump RV1 First flow valve RV2 Second flow valve NV1 1st 2nd One-way valve NV2 Second two-way valve CN1 First control device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機と、第1四方弁と、熱源側熱交換
器と、第1膨張弁と、第1補助熱交換器と第2補助熱交
換器とからなる冷媒対冷媒熱交換器の第1補助熱交換器
とを順次環状に連接し、かつ第2膨張弁及び蓄熱用熱交
換器と放熱用熱交換器と蓄熱材とからなる蓄熱槽の蓄熱
用熱交換器とを直列に接続したものを、前記第1膨張弁
と前記第1補助熱交換器との直列接続部分に並列に接続
してなる熱源側冷凍サイクルと、 冷媒搬送ポンプと第2四方弁と冷媒タンクとを順次環状
に連接したポンプユニットと、室内流量弁と利用側熱交
換器とからなる複数の室内ユニットと、前記第2補助熱
交換器と第1流量弁とを直列に接続したものに対し、前
記放熱用熱交換器と第2流量弁とを直列接続したものを
並列に接続したものとを環状に接続してなる利用側冷凍
サイクルとからなり、 前記蓄熱用熱交換器と前記第1補助熱交換器の間に位置
する第1二方弁と、一端を前記蓄熱用熱交換器と前記第
1二方弁との間に他端を前記第1四方弁と前記熱源側熱
交換器の間に位置するバイパスと、前記バイパスの途中
に有する第2二方弁を備え、 前記第2補助熱交換器を使用する冷房運転モ−ドである
ことを検知する冷房モ−ド検知手段と、前記蓄熱材の温
度を検知する蓄熱材温度検知手段と、前記圧縮機の吸入
部若しくは吐出部の圧力を検知する圧縮機圧力検知手段
と、前記圧縮機の圧力が過負荷であることを判断し、且
つ前記蓄熱用熱交換器を凝縮器として作用可能であると
判断する蓄熱利用判定手段と、前記第2膨張弁と前記第
1二方弁と前記第2二方弁を駆動する蓄熱利用駆動手段
とから構成され、 前記冷房モ−ド検知手段によって前記第2補助熱交換器
を使用するサイクルでの冷房運転であると検知した場合
に、 前記蓄熱材温度検知手段によって前記蓄熱材の温度を検
知し、前記圧縮機圧力検知手段により前記圧縮機の吸入
部若しくは吐出部の圧力を検知し、蓄熱利用判定手段に
より前記圧縮機の吸入部若しくは吐出部の圧力が予め定
められた第1所定圧力を越えたならば前記圧縮機の圧力
が過負荷であることを判断し、且つ前記蓄熱材の温度が
予め定められた第1所定温度以下であるならば前記蓄熱
用熱交換器を凝縮器として作用可能であると判断し、蓄
熱利用駆動手段により前記第2膨張弁と前記第2二方弁
を開き、前記第1二方弁を閉じる第1制御装置を備えた
蓄熱式空気調和機。
1. A refrigerant-refrigerant heat exchanger comprising a compressor, a first four-way valve, a heat source side heat exchanger, a first expansion valve, a first auxiliary heat exchanger and a second auxiliary heat exchanger. And the first auxiliary heat exchanger are sequentially connected in an annular shape, and the second expansion valve and the heat storage heat exchanger, the heat radiation heat exchanger, and the heat storage heat exchanger of the heat storage tank are connected in series. A heat source side refrigeration cycle in which the connected ones are connected in parallel to a series connection portion of the first expansion valve and the first auxiliary heat exchanger, a refrigerant transfer pump, a second four-way valve, and a refrigerant tank are sequentially arranged. The pump unit connected in an annular shape, a plurality of indoor units including an indoor flow valve and a use-side heat exchanger, and the second auxiliary heat exchanger and the first flow valve connected in series to the heat radiation unit. The heat exchanger and the second flow valve are connected in series and are connected in parallel. And a first two-way valve located between the heat storage heat exchanger and the first auxiliary heat exchanger, and one end of the heat storage heat exchanger and the first two-way valve. And a second two-way valve having the other end between the first four-way valve and the heat source side heat exchanger, and a second two-way valve in the middle of the bypass, and using the second auxiliary heat exchanger. Cooling mode detection means for detecting that it is in the cooling operation mode, heat storage material temperature detection means for detecting the temperature of the heat storage material, and compression for detecting the pressure of the suction part or the discharge part of the compressor. Machine pressure detection means, heat storage utilization determination means for determining that the pressure of the compressor is overloaded, and for determining that the heat storage heat exchanger can act as a condenser, and the second expansion valve And a heat storage utilization drive means for driving the first two-way valve and the second two-way valve. Is formed, when it is detected by the cooling mode detection means that the cooling operation in the cycle using the second auxiliary heat exchanger, the temperature of the heat storage material is detected by the heat storage material temperature detection means, The pressure of the suction part or the discharge part of the compressor is detected by the compressor pressure detection means, and the pressure of the suction part or the discharge part of the compressor exceeds the predetermined first predetermined pressure by the heat storage utilization determination means. If so, it is determined that the pressure of the compressor is overloaded, and if the temperature of the heat storage material is equal to or lower than a predetermined first predetermined temperature, the heat storage heat exchanger can act as a condenser. A heat storage type air conditioner having a first control device that opens the second expansion valve and the second two-way valve and closes the first two-way valve by the heat storage utilization drive means.
JP31418095A 1995-12-01 1995-12-01 Thermal storage type air conditioner Pending JPH09152223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31418095A JPH09152223A (en) 1995-12-01 1995-12-01 Thermal storage type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31418095A JPH09152223A (en) 1995-12-01 1995-12-01 Thermal storage type air conditioner

Publications (1)

Publication Number Publication Date
JPH09152223A true JPH09152223A (en) 1997-06-10

Family

ID=18050226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31418095A Pending JPH09152223A (en) 1995-12-01 1995-12-01 Thermal storage type air conditioner

Country Status (1)

Country Link
JP (1) JPH09152223A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001263857A (en) * 2000-03-17 2001-09-26 Matsushita Seiko Co Ltd Cooling/heating water heater and its control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001263857A (en) * 2000-03-17 2001-09-26 Matsushita Seiko Co Ltd Cooling/heating water heater and its control method

Similar Documents

Publication Publication Date Title
US20170184314A1 (en) Heat pump heating system
KR100402366B1 (en) Heat pump system
US9316421B2 (en) Air-conditioning apparatus including unit for increasing heating capacity
JP6644154B2 (en) Air conditioner
JP5419437B2 (en) Air conditioning combined water heater
JP4298990B2 (en) Refrigeration equipment using carbon dioxide as refrigerant
WO2013061473A1 (en) Hot-water supply and air-conditioning device
CN113007831A (en) Three-pipe multi-online hot water system and control method thereof
JP4229881B2 (en) Heat pump system
EP1669698B1 (en) Cooling/heating system
KR101500068B1 (en) Heat pump system including inverter compressor
JPH09152223A (en) Thermal storage type air conditioner
KR101432931B1 (en) Heat pump system with thermal storage pump control fuction
KR101434097B1 (en) Controling defrosting mode heat pump system
JPH0849924A (en) Heat storage type air-conditioner
KR100389269B1 (en) Heat pump system
JP2863474B2 (en) Thermal storage type air conditioner
JP2839457B2 (en) Thermal storage type air conditioner
KR102213916B1 (en) Hybrid heat pump device using hybrid heat sources
JPH0849938A (en) Regenerative air-conditioner
KR101403452B1 (en) Chiller System
JP2839458B2 (en) Thermal storage type air conditioner
JPH0886529A (en) Air conditioner
JP2007147133A (en) Air conditioner
JP2009281595A (en) Refrigerating device