JPH09151858A - Parallelly-connected pump operating method - Google Patents

Parallelly-connected pump operating method

Info

Publication number
JPH09151858A
JPH09151858A JP33996995A JP33996995A JPH09151858A JP H09151858 A JPH09151858 A JP H09151858A JP 33996995 A JP33996995 A JP 33996995A JP 33996995 A JP33996995 A JP 33996995A JP H09151858 A JPH09151858 A JP H09151858A
Authority
JP
Japan
Prior art keywords
flow rate
pump
pumps
new starting
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33996995A
Other languages
Japanese (ja)
Other versions
JP3054352B2 (en
Inventor
Hisao Ido
久雄 井土
Yoichi Santo
養一 山東
Toyomitsu Kanai
豊充 金井
Shoji Kobayashi
昌治 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP7339969A priority Critical patent/JP3054352B2/en
Publication of JPH09151858A publication Critical patent/JPH09151858A/en
Application granted granted Critical
Publication of JP3054352B2 publication Critical patent/JP3054352B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Details Of Reciprocating Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the fluctuation of supply pressure and supply flow rate to a small degree by controlling the flow rate or rotating speed of a newly started pump with the flow rate or rotating speed of an already operated pump as the target value in a pumping plant constituted by parallelly connecting a plurality of pumps individually driven by variable speed motors controlled by inverters. SOLUTION: In the installation of a pumping plant or the like for waterworks and sewageworks, with the respective discharge openings of a plurality of pumps 1 connected to a common feed pipeline 6 respectively through check valves 4 and orifices 5, flow rate is measured by a flow rate transmitter 8 provided at the discharge opening of each pump 1. In the case of starting a new pump, in an area where the discharge from the started pump is zero, the frequency of an inverter 13 is increased at the allowable maximum speed to start a motor. After the flow rate becomes positive, the flow rate of the newly started pump is controlled with the flow rate of the already operated pump as the target value, and after the flow rate of the newly started pump becomes equal to that of the already operated pump, these pumps are controlled to be operated synchronously.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、インバータ制御さ
れる可変速モータにて駆動される複数のポンプの運転方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of operating a plurality of pumps driven by a variable speed motor controlled by an inverter.

【0002】[0002]

【従来の技術】インバータ制御される可変速モータにて
駆動される複数のポンプによって供給圧力または供給流
量を制御する流体供給装置に於いて、2台目以降のポン
プを起動(または停止)する時には、ポンプの流量(ま
たは吐出圧)に応じてインバータの周波数の変化率を2
段階に変化させることにより、被運転ポンプの増減時の
圧力変動を抑制するようにした技術を本出願人は既に提
案している(特開平4−358781号公報参照)。
2. Description of the Related Art In a fluid supply apparatus for controlling a supply pressure or a supply flow rate by a plurality of pumps driven by a variable speed motor controlled by an inverter, when starting (or stopping) a second pump and thereafter. , The rate of change of the frequency of the inverter according to the flow rate (or discharge pressure) of the pump is 2
The present applicant has already proposed a technique for suppressing the pressure fluctuation when the pump to be operated is increased or decreased by changing the number of stages (see Japanese Patent Laid-Open No. 4-358781).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、この方
法によると、2台目以降のポンプ起動時の圧力上昇を抑
制するためには、新たに起動したポンプの流量が正とな
った後の、インバータ周波数の2段目の変化率を低く設
定する必要がある。そのため、図5に示したように、需
要の増加率が比較的低い場合は問題が無いが、需要の増
加率がある程度以上高い場合には、新たな起動ポンプの
流量増加速度が追従できず、供給圧力の回復が遅れ気味
となっていた。
However, according to this method, in order to suppress the pressure increase at the time of starting the second and subsequent pumps, the inverter after the flow rate of the newly started pump becomes positive. It is necessary to set the rate of change in the second stage of frequency low. Therefore, as shown in FIG. 5, when the demand increase rate is relatively low, there is no problem, but when the demand increase rate is higher than a certain level, the flow rate increase rate of the new starting pump cannot follow, The recovery of supply pressure was delayed.

【0004】本発明は、このような従来技術の欠点を解
消し、需要の増加率にあまり影響されずに、新たなポン
プ起動時の圧力上昇を低く抑え、かつポンプ速度を速や
かに上昇させて供給圧力を短時間で回復させることので
きる並列接続されたポンプの運転方法を提供することを
目的に案出されたものである。
The present invention solves the above-mentioned drawbacks of the prior art, suppresses the pressure increase at the time of new pump startup to a low level, and increases the pump speed promptly without being greatly affected by the rate of increase in demand. The present invention has been devised for the purpose of providing a method of operating pumps connected in parallel that can recover the supply pressure in a short time.

【0005】[0005]

【課題を解決するための手段】このような目的を果たす
ために、本発明に於いては、インバータ制御の可変速モ
ータで個々に駆動される複数のポンプを並列接続し、被
駆動ポンプ数の増減によって所要の供給圧力または供給
流量を得るようにしたポンプの運転方法に於いて、既運
転ポンプの流量または回転数を目標値として新たな起動
ポンプの流量または回転数を制御するように構成した。
特に、新たな起動ポンプの流量が零、または新たな起動
ポンプの吐出圧が既運転ポンプの吐出圧より低い領域で
はインバータの周波数を許容最大速度で増加させ、新た
な起動ポンプの流量が正となった後、または新たな起動
ポンプの吐出圧が既運転ポンプの吐出圧と等しくなった
後は、既運転ポンプの流量または回転数を目標値として
新たな起動ポンプを制御し、新たな起動ポンプの流量ま
たは回転数が既運転ポンプの流量または回転数と等しく
なった後は、両ポンプを同期運転するようにした。また
この場合は、新たな起動ポンプの流量または回転数を制
御量とするコントローラの応答性を、供給圧力または供
給流量に応じて変化させるものとした。
In order to achieve such an object, in the present invention, a plurality of pumps individually driven by an inverter-controlled variable speed motor are connected in parallel, and the number of driven pumps is reduced. In the operation method of the pump that obtains the required supply pressure or supply flow rate by increasing or decreasing, it is configured to control the flow rate or rotation speed of the new starting pump with the flow rate or rotation speed of the already operated pump as the target value. .
Especially, in the region where the flow rate of the new starting pump is zero or the discharge pressure of the new starting pump is lower than the discharge pressure of the already operated pump, the frequency of the inverter is increased at the maximum allowable speed and the flow rate of the new starting pump becomes positive. When the discharge pressure of the new starting pump becomes equal to the discharge pressure of the operating pump, the new starting pump is controlled with the flow rate or rotation speed of the operating pump as the target value. After the flow rate or the rotational speed of was equal to the flow rate or the rotational speed of the already operated pump, both pumps were operated in synchronization. Further, in this case, the responsiveness of the controller, which uses the flow rate or rotation speed of the new starting pump as a control amount, is changed according to the supply pressure or the supply flow rate.

【0006】[0006]

【発明の実施の形態】以下に添付の図面を参照して本発
明の構成を詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration of the present invention will be described below in detail with reference to the accompanying drawings.

【0007】図1は、本発明が適用された流体供給装置
を示している。図1に於いて、複数のポンプ1の吸入口
は、共通の吸入管路2を介して流体タンク3に接続され
ている。そしてこれらのポンプ1の各吐出口は、それぞ
れ逆止弁4及びオリフィス5を介して共通の供給管路6
に接続されている。この供給管路6の末端は、流体ユー
ザ7に接続されている。
FIG. 1 shows a fluid supply device to which the present invention is applied. In FIG. 1, the suction ports of a plurality of pumps 1 are connected to a fluid tank 3 via a common suction pipe line 2. Each of the discharge ports of these pumps 1 has a common supply line 6 through a check valve 4 and an orifice 5.
It is connected to the. The end of this supply line 6 is connected to a fluid user 7.

【0008】各ポンプ1の吐出口に設けられたオリフィ
ス5には、流量を検出するための流量伝送器8がそれぞ
れ設けられている。また共通の供給管路6には、供給圧
力を検出するための圧力伝送器9が設けられている。そ
して各流量伝送器8により検出された流量が流量指示調
節計10を介して、また圧力伝送器9により検出された
供給圧力が圧力指示調節計11を介して、各ポンプ1に
対応して設けられた演算器12にそれぞれ入力される。
各演算器12は、これらの入力に基づいて制御信号を生
成し、その出力を対応するインバータ13に供給する。
これにより、各ポンプ1のモータが可変速制御される。
The orifice 5 provided at the discharge port of each pump 1 is provided with a flow rate transmitter 8 for detecting the flow rate. The common supply line 6 is provided with a pressure transmitter 9 for detecting the supply pressure. The flow rate detected by each flow rate transmitter 8 is provided via the flow rate indicating controller 10 and the supply pressure detected by the pressure transmitter 9 is provided via the pressure indicating controller 11 in correspondence with each pump 1. It is input to each of the calculated arithmetic units 12.
Each arithmetic unit 12 generates a control signal based on these inputs and supplies the output to the corresponding inverter 13.
As a result, the motor of each pump 1 is controlled at a variable speed.

【0009】図2に示された流体供給装置は、図1に示
されたものと概ね同様であるが、この場合、供給管路6
が網の目のように分岐されて複数の流体ユーザ7に接続
されている。この供給管路6の圧力は、複数のポイント
でそれぞれ別々の圧力伝送器9により検出され、それら
の検出信号が、圧力演算器14によって平均化されて圧
力指示調節計11に供給される。それ以外の点に関し
て、図2の実施例は、図1の実施例と概ね同様である。
The fluid supply device shown in FIG. 2 is generally similar to that shown in FIG. 1, but in this case the supply line 6
Are connected like a mesh and are connected to a plurality of fluid users 7. The pressure in the supply line 6 is detected by different pressure transmitters 9 at a plurality of points, and the detection signals are averaged by the pressure calculator 14 and supplied to the pressure indicating controller 11. In all other respects, the embodiment of FIG. 2 is similar to the embodiment of FIG.

【0010】このような流体供給装置は、上下水道用の
ポンプ装置、化学プラント等に於ける材料供給装置、或
いは空港などに於ける燃料供給設備などに広く適用可能
である。
Such a fluid supply device can be widely applied to a pump device for water and sewerage, a material supply device in a chemical plant or the like, or a fuel supply facility in an airport or the like.

【0011】各ポンプ1の吐出口にある流量伝送器8に
て流量を常時計測し、新たなポンプを起動する場合、新
たな起動ポンプからの流量が零である領域は、許容最大
速度でインバータ13の周波数を増加させてモータを起
動し、流量が正となった後は、既に運転されているポン
プの流量(または回転数)を目標値に置いて新たな起動
ポンプの流量(または回転数)を制御し、新たな起動ポ
ンプの流量(または回転数)が既運転ポンプの流量(ま
たは回転数)と等しくなった後は、これら2台のポンプ
を同期運転させる。
When the flow rate transmitter 8 at the discharge port of each pump 1 constantly measures the flow rate to start a new pump, the area where the flow rate from the new starting pump is zero is the maximum allowable speed of the inverter. After increasing the frequency of 13 to start the motor and the flow rate becomes positive, set the flow rate (or rotation speed) of the pump that is already operating to the target value and set the flow rate (or rotation speed) of the new starting pump. ) Is controlled so that the flow rate (or rotation speed) of the new starting pump becomes equal to the flow rate (or rotation speed) of the already operated pump, these two pumps are operated in synchronization.

【0012】より詳しく説明すると、既に運転されてい
るポンプに対して新たなポンプを追加起動する場合、新
たな起動ポンプの吐出圧が運転圧に達するまでは、その
ポンプの流量は零である。従って、インバータの周波数
の上昇速度を最大限に大きくしても、供給圧力および供
給流量に影響を与えずに新たな起動ポンプの回転数を急
速に上昇させることができる。
More specifically, when a new pump is additionally started up with respect to the pump that is already in operation, the flow rate of the new starting pump is zero until the discharge pressure of the new pump reaches the operating pressure. Therefore, even if the rate of increase in the frequency of the inverter is maximized, it is possible to rapidly increase the rotation speed of the new starting pump without affecting the supply pressure and the supply flow rate.

【0013】新たな起動ポンプの吐出圧が運転圧と等し
くなり、新たな起動ポンプの流量が正となった後は、既
運転ポンプの流量(または回転数)を目標値として、新
たな起動ポンプの流量(または回転数)を制御する。す
ると、新たな起動ポンプの流量(または回転数)と既運
転ポンプの流量(または回転数)との偏差が大きい領域
は、新たな起動ポンプの流量(または回転数)が急速に
増加し、新たな起動ポンプの流量(または回転数)と既
運転ポンプの流量(または回転数)との偏差が減少する
に連れて、新たな起動ポンプの流量(または回転数)の
増加率が緩やかになる。
After the discharge pressure of the new starting pump becomes equal to the operating pressure and the flow rate of the new starting pump becomes positive, the new starting pump is set with the flow rate (or rotation speed) of the already operated pump as a target value. Control the flow rate (or rotation speed). Then, in a region where the flow rate (or rotational speed) of the new starting pump and the flow rate (or rotational speed) of the already-operated pump are large, the flow rate (or rotational speed) of the new starting pump rapidly increases, and As the deviation between the flow rate (or rotational speed) of the new starting pump and the flow rate (or rotational speed) of the already operated pump decreases, the rate of increase in the flow rate (or rotational speed) of the new starting pump becomes gentle.

【0014】この作用により、ポンプを急速に起動さ
せ、かつポンプ起動後の供給圧力の上昇率を低く抑える
ことが可能となる。また、新たな起動ポンプの流量(ま
たは回転数)制御の目標値となる既運転ポンプの流量
(または回転数)は、需要の増加に応じて増加するの
で、需要の増加率が高い場合は、目標値が大きくなるの
で新たな起動ポンプの流量(または回転数)上昇速度が
高められ、需要の増加率が低い場合は、目標値が小さく
なるので新たな起動ポンプの流量(または回転数)上昇
速度が緩やかになる。これにより、需要変動に影響され
ずに、ポンプ起動後の供給圧力の上昇を小さく抑え、か
つ2台目以降のポンプを速やかに起動することが可能と
なる。
By this action, the pump can be started rapidly and the rate of increase of the supply pressure after starting the pump can be suppressed low. In addition, the flow rate (or rotation speed) of the already-operated pump, which is the target value for the flow rate (or rotation speed) control of the new startup pump, increases in accordance with the increase in demand, so if the increase rate of demand is high, Since the target value becomes large, the flow rate (or rotational speed) of the new starting pump increases at a high rate, and when the rate of increase in demand is low, the target value becomes small, so the flow rate (or rotational speed) of the new starting pump increases. The speed becomes slow. This makes it possible to suppress the increase in supply pressure after starting the pump to be small and to quickly start the second and subsequent pumps without being affected by demand fluctuations.

【0015】また、供給圧力(または供給流量)が低い
場合は、起動ポンプの流量(または回転数)制御を行う
コントローラの感度を高く設定することにより、ポンプ
を急速に起動し、供給圧力が高くなるに従ってコントロ
ーラの感度を低く設定することにより、ポンプをさらに
速やかに起動し、かつ供給圧力の上昇を小さく抑えるこ
とが可能となる。
When the supply pressure (or supply flow rate) is low, the sensitivity of the controller for controlling the flow rate (or rotation speed) of the starting pump is set to be high, so that the pump is rapidly started and the supply pressure is high. By setting the sensitivity of the controller to be lower as it becomes, it becomes possible to start the pump more quickly and to suppress the increase in the supply pressure to a small level.

【0016】なお、上述した制御条件から、新たな起動
ポンプの流量が零、または新たな起動ポンプの吐出圧が
既運転ポンプの吐出圧より低い領域での制御条件を除外
し、新たな起動ポンプの流量が零の時から既運転ポンプ
の流量を目標値として制御することも可能である。そし
てこれによれば、制御のロジックをより簡略な構成にで
きるという利点が得られる。
From the above control conditions, the control conditions in the region where the flow rate of the new starting pump is zero or the discharge pressure of the new starting pump is lower than the discharge pressure of the already operated pump are excluded, and the new starting pump is removed. It is also possible to control the flow rate of the already operated pump as a target value when the flow rate of is zero. And according to this, the advantage that a control logic can be made into a simpler structure is acquired.

【0017】図3は、2台目のポンプ流量が正となった
後に1台目のポンプ流量を目標値として2台目のポンプ
流量を制御した場合の解析結果を、需要の増加率の違い
に対応させて示す。
FIG. 3 shows the analysis results when the second pump flow rate is controlled with the first pump flow rate as a target value after the second pump flow rate becomes positive. It corresponds and shows.

【0018】図4は、2台目のポンプ流量が正となった
後に1台目のポンプ流量を目標値として2台目のポンプ
流量を制御し、その流量制御のコントローラの感度を供
給圧力の上昇に応じて低下させた場合の解析結果を、同
じく需要の増加率の違いに対応させて示す。
In FIG. 4, after the flow rate of the second pump becomes positive, the flow rate of the second pump is controlled with the pump flow rate of the first unit as a target value, and the sensitivity of the controller for the flow rate control is set to the supply pressure. The results of the analysis in the case of a decrease in response to an increase are also shown, corresponding to the difference in the rate of increase in demand.

【0019】図3からは、需要の増加が大きい場合で
も、図5に示した従来法に比して短時間で供給圧力が回
復することが分かる。また図4からは、ポンプ起動時の
流量制御のフィードバック応答性を供給圧力に応じて変
化させることにより、供給圧力の回復が一段と速くなる
ことが分かる。
It can be seen from FIG. 3 that the supply pressure can be recovered in a shorter time than in the conventional method shown in FIG. 5 even when the demand increases greatly. Further, it can be seen from FIG. 4 that the recovery of the supply pressure becomes much faster by changing the feedback response of the flow rate control at the time of starting the pump according to the supply pressure.

【0020】[0020]

【発明の効果】このように本発明によれば、インバータ
を利用した可変速モータにて駆動される複数のポンプに
より供給圧力(または供給流量)を制御する流体供給装
置において、2台目以降のポンプを速やかに起動し、か
つ供給圧力および供給流量の変動を小さく抑える上に大
きな効果を奏することができる。
As described above, according to the present invention, in the fluid supply device for controlling the supply pressure (or the supply flow rate) by the plurality of pumps driven by the variable speed motor using the inverter, the second and subsequent units are used. A large effect can be exerted in promptly starting the pump and suppressing fluctuations in the supply pressure and the supply flow rate to be small.

【図面の簡単な説明】[Brief description of the drawings]

【図1】供給配管系が単一の場合の流体供給装置の概略
構成図。
FIG. 1 is a schematic configuration diagram of a fluid supply device having a single supply pipe system.

【図2】供給配管系が複数の場合の流体供給装置の概略
構成図。
FIG. 2 is a schematic configuration diagram of a fluid supply device having a plurality of supply piping systems.

【図3】本発明によるポンプ運転方法を適用した場合の
供給圧力、ポンプ回転数、ポンプ流量の経時変化線図。
FIG. 3 is a time-dependent change diagram of a supply pressure, a pump rotation speed, and a pump flow rate when the pump operation method according to the present invention is applied.

【図4】本発明によるポンプ運転方法の別例を適用した
場合の供給圧力、ポンプ回転数、ポンプ流量の経時変化
線図。
FIG. 4 is a time-dependent change diagram of supply pressure, pump rotation speed, and pump flow rate when another example of the pump operating method according to the present invention is applied.

【図5】従来のポンプ運転方法を適用した場合の供給圧
力、ポンプ回転数、ポンプ流量の経時変化線図。
FIG. 5 is a time-dependent change diagram of a supply pressure, a pump rotation speed, and a pump flow rate when a conventional pump operation method is applied.

【符号の説明】[Explanation of symbols]

1 ポンプ 2 吸入管路 3 流体タンク 4 逆止弁 5 オリフィス 6 供給管路 7 流体ユーザ 8 流体伝送器 9 圧力伝送器 10 流体指示調節計 11 圧力指示調節計 12 演算器 13 インバータ 14 圧力演算器 1 Pump 2 Suction Pipeline 3 Fluid Tank 4 Check Valve 5 Orifice 6 Supply Pipeline 7 Fluid User 8 Fluid Transmitter 9 Pressure Transmitter 10 Fluid Indicating Controller 11 Pressure Indicating Regulator 12 Operator 13 Inverter 14 Pressure Operator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金井 豊充 神奈川県横浜市鶴見区鶴見中央2丁目12番 1号 千代田化工建設株式会社内 (72)発明者 小林 昌治 神奈川県横浜市鶴見区鶴見中央2丁目12番 1号 千代田化工建設株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toyomitsu Kanai 2-12-1, Tsurumi Chuo, Tsurumi-ku, Yokohama-shi, Kanagawa Chiyoda Kako Construction Co., Ltd. (72) Shoji Kobayashi Tsurumi-chuo, Tsurumi-ku, Yokohama-shi, Kanagawa 2-12-1 Chiyoda Kako Construction Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 インバータ制御の可変速モータで個々に
駆動される複数のポンプを並列接続し、被駆動ポンプ数
の増減によって所要の供給圧力または供給流量を得るよ
うにしたポンプの運転方法であって、 既運転ポンプの流量または回転数を目標値として新たな
起動ポンプの流量または回転数を制御することを特徴と
する並列接続されたポンプの運転方法。
1. A method of operating a pump, wherein a plurality of pumps individually driven by an inverter-controlled variable speed motor are connected in parallel, and a required supply pressure or supply flow rate is obtained by increasing or decreasing the number of driven pumps. A method of operating parallel-connected pumps, wherein the flow rate or rotation speed of a new starting pump is controlled using the flow rate or rotation speed of an already operated pump as a target value.
【請求項2】 新たな起動ポンプの流量が零、または新
たな起動ポンプの吐出圧が既運転ポンプの吐出圧より低
い領域ではインバータの周波数を許容最大速度で増加さ
せ、 新たな起動ポンプの流量が正となった後、または新たな
起動ポンプの吐出圧が既運転ポンプの吐出圧と等しくな
った後は、既運転ポンプの流量または回転数を目標値と
して新たな起動ポンプを制御し、 新たな起動ポンプの流量または回転数が既運転ポンプの
流量または回転数と等しくなった後は、両ポンプを同期
運転することを特徴とする請求項1に記載の並列接続さ
れたポンプの運転方法。
2. When the flow rate of the new starting pump is zero or the discharge pressure of the new starting pump is lower than the discharge pressure of the already operated pump, the frequency of the inverter is increased at the maximum permissible speed, and the flow rate of the new starting pump is increased. Becomes positive, or after the discharge pressure of the new starting pump becomes equal to the discharge pressure of the already operated pump, the new starting pump is controlled with the flow rate or rotation speed of the already operated pump as the target value. The method for operating parallel-connected pumps according to claim 1, wherein both pumps are operated in synchronization after the flow rate or the rotational speed of the starting pump becomes equal to the flow rate or the rotational speed of the already operated pump.
【請求項3】 既運転ポンプの流量または回転数を目標
値として新たな起動ポンプの流量または回転数を制御量
とするコントローラの応答性を、供給圧力または供給流
量に応じて変化させることを特徴とする請求項1または
請求項2に記載の並列接続されたポンプの運転方法。
3. The responsiveness of a controller that uses the flow rate or rotation speed of an already operated pump as a target value and sets the flow rate or rotation speed of a new starting pump as a control amount is changed according to the supply pressure or the supply flow rate. The method for operating parallel-connected pumps according to claim 1 or 2.
JP7339969A 1995-12-04 1995-12-04 How to operate pumps connected in parallel Expired - Lifetime JP3054352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7339969A JP3054352B2 (en) 1995-12-04 1995-12-04 How to operate pumps connected in parallel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7339969A JP3054352B2 (en) 1995-12-04 1995-12-04 How to operate pumps connected in parallel

Publications (2)

Publication Number Publication Date
JPH09151858A true JPH09151858A (en) 1997-06-10
JP3054352B2 JP3054352B2 (en) 2000-06-19

Family

ID=18332490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7339969A Expired - Lifetime JP3054352B2 (en) 1995-12-04 1995-12-04 How to operate pumps connected in parallel

Country Status (1)

Country Link
JP (1) JP3054352B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010229859A (en) * 2009-03-26 2010-10-14 Kawamoto Pump Mfg Co Ltd Water supply device
JP2020180570A (en) * 2019-04-24 2020-11-05 株式会社日立産機システム Compressed air production facility, method for adjusting target pressure of compressed air, and program for adjusting target pressure of compressed air
JP2021183816A (en) * 2020-05-21 2021-12-02 株式会社川本製作所 Feed water supply system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010229859A (en) * 2009-03-26 2010-10-14 Kawamoto Pump Mfg Co Ltd Water supply device
JP2020180570A (en) * 2019-04-24 2020-11-05 株式会社日立産機システム Compressed air production facility, method for adjusting target pressure of compressed air, and program for adjusting target pressure of compressed air
JP2021183816A (en) * 2020-05-21 2021-12-02 株式会社川本製作所 Feed water supply system

Also Published As

Publication number Publication date
JP3054352B2 (en) 2000-06-19

Similar Documents

Publication Publication Date Title
CN104141603B (en) There is the control system of water pump of energy-conserving action
JPH07284637A (en) Membrane module system
JPH09151858A (en) Parallelly-connected pump operating method
RU2674293C2 (en) Variable speed multi-pump device for providing energy saving by calculating and compensating for friction loss using speed reference
JP4047980B2 (en) Operation method of pumps connected in parallel
WO2020083897A1 (en) Energy-saving optimization for a pumping plant
AU2008234705B2 (en) Improvements in and relating to sewage pumping
JPH10103251A (en) Automatic water supply device
JPH04358781A (en) Operating method of pumps connected in parallel
JP2002005075A (en) System for controlling pump
JP3540627B2 (en) Distributing valve control device
US11939760B2 (en) Vacuum sewage system with monitoring system and variable speed pump and methods of use
JP2020143641A (en) Compressor pressure control method and pressure control device
JPH11210671A (en) Pump rotational direction detecting method
CN109058214A (en) A kind of load contact force control device and method based on hydraulic-driven
CN108678936A (en) Pump operation management-control method
JPS59200096A (en) Method of controllng number of pumps to be operated
JP2781527B2 (en) Pump control method for pressure tank type water supply device
JPS58113596A (en) Flow control device for pump
JPS59144902A (en) Process controlling method
JP2022003227A (en) Water supply device
JP4189180B2 (en) Electronic governor engine output monitoring device for hydraulic working machines
CN116123186A (en) Control system and method for efficient utilization of pump motor of winch hydraulic system
JPH04128597A (en) Pump discharge pressure switching device for multi-stage pump
JPH06306896A (en) Control method of water conveying system equipped with pressure tank

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080407

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term