JPH0915216A - Plate-wave ultrasonic testing method and device - Google Patents

Plate-wave ultrasonic testing method and device

Info

Publication number
JPH0915216A
JPH0915216A JP7161176A JP16117695A JPH0915216A JP H0915216 A JPH0915216 A JP H0915216A JP 7161176 A JP7161176 A JP 7161176A JP 16117695 A JP16117695 A JP 16117695A JP H0915216 A JPH0915216 A JP H0915216A
Authority
JP
Japan
Prior art keywords
image
flaw detection
flaw
signal level
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7161176A
Other languages
Japanese (ja)
Other versions
JP2962194B2 (en
Inventor
Riichi Murayama
理一 村山
Masahiro Nakamura
昌弘 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7161176A priority Critical patent/JP2962194B2/en
Publication of JPH0915216A publication Critical patent/JPH0915216A/en
Application granted granted Critical
Publication of JP2962194B2 publication Critical patent/JP2962194B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Abstract

PURPOSE: To enhance the efficiency for determining defects by comparing the signal level of an image located within a set testing range with a specific threshold, and selecting an image which has exceeded the threshold. CONSTITUTION: If a plate ultrasonic wave is made to propagate from an ultrasonic probe placed near one of the edges of a material for flaw detection to the other edge, since an indefinite image resulting from irregular reflections caused near the ultrasonic probe is formed on one side of a two-dimensional flaw detection image, and a beltlike image caused by the other edge is formed on the other side in accordance with the dimension of the material for flaw detection, by setting a flaw detection range from an image of the other edge in the two-dimensional flaw detection image according to the size of the material for flaw detection, meandering of the material for flaw detecting, if any, can be followed. In this flaw detection range, since the images related to the edges and the image caused by the irregular reflections exist near both ends, by setting a threshold that gets larger toward near both ends and that gets smaller at the portion halfway between the ends and by selecting an image of a signal level exceeding the threshold, images produced by defects are selected at a high rate even near both ends.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被探傷材に板波超音波
を入射し、その反射波を受信して前記被圧延材に生じた
欠陥を探傷する方法及びその実施に使用する装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for injecting a plate wave ultrasonic wave into a material to be inspected and receiving a reflected wave thereof to detect defects in the material to be rolled, and an apparatus used for implementing the method. .

【0002】[0002]

【従来の技術】熱延鋼板,冷延鋼板等、その厚みが比較
的薄い被探傷材の表面又は内部に生じた欠陥をオンライ
ンで非破壊検査するために、タイヤ探触子を用いて被探
傷材に板波超音波を伝播させ、その反射波を受信し、そ
の中に欠陥に基づく信号が含まれているか否かによっ
て、被探傷材に生じた欠陥を探傷する板波超音波探傷が
行われている。
2. Description of the Related Art In order to perform online non-destructive inspection of defects on the surface or inside of a material to be inspected having a relatively small thickness, such as hot-rolled steel sheet and cold-rolled steel sheet, the tire probe is used to perform flaw detection. Plate wave ultrasonic flaw detection is carried out to detect defects in the material to be inspected by propagating plate wave ultrasonic waves to the material and receiving the reflected waves, and whether or not a signal based on the defects is contained in it. It is being appreciated.

【0003】図9はタイヤ探触子の使用態様を示す模式
的断面図であり、図中Sはその長手方向に搬送される帯
状の被探傷材である。被探傷材Sの表面には接触媒質15
が所定の厚みに均一に塗布されている。被探傷材Sの上
方には支持棒13が鉛直に配置してあり、支持棒13の下端
近傍には被探傷材Sの幅方向に固定軸16が支持されてい
る。固定軸16には被探傷材Sに転接するタイヤ探触子22
が回転自在に取付けてある。
FIG. 9 is a schematic cross-sectional view showing a usage mode of a tire probe, and S in the figure is a strip-shaped flaw-to-be-detected material conveyed in its longitudinal direction. The surface of the material S to be inspected has a contact medium 15
Is uniformly applied to a predetermined thickness. A support rod 13 is vertically arranged above the flaw detection material S, and a fixed shaft 16 is supported in the width direction of the flaw detection material S near the lower end of the support rod 13. The fixed shaft 16 has a tire probe 22 that rolls on the material S to be inspected.
Is rotatably mounted.

【0004】タイヤ探触子22は、その周縁部に溝18,18
が形成してあるホイル17,17と該ホイル17,17の周囲を
取り囲むゴム等の帯状のタイヤ部14とを備えており、タ
イヤ部14の両エッジは両ホイル17,17の溝18,18に固定
してある。タイヤ探触子22の内の固定軸16には、所定周
期毎に超音波を送受信する板波探触子20が被探傷材Sの
エッジ部の方向に所定角度傾斜して固定してある。また
タイヤ探触子22内には接触媒質15が充填してあり、板波
探触子20が発生した超音波はタイヤ探触子22内の接触媒
質15,タイヤ部14及び接触媒質15を介して被探傷材S
へ、該被探傷材の幅方向と平行に所定の入射角で入射さ
れ、そこで超音波の入射角,被探傷材Sの板厚及び超音
波の周波数に応じた振動モードの板波超音波に変換され
て、被探傷材S中を伝播する。
The tire probe 22 has grooves 18 and 18 on its periphery.
And a belt-like tire portion 14 made of rubber or the like that surrounds the wheels 17 and 17, and both edges of the tire portion 14 are grooves 18 and 18 of the wheels 17 and 17, respectively. It is fixed to. A plate wave probe 20 that transmits and receives ultrasonic waves at a predetermined cycle is fixed to a fixed shaft 16 of the tire probe 22 while being inclined at a predetermined angle in the direction of the edge of the material S to be detected. Further, the tire probe 22 is filled with the contact medium 15, and the ultrasonic wave generated by the plate wave probe 20 passes through the contact medium 15, the tire portion 14 and the contact medium 15 in the tire probe 22. S to be inspected
Is incident at a predetermined incident angle in parallel with the width direction of the flaw-detecting material, and there is a plate-wave ultrasonic wave in a vibration mode corresponding to the incident angle of the ultrasonic wave, the thickness of the flaw-detecting material S, and the frequency of the ultrasonic wave. It is converted and propagates in the flaw detection material S.

【0005】被探傷材S中を伝播された板波超音波は、
被探傷材Sの表面又は内部に生じた欠陥、及び被探傷材
のエッジ部で反射され、反射波は被探傷材S表面の接触
媒質15,タイヤ部14及びタイヤ探触子22内の接触媒質15
を介して板波探触子20に受信されて探傷信号が得られ
る。
The plate wave ultrasonic waves propagated through the material S to be detected are
Defects generated on the surface or inside of the material to be detected S, and reflected waves at the edges of the material to be detected, and the reflected waves are the contact medium 15 on the surface of the material to be detected S, the tire portion 14, and the contact medium in the tire probe 22. 15
A flaw detection signal is obtained by being received by the plate wave probe 20 via.

【0006】図10は板波超音波探傷による探傷信号の一
例を示すグラフであり、図中、縦軸は探傷信号の強度
を、また横軸は超音波を送信してからの時間を示してい
る。図10の如く、超音波の送信直後から所定の時間A内
に、探触子近傍の乱反射によって受信された複数の信号
E が現れている。そして、被探傷材の幅方向に伝播さ
れる板波超音波の伝播時間である時間B内に、被探傷材
の欠陥の反射によって受信された信号KE が現れてお
り、その後に被探傷材のエッジ部の反射によって受信さ
れた信号TE が所定の時間Cだけ現れている。このよう
にエッジ部からの反射信号の幅が広いのは、被探傷材中
を伝播する板波超音波は伝播速度が異なる複数の振動モ
ードの板波が重合した波であるため、各振動モードの板
波毎にエッジ部による反射波が受信され、また板波超音
波は所定の拡がりを持って伝播するため、エッジ部から
反射されて戻ってくる伝播距離が所定の範囲に拡がるか
らである。
FIG. 10 is a graph showing an example of a flaw detection signal by plate wave ultrasonic flaw detection. In the figure, the vertical axis represents the strength of the flaw detection signal, and the horizontal axis represents the time after the ultrasonic wave is transmitted. There is. As shown in FIG. 10, a plurality of signals R E received by diffuse reflection near the probe appear within a predetermined time A immediately after the transmission of ultrasonic waves. Then, the signal K E received by the reflection of the defect of the flaw-detecting material appears within the time B which is the propagation time of the plate wave ultrasonic wave propagated in the width direction of the flaw-detecting material, and then the flaw-detecting material. The signal T E received by the reflection of the edge portion of the signal appears for a predetermined time C. The width of the reflected signal from the edge portion is wide as described above because the plate wave ultrasonic waves propagating in the flaw-detecting material are waves in which plate waves of a plurality of vibration modes having different propagation velocities are superposed. This is because the reflected wave from the edge part is received for each plate wave, and since the plate wave ultrasonic wave propagates with a predetermined spread, the propagation distance reflected and returned from the edge part spreads within a predetermined range. .

【0007】従来の板波超音波探傷装置では、超音波を
送信して時間Aが経過したタイミングでゲートを開け、
時間Bだけゲートを開けておくようにすることによっ
て、欠陥による反射波のみを受信するようにし、探傷信
号内に予め定めた閾値以上の信号が含まれていた場合、
欠陥が存在すると判断する。そして、探傷信号の強度に
基づいて欠陥の大きさを評価し、また超音波を送信して
から欠陥による反射波が受信される時間の1/2と、予
め求めた超音波の被探傷材中の伝播速度との積から、被
探傷材の幅方向における欠陥の存在位置を求めていた。
なお、前述したゲート開のタイミング及びゲート領域の
幅は、被探傷材の材質,板幅,及び板厚等に基づいて予
め定められる。
[0007] In the conventional plate wave ultrasonic flaw detector, the gate is opened at the timing when the ultrasonic wave is transmitted and time A elapses.
By opening the gate only for time B, only the reflected wave due to the defect is received, and when the flaw detection signal includes a signal equal to or higher than a predetermined threshold value,
Judge that there is a defect. Then, the size of the defect is evaluated based on the intensity of the flaw detection signal, and half of the time that the reflected wave due to the defect is received after the ultrasonic wave is transmitted, The existing position of the defect in the width direction of the flaw detection target material was obtained from the product of the propagation velocity of the flaw and the propagation velocity of the flaw.
The timing of opening the gate and the width of the gate region described above are determined in advance based on the material, plate width, plate thickness, etc. of the material to be inspected.

【0008】しかしそのような板波超音波探傷装置で
は、被探傷材に蛇行が発生すると、エッジ部の反射によ
って受信された信号TE がゲート内に入る場合、また、
欠陥の反射によって受信された信号KE がゲートから外
れる場合があり、そのような場合、欠陥の誤検出又は見
逃しが生じるという問題があった。そのため、被探傷材
の幅方向に伝播した板波超音波を受信して得た複数の探
傷信号をA(アナログ)/D(ディジタル)変換して濃
淡信号とし、それらを被探傷材の長さ方向に配列して2
次元探傷画像を得、該2次元探傷画像を所定の閾値に基
づいて2値化して2値化画像を形成する画像処理を行
い、2値化画像の各像の長さ又は面積等に基づいて欠陥
による像を判定する板波超音波探傷装置が開発されてい
る。
However, in such a plate wave ultrasonic flaw detector, when the signal T E received due to the reflection of the edge portion enters the gate when the meandering occurs in the flaw-detecting material,
The signal K E received due to the reflection of the defect may go out of the gate, and in such a case, there is a problem in that the defect is erroneously detected or missed. Therefore, a plurality of flaw detection signals obtained by receiving the plate wave ultrasonic waves propagating in the width direction of the flaw detection material are A (analog) / D (digital) converted into gray signals, which are the lengths of the flaw detection material. Arrange in the direction 2
A two-dimensional flaw detection image is obtained, and image processing is performed to binarize the two-dimensional flaw detection image based on a predetermined threshold value to form a binarized image, and based on the length or area of each image of the binarized image. A plate wave ultrasonic flaw detector for judging an image due to a defect has been developed.

【0009】[0009]

【発明が解決しようとする課題】しかし、従来の板波超
音波探傷装置にあっては、所定の閾値によって一律に2
値化を行っていたため、欠陥による像に近い信号レベル
を有する探触子近傍の乱反射による像及び被探傷材のエ
ッジ部による像は2値化画像に残り、2次元探傷画像か
ら欠陥による像を選択的に抽出することができずに、欠
陥であるか否かを効率的に判別できないという問題があ
った。また、被探傷材の蛇行等によって探触子近傍の乱
反射による像及び被探傷材のエッジ部による像の信号強
度が変化した場合、2値化画像には欠陥による像と同様
な島状の複数の像が形成され、欠陥による像との判別が
難しいという問題があった。
However, in the conventional plate wave ultrasonic flaw detector, 2 is uniformly applied according to a predetermined threshold value.
Since binarization was performed, the image due to diffused reflection near the probe having a signal level close to the image due to the defect and the image due to the edge part of the material to be inspected remain in the binarized image, and the image due to the defect is converted from the two-dimensional flaw detection image. There is a problem in that it cannot be selectively extracted and it is not possible to efficiently determine whether or not there is a defect. In addition, when the signal intensity of the image due to irregular reflection near the probe due to meandering of the flaw-detecting material and the image due to the edge portion of the flaw-detecting material changes, the binarized image has a plurality of island-shaped images similar to the image due to the defect. However, there is a problem that it is difficult to distinguish the image due to the defect.

【0010】図11は探触子近傍の乱反射による像及び被
探傷材のエッジ部による像の信号強度が変化した場合の
2値化画像の一部を説明する説明図である。図11の如
く、2値化画像の左端には探触子近傍の乱反射による複
数の島状の像RPP,RPP,…が縦に略一列に形成されて
おり、その近傍に欠陥による像KPP,KPP,…が形成さ
れている。図11から明らかな如く、2値化画像における
像RPP,RPP,…及び像KPP,KPP,…は、長さ又は面
積に基づいては判別することができない。
FIG. 11 is an explanatory view for explaining a part of the binarized image in the case where the signal intensity of the image due to diffused reflection near the probe and the image intensity due to the edge portion of the material to be detected are changed. As shown in FIG. 11, a plurality of island-shaped images R PP , R PP , ... Due to diffused reflection near the probe are vertically formed in a line at the left end of the binarized image, and an image due to a defect is formed in the vicinity thereof. K PP , K PP , ... Are formed. As is clear from FIG. 11, the images R PP , R PP , ... And the images K PP , K PP , ... In the binarized image cannot be discriminated based on the length or the area.

【0011】本発明はかかる事情に鑑みてなされたもの
であって、その目的とするところは2次元探傷画像にお
ける探傷範囲に対応してその値が変化する閾値を設定
し、探傷範囲内にある像の信号レベルが閾値を越えた像
を選択することによって、2次元探傷画像から欠陥によ
る像を効率的に判別することができる板波超音波探傷方
法及びその実施に使用する装置を提供することにある。
また、他の目的とするところは、閾値を越えた像につい
て、2次元探傷画像における信号レベルの分布を求め、
その分布から求めた信号レベルの変化の割合に基づいて
欠陥であるか否かを判定することによって、信号強度が
一定でない場合であっても確実に欠陥であるか否かを判
定し得る板波超音波探傷方法及びその実施に使用する装
置を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to set a threshold value whose value changes corresponding to a flaw detection range in a two-dimensional flaw detection image and be within the flaw detection range. PROBLEM TO BE SOLVED: To provide a plate wave ultrasonic flaw detection method capable of efficiently discriminating an image due to a defect from a two-dimensional flaw detection image by selecting an image having a signal level exceeding a threshold value, and an apparatus used for the same. It is in.
Another object is to obtain a signal level distribution in a two-dimensional flaw detection image for an image that exceeds a threshold,
By determining whether or not there is a defect based on the rate of change in the signal level obtained from the distribution, it is possible to reliably determine whether or not there is a defect even if the signal strength is not constant. An object of the present invention is to provide an ultrasonic flaw detection method and an apparatus used for carrying out the method.

【0012】[0012]

【課題を解決するための手段】第1発明に係る板波超音
波探傷方法は、被探傷材及び該被探傷材に対向すべく配
した超音波探触子を相対移動させつつ、超音波探触子か
ら超音波を所定周期で送信し、それを板波超音波として
移動方向と直交する方向へ伝播させ、各反射波を受信し
て得た複数の探傷信号の信号レベルに応じた像が形成さ
れた2次元探傷画像を得、該2次元探傷画像に基づいて
被探傷材の欠陥を探傷する方法において、被探傷材に応
じて前記2次元探傷画像における探傷範囲を設定し、該
探傷範囲内における位置に応じてその値が異なる部分を
有する閾値を設定し、設定した探傷範囲内にある像の信
号レベルと前記閾値とを比較し、信号レベルが閾値を越
えた像を選択することを特徴とする。
A plate wave ultrasonic flaw detection method according to a first aspect of the present invention is an ultrasonic flaw detection method in which a flaw detection material and an ultrasound probe arranged so as to face the flaw detection material are relatively moved. An ultrasonic wave is transmitted from the probe at a predetermined cycle, propagated as a plate wave ultrasonic wave in a direction orthogonal to the moving direction, and an image corresponding to the signal level of a plurality of flaw detection signals obtained by receiving each reflected wave is generated. In a method for obtaining a formed two-dimensional flaw detection image and for flaw detection of a flaw detection material based on the two-dimensional flaw detection image, a flaw detection range in the two-dimensional flaw detection image is set according to the flaw detection material, and the flaw detection range is set. A threshold having a portion whose value differs depending on the position in the inside is set, the signal level of the image within the set flaw detection range is compared with the threshold, and an image whose signal level exceeds the threshold is selected. Characterize.

【0013】第2発明に係る板波超音波探傷装置は、第
1発明に加えて、選択した像について前記2次元探傷画
像における信号レベルの分布を求め、該分布に基づいて
信号レベルが変化する割合を求め、その割合と予め設定
した閾値とを比較し、前記割合が閾値を越えていた場
合、その像は欠陥であると判定することを特徴とする。
In addition to the first invention, the plate wave ultrasonic testing apparatus according to the second invention finds the signal level distribution in the two-dimensional flaw testing image for the selected image and changes the signal level based on the distribution. It is characterized in that a ratio is obtained, the ratio is compared with a preset threshold value, and if the ratio exceeds the threshold value, the image is judged to be a defect.

【0014】第3発明に係る板波超音波探傷装置は、被
探傷材及び該被探傷材に対向すべく配した超音波探触子
を相対移動させつつ、超音波探触子から超音波を所定周
期で送信し、それを板波超音波として移動方向と直交す
る方向へ伝播させ、各反射波を受信して得た複数の探傷
信号の信号レベルに応じた像が形成された2次元探傷画
像を得、該2次元探傷画像に基づいて被探傷材の欠陥を
探傷する装置において、被探傷材に応じて前記2次元探
傷画像における探傷範囲を設定する手段と、該探傷範囲
内における位置に応じてその値が異なる部分を有する閾
値を設定する手段と、設定した探傷範囲内にある像の信
号レベルと前記閾値とを比較する手段と、信号レベルが
閾値を越えた像を選択する手段とを備えることを特徴と
する。
The plate wave ultrasonic flaw detector according to the third aspect of the present invention relatively moves the material to be inspected and the ultrasonic probe arranged to face the material to be inspected, while transmitting ultrasonic waves from the ultrasonic probe. Two-dimensional flaw detection in which images are formed according to the signal levels of a plurality of flaw detection signals obtained by transmitting at a predetermined cycle, propagating it as a plate ultrasonic wave in a direction orthogonal to the moving direction, and receiving each reflected wave. In an apparatus for obtaining an image and for detecting a defect in a material to be inspected based on the two-dimensional flaw detection image, means for setting a flaw detection range in the two-dimensional flaw detection image according to the material to be inspected and a position within the flaw detection range Means for setting a threshold having a portion having a different value, means for comparing the signal level of the image within the set flaw detection range with the threshold, and means for selecting an image whose signal level exceeds the threshold. It is characterized by including.

【0015】第4発明に係る板波超音波探傷装置は、第
3発明に加えて、選択した像について前記2次元探傷画
像における信号レベルの分布を求める手段と、該分布に
基づいて信号レベルが変化する割合を求める手段と、そ
の割合と予め設定した閾値とを比較する手段と、前記割
合が閾値を越えていた場合、その像は欠陥であると判定
する手段とを備えることを特徴とする。
In addition to the third invention, the plate wave ultrasonic flaw detector according to the fourth aspect of the present invention further comprises means for obtaining a distribution of signal levels in the two-dimensional flaw detection image for the selected image, and a signal level based on the distribution. It is characterized by comprising means for obtaining a changing rate, means for comparing the rate with a preset threshold value, and means for determining that the image is defective if the rate exceeds the threshold value. .

【0016】[0016]

【作用】第1及び第3発明にあっては、被探傷材に対向
するように被探傷材の一エッジ近傍に配置した超音波探
触子から被探傷材の他エッジへ板波超音波を伝播させる
場合、2次元探傷画像の一側には超音波探触子の近傍で
生じる乱反射による不定型の像が、他側には他エッジに
よる帯状の像が、被探傷材の寸法に応じて形成されるの
で、被探傷材の寸法に応じて、2次元探傷画像における
他エッジの像から探傷範囲を設定することによって、被
探傷材に蛇行が生じた場合でもこれに追随することがで
きる。
According to the first and third aspects of the invention, the plate ultrasonic wave is transmitted from the ultrasonic probe arranged near one edge of the flaw-detecting material so as to face the flaw-detecting material to the other edge of the flaw-detecting material. When propagating, an indeterminate image due to diffused reflection generated in the vicinity of the ultrasonic probe is present on one side of the two-dimensional flaw detection image, and a band-shaped image of another edge is present on the other side, depending on the size of the material to be inspected. Since the formed flaw is formed, by setting the flaw detection range from the image of the other edge in the two-dimensional flaw detection image according to the size of the flaw detection material, even if the flaw detection material has meandering, it can be followed.

【0017】この探傷範囲では、両端近傍にエッジに係
る像及び乱反射による像が存在するため、両端近傍に向
かうに従ってその値が大きく、中間部分ではその値が小
さい閾値を設定し、その閾値を越える信号レベルの像を
選択することによって、両端近傍にあっても欠陥による
像が高い割合で選択される。
In this flaw detection range, an edge-related image and an image due to diffused reflection exist near both ends. Therefore, a threshold value is set such that the value is large toward the both ends and small in the middle portion, and exceeds the threshold value. By selecting the image of the signal level, the image due to the defect is selected at a high rate even in the vicinity of both ends.

【0018】第2及び第4発明にあっては、前述した如
く選択した各像について、2次元探傷画像において、そ
の像の最大信号レベルを含み、例えば、移動方向に平行
な方向及び/又はそれに直交する方向における信号レベ
ルの分布を求め、信号レベルが変化する割合を算出す
る。選択した像が欠陥である場合、前述した2方向のど
ちらか一方において、欠陥が占める領域は狭いため、そ
の方向における信号レベルは最大信号レベルを中心に急
激に変化する。一方、選択した像が欠陥でない場合、い
ずれの方向へも拡がっているため、どの方向でも信号レ
ベルは緩やかに変化する。
In the second and fourth aspects of the invention, for each image selected as described above, in the two-dimensional flaw detection image, the maximum signal level of the image is included, for example, in the direction parallel to the moving direction and / or The distribution of the signal level in the orthogonal direction is obtained, and the rate of change of the signal level is calculated. When the selected image is a defect, the area occupied by the defect is narrow in one of the two directions described above, and therefore the signal level in that direction changes rapidly around the maximum signal level. On the other hand, when the selected image is not a defect, it spreads in any direction, so the signal level changes gently in any direction.

【0019】従って、信号レベルが変化する割合と予め
設定した閾値とを比較し、前記割合が閾値を越えていた
場合、その像は欠陥であると判定する。これによって、
欠陥による像が正確に判定される。なお、信号レベルの
分布は、欠陥判定の速度を向上させるべく欠陥が発生す
る方向に応じた一方向のみを求めてもよいし、欠陥判定
の精度を向上させるべく前記方法及びそれに直交する方
向の二方向を求めてもよい。
Therefore, the rate at which the signal level changes is compared with a preset threshold value, and if the rate exceeds the threshold value, it is determined that the image is defective. by this,
The image due to the defect is accurately determined. Note that the signal level distribution may be obtained in only one direction corresponding to the direction in which a defect occurs in order to improve the speed of defect determination, or in the above method and in a direction orthogonal thereto in order to improve the accuracy of defect determination. You may ask for two directions.

【0020】[0020]

【実施例】以下本発明をその実施例を示す図面に基づい
て具体的に説明する。図1は本発明に係る板波超音波探
傷装置の構成を示すブロック図である。タイヤ探触子11
は矢符方向に搬送される帯状の被探傷材Sの一方のエッ
ジ部E上に転接させてある。タイヤ探触子11にはパルサ
2から電圧が印加されるようになっており、パルサ2は
パルスタイミングコントローラ3からのパルス信号によ
って電圧を印加する周期が制御されている。そしてタイ
ヤ探触子11は印加された電圧によって励振され、被探傷
材Sの他方のエッジ部Eへ超音波を送信しその反射波を
受信する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings showing the embodiments. FIG. 1 is a block diagram showing the configuration of a plate wave ultrasonic flaw detector according to the present invention. Tire probe 11
Is rolled on one edge portion E of the strip-shaped flaw detection material S conveyed in the arrow direction. A voltage is applied from the pulser 2 to the tire probe 11, and the pulser 2 controls the cycle of applying the voltage by the pulse signal from the pulse timing controller 3. Then, the tire probe 11 is excited by the applied voltage, transmits an ultrasonic wave to the other edge portion E of the material S to be detected, and receives a reflected wave thereof.

【0021】タイヤ探触子11が探傷受信した信号は信号
増幅器4にて増幅された後、所定の通過周波数帯域を有
するバンドパスフィルタ5に入力されてノイズ成分が除
去される。バンドパスフィルタ5を通過した信号はA/
D変換器6によって8ビット,0〜255階調のディジ
タル信号に変換されてマッピングメモリ7に与えられ
る。マッピングメモリ7には前述したパルスタイミング
コントローラ3からパルス信号も与えられるようになっ
ており、該パルス信号に基づいて、A/D変換器6から
与えられた探傷信号が2次元化されて2次元探傷画像と
してマッピングメモリ7に記憶される。
The signal received by the tire probe 11 for flaw detection is amplified by the signal amplifier 4 and then input to the bandpass filter 5 having a predetermined pass frequency band to remove noise components. The signal passed through the bandpass filter 5 is A /
The digital signal is converted into an 8-bit digital signal having 0 to 255 gradations by the D converter 6 and given to the mapping memory 7. A pulse signal is also given to the mapping memory 7 from the pulse timing controller 3 described above, and based on the pulse signal, the flaw detection signal given from the A / D converter 6 is two-dimensionalized to be two-dimensional. It is stored in the mapping memory 7 as a flaw detection image.

【0022】図4はマッピングメモリ7に与えられる信
号の波形図であり、図5はマッピングメモリ7に記憶さ
れた探傷信号の3次元波形図である。マッピングメモリ
7には、図4(a)の如く、パルスタイミングコントロ
ーラからのパルス信号と、(b)の如く、各パルス信号
のタイミングで被探傷材の幅方向に伝播される板波超音
波によって探傷された探傷信号とが与えられる。この探
傷信号をパルス信号毎に分割すると、被探傷材の搬送方
向の順に該被探傷材の幅方向毎の探傷信号が得られる。
そして、各探傷信号をx軸が被探傷材の板幅方向,y軸
が被探傷材の搬送方向,z軸が信号強度である座標軸上
に、被探傷材の搬送方向の順に配列すると、図5のよう
になる。両図中、RE はタイヤ探触子近傍の乱反射によ
る信号であり、KE は欠陥による信号であり、TE は被
探傷材の他端エッジ部による信号である。
FIG. 4 is a waveform diagram of the signal supplied to the mapping memory 7, and FIG. 5 is a three-dimensional waveform diagram of the flaw detection signal stored in the mapping memory 7. The mapping memory 7 stores pulse signals from the pulse timing controller as shown in FIG. 4A and plate wave ultrasonic waves propagated in the width direction of the flaw detection material at the timing of each pulse signal as shown in FIG. 4B. The detected flaw detection signal is given. When this flaw detection signal is divided into pulse signals, flaw detection signals for each width direction of the flaw detection target material are obtained in the order of the conveyance direction of the flaw detection target material.
When the flaw detection signals are arranged in the plate width direction of the flaw detection material, the y axis is the conveyance direction of the flaw detection material, and the z axis is the coordinate axis having the signal intensity, the flaw detection material conveyance direction is arranged in this order. It becomes like 5. In both figures, R E is a signal due to diffused reflection in the vicinity of the tire probe, K E is a signal due to a defect, and T E is a signal due to the other end edge portion of the flaw detection target material.

【0023】マッピングメモリ7に記憶された2次元探
傷画像はCPU9の第1判定部に与えられ、第1判定部
は2次元探傷画像の各像が欠陥であるか否かの一次判定
を次のように実施する。
The two-dimensional flaw detection image stored in the mapping memory 7 is given to the first determination section of the CPU 9, and the first determination section makes the following primary determination as to whether or not each image of the two-dimensional flaw detection image is defective. To carry out.

【0024】図2はCPU9の第1判定部による一次判
定手順を示すフローチャートである。第1判定部は、2
次元探傷画像における被探傷材のエッジ部から幅方向へ
の欠陥判定の対象とすべき距離である判定距離、及び判
定の閾値である欠陥認定レベル曲線を、被探傷材の幅に
応じて設定する(ステップS1,2)。
FIG. 2 is a flow chart showing a primary judgment procedure by the first judgment unit of the CPU 9. The first determination unit is 2
The determination distance, which is the distance to be the target of defect determination in the width direction from the edge portion of the material to be inspected in the three-dimensional flaw detection image, and the defect recognition level curve, which is the threshold value of the determination, are set according to the width of the material to be inspected. (Steps S1, 2).

【0025】図6は欠陥認定レベル曲線を示すグラフで
あり、縦軸は信号レベルを、横軸は被探傷材のエッジ部
から幅方向への判定距離をそれぞれ示している。図6の
如く、欠陥認定レベル曲線は、被探傷材のエッジ部で最
大レベルであり、該エッジ部から所定距離の範囲aでは
信号レベルが徐々に低下し、その傾きがエッジ部から離
れるにつれて小さくなる3つの直線からなっており、最
低レベルになってから所定範囲aの間は該最低レベルを
維持し、前記3つの直線とは逆の傾きで信号レベルが最
大レベルに増加している。この欠陥認定レベル曲線を越
える信号レベルのものが欠陥であると判定される。これ
によって、エッジ部近傍にあっては欠陥による像を高効
率に選択することができる。
FIG. 6 is a graph showing a defect recognition level curve, in which the vertical axis represents the signal level and the horizontal axis represents the judgment distance in the width direction from the edge portion of the flaw detection material. As shown in FIG. 6, the defect recognition level curve has the maximum level at the edge portion of the flaw detection material, the signal level gradually decreases in the range a of the predetermined distance from the edge portion, and the inclination becomes smaller as the distance from the edge portion increases. It is composed of the following three straight lines, and the minimum level is maintained for a predetermined range a after reaching the minimum level, and the signal level increases to the maximum level with an inclination opposite to that of the above three straight lines. A signal level exceeding the defect qualification level curve is determined to be a defect. As a result, an image due to a defect can be selected with high efficiency in the vicinity of the edge portion.

【0026】第1判定部は2次元探傷画像において被探
傷材のエッジ部を検出し、検出したエッジ部から設定し
た判定距離までにある各像のエッジ部から当該像までの
距離及びその信号レベルを検出し(ステップS3)、検
出した信号レベルが前述した欠陥認定レベル曲線におけ
る像の位置に対応する値を越えるか否かを判断し(ステ
ップS4)、欠陥認定レベル曲線を越えた場合、その像
は欠陥である可能性が高いと一次判定し(ステップS
5)、欠陥認定レベル曲線を越えない場合、その像は欠
陥でないと判定する(ステップS6)。
The first determination unit detects the edge portion of the material to be inspected in the two-dimensional flaw detection image, and the distance from the edge portion of each image up to the set determination distance from the detected edge portion to the image and its signal level. Is detected (step S3), it is judged whether or not the detected signal level exceeds the value corresponding to the position of the image on the defect qualification level curve described above (step S4). The image is primarily determined to be defective (step S
5) If the defect recognition level curve is not exceeded, it is determined that the image is not a defect (step S6).

【0027】そして、CPU9の第2判定部は一次判定
された像について、欠陥であるか否かの二次判定を次の
ように実施する。
Then, the second judging section of the CPU 9 carries out a secondary judgment as to whether or not there is a defect in the image which has been subjected to the primary judgment as follows.

【0028】図3はCPU9の第2判定部による二次判
定手順を示すフローチャートである。CPU9の第2判
定部は2次元探傷画像において、第1判定部で欠陥であ
る可能性が高いと一次判定された各像について、その最
大信号レベルの位置を求める(ステップS10)。そし
て、第2判定部は求めた位置に基づいて、各像における
搬送方向の信号レベル分布曲線G1 及び幅方向の信号レ
ベル分布曲線G2 をそれぞれ算出する(ステップS1
1)。第2判定部には欠陥であるか否かを判断するため
の基準曲線が予め与えられており、第2判定部は信号レ
ベル分布曲線G1 ,G 2 の傾きが基準曲線の傾きより大
きいか否かを判断し(ステップS12)、信号レベル分布
曲線G1 ,G2 のどちらの傾きとを基準曲線の傾きより
大きかった場合、その像は欠陥であると判定し(ステッ
プS13)、そうでない場合、その像は欠陥でないと判断
する(ステップS14)。CPU9はその結果をCRT又
はプリンタ等の出力装置10から出力させると共に警報装
置(図示せず)を作動させる。
FIG. 3 shows the secondary judgment by the second judgment unit of the CPU 9.
It is a flowchart which shows a fixed procedure. Second size of CPU9
In the two-dimensional flaw detection image, the fixed part is a defect in the first determination part.
For each image that was primarily determined to be
The position of the large signal level is obtained (step S10). Soshi
Then, the second determination unit determines the position of each image based on the obtained position.
Signal level distribution curve G in the transport direction1And the width of the signal
Bell distribution curve GTwoAre calculated respectively (step S1
1). The second judging section is for judging whether or not there is a defect.
The reference curve of the
Bell distribution curve G1, G TwoIs greater than the slope of the reference curve
It is judged whether or not it is good (step S12), and the signal level distribution
Curve G1, GTwoWhich slope of
If it is large, the image is determined to be defective (step
S13), otherwise, it is determined that the image is not a defect
Yes (step S14). The CPU 9 displays the result on the CRT or
Is output from the output device 10 such as a printer and the alarm device
A device (not shown).

【0029】図7は欠陥による像とその信号レベル分布
曲線との関係を示す模式図及びグラフであり、図8は欠
陥以外の像とその信号レベル分布曲線との関係を示す模
式図及びグラフである。両図において、(a)は2次元
探傷画像における像の形状を、(b)は信号レベル分布
曲線をそれぞれ示している。また、両図7,8の(a)
において、横は被欠陥材の幅方向を縦は搬送方向を示し
ている。
FIG. 7 is a schematic diagram and graph showing the relationship between an image due to a defect and its signal level distribution curve, and FIG. 8 is a schematic diagram and graph showing the relationship between an image other than a defect and its signal level distribution curve. is there. In both figures, (a) shows the shape of the image in the two-dimensional flaw detection image, and (b) shows the signal level distribution curve. In addition, (a) of both FIGS.
In the figure, the horizontal axis represents the width direction of the defective material and the vertical axis represents the transport direction.

【0030】2次元探傷画像における欠陥による像は、
例えば図7(a)に示した如く、最も濃い最大信号レベ
ルである画素と、その幅方向に最大信号レベルより低い
信号レベルの画素と、搬送方向に同様に最大信号レベル
より低い信号レベルの画素とから形成されている。そし
て、最大信号レベルの画素を通り欠陥による像の幅方向
の画素の信号レベルをグラフ化すると、図7(b)のよ
うな信号レベル分布曲線G2 が得られる。図7(b)か
ら明らかな如く、欠陥による像の信号レベル分布曲線G
2 の傾きは大きい。
The image of the defect in the two-dimensional flaw detection image is
For example, as shown in FIG. 7A, a pixel having the darkest maximum signal level, a pixel having a signal level lower than the maximum signal level in the width direction, and a pixel having a signal level lower than the maximum signal level in the carrying direction as well. It is formed from and. Then, when the signal level of the pixel passing through the pixel of the maximum signal level and in the width direction of the image due to the defect is graphed, a signal level distribution curve G 2 as shown in FIG. 7B is obtained. As is apparent from FIG. 7B, the signal level distribution curve G of the image due to the defect
The slope of 2 is large.

【0031】一方、欠陥以外の像は、例えば図8(a)
に示した如く、最大信号レベルの画素と、その周囲に最
大信号レベルより低い信号レベルの3×3の画素領域
と、更に低い信号レベルの略6×5の画素領域と、該画
素領域の周囲に更に低い信号レベルの画素領域とから形
成されている。そして、最大信号レベルの画素を通り像
の幅方向の画素の信号レベルをグラフ化すると、図8
(b)のような信号レベル分布曲線G2 が得られる。図
8(b)から明らかな如く、欠陥以外の像の信号レベル
分布曲線G2 の傾きは、欠陥による像の信号レベル分布
曲線G2 の傾きより小さい。従って、この傾きについ
て、予め試験等によって閾値を求め、信号レベル分布曲
線G2 の傾きが該閾値を越えるか否かによって、その像
が欠陥であるか否かを判定できる。このことは、信号レ
ベル分布曲線G1 についても同様であり、両信号レベル
分布曲線G1 ,G2 を求めることによって一次判定され
た像が欠陥であるか否かを正確に二次判定することがで
きる。
On the other hand, the image other than the defect is, for example, as shown in FIG.
As shown in FIG. 5, a pixel having the maximum signal level, a pixel region of 3 × 3 having a signal level lower than the maximum signal level, a pixel region of approximately 6 × 5 having a further lower signal level, and the periphery of the pixel region as shown in FIG. And a pixel region having a lower signal level. Then, when the signal level of the pixel passing through the pixel of the maximum signal level in the width direction of the image is graphed, FIG.
A signal level distribution curve G 2 as shown in (b) is obtained. As is apparent from FIG. 8B, the slope of the signal level distribution curve G 2 of the image other than the defect is smaller than the slope of the signal level distribution curve G 2 of the image due to the defect. Therefore, with respect to this inclination, a threshold value is obtained in advance by a test or the like, and it can be determined whether or not the image is defective depending on whether or not the inclination of the signal level distribution curve G 2 exceeds the threshold value. The same applies for the signal level distribution curve G 1, accurately determining secondary whether primary the determined image is a defective by determining both the signal level distribution curve G 1, G 2 You can

【0032】[0032]

【発明の効果】以上詳述した如く第1及び第3発明にあ
っては、2次元探傷画像から欠陥による像を高い確率で
選択することができるため、欠陥であるか否かを判定す
べき像の総計が少なくなり、判定に要する時間が短縮さ
れる。
As described in detail above, in the first and third inventions, since it is possible to select an image due to a defect from a two-dimensional flaw detection image with a high probability, it is necessary to judge whether or not there is a defect. The total number of images is reduced, and the time required for judgment is shortened.

【0033】第2及び第4発明にあっては、被探傷材の
蛇行に影響されることなく、欠陥による像を正確に判定
することができる等、本発明は優れた効果を奏する。
According to the second and fourth aspects of the invention, the present invention has excellent effects such that an image due to a defect can be accurately determined without being affected by the meandering of the flaw detection material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る板波超音波探傷装置の構成を示す
ブロック図である。
FIG. 1 is a block diagram showing a configuration of a plate wave ultrasonic flaw detector according to the present invention.

【図2】CPUの第1判定部による一次判定手順を示す
フローチャートである。
FIG. 2 is a flowchart showing a primary determination procedure by a first determination unit of the CPU.

【図3】CPUの第2判定部による二次判定手順を示す
フローチャートである。
FIG. 3 is a flowchart showing a secondary determination procedure by a second determination unit of the CPU.

【図4】マッピングメモリに与えられる信号の波形図で
ある。
FIG. 4 is a waveform chart of a signal given to a mapping memory.

【図5】マッピングメモリに記憶された探傷信号の3次
元波形図である。
FIG. 5 is a three-dimensional waveform diagram of flaw detection signals stored in a mapping memory.

【図6】欠陥認定レベル曲線を示すグラフである。FIG. 6 is a graph showing a defect qualification level curve.

【図7】欠陥による像とその信号レベル分布曲線との関
係を示す模式図及びグラフである。
FIG. 7 is a schematic diagram and a graph showing the relationship between an image due to a defect and its signal level distribution curve.

【図8】欠陥以外の像とその信号レベル分布曲線との関
係を示す模式図及びグラフである。
FIG. 8 is a schematic diagram and a graph showing a relationship between an image other than a defect and its signal level distribution curve.

【図9】タイヤ探触子の使用態様を示す模式的断面図で
ある。
FIG. 9 is a schematic cross-sectional view showing a usage mode of the tire probe.

【図10】板波超音波探傷による探傷信号の一例を示す
グラフである。
FIG. 10 is a graph showing an example of a flaw detection signal by plate wave ultrasonic flaw detection.

【図11】探触子近傍の乱反射による像及び被探傷材の
エッジ部による像の信号強度が変化した場合の2値化画
像の一部を説明する説明図である。
FIG. 11 is an explanatory diagram illustrating a part of a binarized image when the signal intensity of the image due to diffused reflection near the probe and the signal intensity of the image due to the edge portion of the material to be detected are changed.

【符号の説明】 7 マッピングメモリ 9 中央演算装置 11 タイヤ探触子 S 被探傷材 E エッジ部[Explanation of Codes] 7 Mapping Memory 9 Central Processing Unit 11 Tire Probe S Detected Material E Edge Part

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被探傷材及び該被探傷材に対向すべく配
した超音波探触子を相対移動させつつ、超音波探触子か
ら超音波を所定周期で送信し、それを板波超音波として
移動方向と直交する方向へ伝播させ、各反射波を受信し
て得た複数の探傷信号の信号レベルに応じた像が形成さ
れた2次元探傷画像を得、該2次元探傷画像に基づいて
被探傷材の欠陥を探傷する方法において、 被探傷材に応じて前記2次元探傷画像における探傷範囲
を設定し、該探傷範囲内における位置に応じてその値が
異なる部分を有する閾値を設定し、設定した探傷範囲内
にある像の信号レベルと前記閾値とを比較し、信号レベ
ルが閾値を越えた像を選択することを特徴とする板波超
音波探傷方法。
1. An ultrasonic wave is transmitted from the ultrasonic probe at a predetermined cycle while relatively moving the material to be detected and the ultrasonic probe arranged so as to face the material to be detected, and the ultrasonic wave is transmitted at a predetermined period. A two-dimensional flaw detection image in which an image corresponding to the signal level of a plurality of flaw detection signals obtained by receiving each reflected wave is formed by propagating as a sound wave in a direction orthogonal to the movement direction, and based on the two-dimensional flaw detection image In the method for flaw detection of a flaw-detected material, a flaw-detection range in the two-dimensional flaw-detection image is set according to the flaw-detection material, and a threshold having a portion having a different value depending on a position in the flaw-detection area is set. A plate wave ultrasonic flaw detection method comprising: comparing a signal level of an image within a set flaw detection range with the threshold value and selecting an image having a signal level exceeding the threshold value.
【請求項2】 選択した像について前記2次元探傷画像
における信号レベルの分布を求め、該分布に基づいて信
号レベルが変化する割合を求め、その割合と予め設定し
た閾値とを比較し、前記割合が閾値を越えていた場合、
その像は欠陥であると判定する請求項1記載の板波超音
波探傷方法。
2. The distribution of the signal level in the two-dimensional flaw detection image for the selected image is obtained, the rate at which the signal level changes based on the distribution is obtained, and the rate is compared with a preset threshold value to obtain the rate. Is above the threshold,
The plate wave ultrasonic flaw detection method according to claim 1, wherein the image is determined to be a defect.
【請求項3】 被探傷材及び該被探傷材に対向すべく配
した超音波探触子を相対移動させつつ、超音波探触子か
ら超音波を所定周期で送信し、それを板波超音波として
移動方向と直交する方向へ伝播させ、各反射波を受信し
て得た複数の探傷信号の信号レベルに応じた像が形成さ
れた2次元探傷画像を得、該2次元探傷画像に基づいて
被探傷材の欠陥を探傷する装置において、 被探傷材に応じて前記2次元探傷画像における探傷範囲
を設定する手段と、該探傷範囲内における位置に応じて
その値が異なる部分を有する閾値を設定する手段と、設
定した探傷範囲内にある像の信号レベルと前記閾値とを
比較する手段と、信号レベルが閾値を越えた像を選択す
る手段とを備えることを特徴とする板波超音波探傷装
置。
3. The ultrasonic wave is transmitted from the ultrasonic probe at a predetermined cycle while relatively moving the material to be detected and the ultrasonic probe arranged so as to face the material to be detected, and the ultrasonic wave is transmitted at a predetermined period. A two-dimensional flaw detection image in which an image corresponding to the signal level of a plurality of flaw detection signals obtained by receiving each reflected wave is formed by propagating as a sound wave in a direction orthogonal to the movement direction, and based on the two-dimensional flaw detection image In a device for detecting a defect in a flaw-detected material by means of a means for setting a flaw-detection range in the two-dimensional flaw-detection image according to the flaw-detected material, and a threshold having a portion having a different value depending on a position in the flaw-detection range A plate wave ultrasonic wave comprising: a unit for setting, a unit for comparing a signal level of an image within a set flaw detection range with the threshold value, and a unit for selecting an image whose signal level exceeds the threshold value. Flaw detector.
【請求項4】 選択した像について前記2次元探傷画像
における信号レベルの分布を求める手段と、該分布に基
づいて信号レベルが変化する割合を求める手段と、その
割合と予め設定した閾値とを比較する手段と、前記割合
が閾値を越えていた場合、その像は欠陥であると判定す
る手段とを備える請求項3記載の板波超音波探傷装置。
4. A means for obtaining a distribution of signal levels in the two-dimensional flaw detection image for a selected image, a means for obtaining a rate at which the signal level changes based on the distribution, and comparing the rate with a preset threshold value. The plate wave ultrasonic flaw detector according to claim 3, further comprising: a means for performing the determination and a means for determining that the image is a defect when the ratio exceeds a threshold value.
JP7161176A 1995-06-27 1995-06-27 Plate wave ultrasonic inspection method and apparatus Expired - Fee Related JP2962194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7161176A JP2962194B2 (en) 1995-06-27 1995-06-27 Plate wave ultrasonic inspection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7161176A JP2962194B2 (en) 1995-06-27 1995-06-27 Plate wave ultrasonic inspection method and apparatus

Publications (2)

Publication Number Publication Date
JPH0915216A true JPH0915216A (en) 1997-01-17
JP2962194B2 JP2962194B2 (en) 1999-10-12

Family

ID=15730035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7161176A Expired - Fee Related JP2962194B2 (en) 1995-06-27 1995-06-27 Plate wave ultrasonic inspection method and apparatus

Country Status (1)

Country Link
JP (1) JP2962194B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109596623A (en) * 2018-12-21 2019-04-09 无锡先导智能装备股份有限公司 A kind of defect inspection method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109596623A (en) * 2018-12-21 2019-04-09 无锡先导智能装备股份有限公司 A kind of defect inspection method and device
CN109596623B (en) * 2018-12-21 2021-07-06 无锡先导智能装备股份有限公司 Defect detection method and device

Also Published As

Publication number Publication date
JP2962194B2 (en) 1999-10-12

Similar Documents

Publication Publication Date Title
JPH04323553A (en) Method and device for ultrasonic resonance flaw detection
JPH0915216A (en) Plate-wave ultrasonic testing method and device
JP3206489B2 (en) Non-destructive inspection method of internal organization
JPH0157738B2 (en)
JP2002243703A (en) Ultrasonic flaw detector
JPH09171005A (en) Method for discriminating kind of defect by ultrasonic flaw detection
JP3006477B2 (en) Plate wave ultrasonic inspection method
JP3603805B2 (en) Internal defect detection method
JPH0915218A (en) Plate-wave ultrasonic testing method and device
JP3831285B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP2932947B2 (en) Plate wave ultrasonic inspection method and apparatus
JPH09251010A (en) Defect judging method by plate-wave ultrasonic flaw detection
JP3603804B2 (en) Internal defect detection method
JPS6229023B2 (en)
JPH09243611A (en) Plate wave ultrasonic flaw detection method
JPH06258294A (en) Ultrasonic flaw detector
KR20180027274A (en) Non-destruction testing apparatus having effective detection distance measurement function
JPH06258302A (en) Ultrasonic flaw-detection apparatus
JP2001004602A (en) Ultrasonic flaw detecting method and apparatus
JPH0915217A (en) Plate-wave ultrasonic testing method and device
JP2003322642A (en) Plate wave ultrasonic flaw detection method and apparatus
JP2002122573A (en) Method and apparatus for inspection of defect of round material
JP2004012369A (en) Ultrasonic flaw detection equipment and ultrasonic flaw detection method
JPH0587784A (en) Method and apparatus for estimation for quantification of defect
JP3528561B2 (en) Plate wave ultrasonic inspection method and apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 14

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees