JPH0915147A - Method for analyzing helium isotope - Google Patents

Method for analyzing helium isotope

Info

Publication number
JPH0915147A
JPH0915147A JP16371795A JP16371795A JPH0915147A JP H0915147 A JPH0915147 A JP H0915147A JP 16371795 A JP16371795 A JP 16371795A JP 16371795 A JP16371795 A JP 16371795A JP H0915147 A JPH0915147 A JP H0915147A
Authority
JP
Japan
Prior art keywords
discharge tube
concentration
current flowing
gas containing
unknown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP16371795A
Other languages
Japanese (ja)
Inventor
Hiroshi Futami
博 二見
Tetsuo Yuhara
哲夫 湯原
Masahiko Inoue
雅彦 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP16371795A priority Critical patent/JPH0915147A/en
Publication of JPH0915147A publication Critical patent/JPH0915147A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To analyze the He isotope with a semiconductor laser of relatively low cost by irradiating a discharge tube filled with a gas containing He-3 of unknown concentration and He-4 of known concentration with near-infrared laser light, and detecting the small change in the current flowing in the discharge tube. CONSTITUTION: A sample gas containing He-3 of unknown concentration and He-4 of known concentration is introduced in a discharge tube 1, near-infrared laser lights are cast alternately from semiconductor lasers 2 and 3 adjusted to emit at wavelengths exactly coinciding with the atomic spectra of He-3 and He-4, minute changes in current flowing in the tube 1 from a power source 6 (opto galvanic effect) are detected with a lock-in amplifier 7, and the unknown concentration of He-3 is obtained from the ratio of the detected values.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子炉プラント、特に
核融合施設におけるHe−3の分析に使用されるヘリウ
ム同位体の分析方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for analyzing helium isotopes used for He-3 analysis in a nuclear reactor plant, especially in a fusion facility.

【0002】[0002]

【従来の技術】核融合施設では、He−3以外にも、例
えばT,HDのような水素同位体など質量数3の化合物
が存在するため、これらの化合物を選択的に識別するに
は、安価な質量分析装置が使用できず、高価で複雑な質
量分析装置が必要であった。そのため、プラントの複数
の箇所でHe−3を分析しようとすると、その分析コス
トは甚大なものとなる。
2. Description of the Related Art In a fusion facility, in addition to He-3, there are compounds having a mass number of 3 such as hydrogen isotopes such as T and HD. Therefore, in order to selectively identify these compounds, Since an inexpensive mass spectrometer cannot be used, an expensive and complicated mass spectrometer is needed. Therefore, if He-3 is to be analyzed at a plurality of places in the plant, the analysis cost will be enormous.

【0003】[0003]

【発明が解決しようとする課題】そこで、本発明は、従
来の欠点を解消し、比較的安価な近赤外半導体レーザの
使用を可能にするHe−3を測定・定量するヘリウム同
位体の分析方法を提供しようとするものである。
Therefore, the present invention solves the drawbacks of the prior art and enables the use of a relatively inexpensive near-infrared semiconductor laser to analyze and quantify He-3 isotopes of helium. It is intended to provide a method.

【0004】[0004]

【課題を解決するための手段】本発明は、未知濃度のH
e−3及び既知濃度のHe−4 を含むガスを放電管に導
入し、He−3及びHe−4 の原子線に精確に一致した
波長の近赤外レーザ光を交互に照射して、放電管に流れ
る電流の微小変化を検出し、その検出値の比から未知の
He−3濃度を求めることを特徴とするヘリウム同位体
の分析方法である。なお、本発明における近赤外レーザ
光は、分解能が数十MHz程度である通常の分光用近赤
外半導体レーザを使用することができる。
SUMMARY OF THE INVENTION The present invention is based on H of unknown concentration.
A gas containing e-3 and a known concentration of He-4 was introduced into the discharge tube, and the near-infrared laser light of the wavelength exactly matched to the atomic beams of He-3 and He-4 was alternately irradiated to discharge. It is a method of analyzing a helium isotope characterized by detecting a minute change in a current flowing through a tube and obtaining an unknown He-3 concentration from a ratio of the detected values. As the near-infrared laser light in the present invention, a normal near-infrared semiconductor laser for spectroscopy having a resolution of about several tens MHz can be used.

【0005】[0005]

【作用】本発明者等は、ヘリウム同位体の分析に際し、
質量以外の化合物の特性に着目して選択的に識別を行う
方法を鋭意検討する中で、分光学的特性に着目してその
識別に成功した。即ち、He−3とT,HDとは電子ス
ペクトルの吸収波長が異なるため、識別が可能であり、
また、He−4とHe−3ではスペクトルの同位体シフ
トが存在し識別が可能である。近赤外領域におけるヘリ
ウム同位体シフトは、数百〜数千MHzであることが知
られているので、ヘリウムを含むガスを放電管に導き、
光ガルバノ効果を利用すれば、近赤外領域の光でヘリウ
ムを検知することができる。そして、近赤外領域では、
メンテナンスの容易な半導体レーザが使用可能であり、
装置全体を安価にすることが可能であり、高価な質量分
析装置を使用することなく、He−3をT及びHDより
識別することが可能である。
[Function] When the present inventors analyze helium isotopes,
While paying attention to the characteristics of the compound other than the mass, the inventors have made an intensive study on a method for selectively identifying the compound, and succeeded in the identification by focusing on the spectroscopic characteristics. That is, since He-3 and T, HD have different absorption wavelengths in the electronic spectrum, they can be identified,
Further, in He-4 and He-3, there is an isotope shift of the spectrum, and it is possible to distinguish them. It is known that the helium isotope shift in the near infrared region is several hundred to several thousand MHz, so that a gas containing helium is guided to the discharge tube,
By using the optical galvanic effect, helium can be detected by light in the near infrared region. And in the near infrared region,
A semiconductor laser that is easy to maintain can be used,
The entire apparatus can be made inexpensive, and He-3 can be distinguished from T and HD without using an expensive mass spectrometer.

【0006】[0006]

【実施例】本発明の1実施例を図1に示す。放電管1に
は、試料ガスを導入して放電させる。一方、半導体レー
ザ2及び半導体レーザ3は、それぞれHe−3及びHe
−4の原子線に一致した波長を発振できるように調整さ
れている。放電管にHe−3又はHe−4が存在すれ
ば、電源6より流れる電流が微小に変化する。この変化
は光ガルバノ効果と呼ばれるが、これをロッインアンプ
7で検知する。ここでは、チョッパー4及びチョッパー
5で変調してトリガー信号としている。
FIG. 1 shows an embodiment of the present invention. A sample gas is introduced into the discharge tube 1 to cause discharge. On the other hand, the semiconductor laser 2 and the semiconductor laser 3 are He-3 and He, respectively.
It is adjusted to oscillate a wavelength corresponding to the atomic beam of −4. If He-3 or He-4 is present in the discharge tube, the current flowing from the power source 6 changes slightly. This change is called the optical galvano effect, which is detected by the lock-in amplifier 7. Here, the chopper 4 and the chopper 5 modulate to obtain a trigger signal.

【0007】ここで、チョッパーの変調速度をチョッパ
ー4及びチョッパー5で異なる周波数にしておくことに
より、その周波数の信号のみを増幅すれば、レーザ光が
照射されている時のみに生ずる光学遷移と、レーザ光が
照射されていない時でも生ずるノイズ成分とを分離する
することができる。そして、2つの半導体レーザが異な
る波長で発振し、それぞれ別の周波数に変調されておれ
ば、一方の半導体レーザで生じている遷移のみを観察す
ることが可能になり、同一のロックインアンプで2つの
半導体レーザによって生ずる光学遷移を独立に観測する
ことができる。
Here, by setting the modulation speeds of the choppers to different frequencies in the chopper 4 and the chopper 5, if only the signal of that frequency is amplified, an optical transition that occurs only when the laser light is irradiated, It is possible to separate the noise component generated even when the laser light is not irradiated. If the two semiconductor lasers oscillate at different wavelengths and are modulated to different frequencies, it is possible to observe only the transition occurring in one of the semiconductor lasers, and the same lock-in amplifier The optical transitions produced by the two semiconductor lasers can be observed independently.

【0008】このシステムにおいては、放電の再現性が
信号強度の再現性に密接に影響するため、ヘリウムの絶
対値を求めることは困難である。しかし、同位体の比は
精確に求めることはできる。仮に、試料ガスにHe−4
が含まれていないことが判明していれば、既知濃度のH
e−4を試料ガスに混入させることにより、He−3の
絶対濃度を求めることは可能である。また、He−4が
既に混入している場合においても、数種類の既知濃度の
He−4を段階的に混入させて同位体比を求めることで
He−3の絶対濃度を求めることが可能である。
In this system, since the reproducibility of discharge closely affects the reproducibility of signal strength, it is difficult to find the absolute value of helium. However, the isotope ratio can be accurately determined. If the sample gas is He-4
If it is known that no H
The absolute concentration of He-3 can be determined by mixing e-4 with the sample gas. Further, even when He-4 is already mixed, it is possible to calculate the absolute concentration of He-3 by mixing several kinds of known concentrations of He-4 stepwise and calculating the isotope ratio. .

【0009】[0009]

【発明の効果】本発明は、上記の構成を採用して、比較
的安価な半導体レーザを使用可能とするヘリウム同位体
の分析方法を提供することができた。
The present invention can provide a method for analyzing a helium isotope, which employs the above-mentioned structure and makes it possible to use a relatively inexpensive semiconductor laser.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のヘリウム同位体の分析方法を実施する
装置の1つの概念図である。
FIG. 1 is a conceptual diagram of an apparatus for carrying out the helium isotope analysis method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 未知濃度のHe−3及び既知濃度のHe
−4 を含むガスを放電管に導入し、He−3及びHe−
4 の原子線に精確に一致した波長の近赤外レーザ光を交
互に照射して、放電管に流れる電流の微小変化を検出
し、その検出値の比から未知のHe−3濃度を求めるこ
とを特徴とするヘリウム同位体の分析方法。
1. An unknown concentration of He-3 and a known concentration of He.
A gas containing −4 is introduced into the discharge tube, and He-3 and He−
Alternately irradiate the near-infrared laser light with a wavelength that exactly matches the atomic beam of 4, detect minute changes in the current flowing in the discharge tube, and obtain the unknown He-3 concentration from the ratio of the detected values. A method for analyzing helium isotopes characterized by.
JP16371795A 1995-06-29 1995-06-29 Method for analyzing helium isotope Withdrawn JPH0915147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16371795A JPH0915147A (en) 1995-06-29 1995-06-29 Method for analyzing helium isotope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16371795A JPH0915147A (en) 1995-06-29 1995-06-29 Method for analyzing helium isotope

Publications (1)

Publication Number Publication Date
JPH0915147A true JPH0915147A (en) 1997-01-17

Family

ID=15779315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16371795A Withdrawn JPH0915147A (en) 1995-06-29 1995-06-29 Method for analyzing helium isotope

Country Status (1)

Country Link
JP (1) JPH0915147A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005037721A1 (en) * 2003-10-20 2005-04-28 Nippon Electric Glass Co., Ltd. Glass composition and method for producing glass article

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005037721A1 (en) * 2003-10-20 2005-04-28 Nippon Electric Glass Co., Ltd. Glass composition and method for producing glass article
US7823416B2 (en) 2003-10-20 2010-11-02 Nippon Electric Gas Co., Ltd. Glass composition and method for producing glass article
KR101110138B1 (en) * 2003-10-20 2012-01-31 니폰 덴키 가라스 가부시키가이샤 Glass composition and method for producing glass article

Similar Documents

Publication Publication Date Title
KR102291810B1 (en) Spectroscopic quantification of extremely rare molecular species in the presence of interfering optical absorption
US2847899A (en) Method of and apparatus for spectrochemical analysis
Fichet et al. Comparisons between libs and ICP/OES
US7994479B2 (en) Infrared spectrometer
Lazzari et al. Detection of mercury in air by time-resolved laser-induced breakdown spectroscopy technique
KR860003508A (en) Laser emission spectroscopy method of steel
JPH0915156A (en) Spectroscopic measuring method and measuring device
JPH0523617B2 (en)
US7427760B2 (en) Infrared spectrometer
EP0121404B1 (en) A photometric light absorption measuring apparatus
CN113970540B (en) Elemental isotope analysis system and method based on laser-induced plasma
JPS6446630A (en) None-contact sampling method and apparatus for data for local decomposition type decision of density and temperature within measuring volume
US20190041336A1 (en) Isotopic measuring device
Stevenson et al. Analysis of polynuclear aromatic compounds using laser-excited synchronous fluorescence
JP3377699B2 (en) Trace component measurement method and device using laser
JP6421388B2 (en) Isotope concentration calculation method
JPH05296922A (en) Carbon isotope analyzing instrument
JP2000146839A (en) Gas component concentration measuring device and method therefor
JPH0915147A (en) Method for analyzing helium isotope
US4128336A (en) Spectroscopic apparatus and method
US5241177A (en) Process for detecting gaseous substances
JP2000329682A (en) Analyzer for simultaneous execution of raman spectroscopic analysis and particle size distribution measurement
JP3660938B2 (en) Component analysis method using laser
JP2763907B2 (en) Breakdown spectroscopic analysis method and apparatus
CN114235700B (en) Multi-component gas concentration detection device and method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020903