JPH0915142A - Simulated fruit employed in measurement of inner quality of vegetable and fruit, and method for calibrating measuring apparatus employing the same - Google Patents

Simulated fruit employed in measurement of inner quality of vegetable and fruit, and method for calibrating measuring apparatus employing the same

Info

Publication number
JPH0915142A
JPH0915142A JP16092595A JP16092595A JPH0915142A JP H0915142 A JPH0915142 A JP H0915142A JP 16092595 A JP16092595 A JP 16092595A JP 16092595 A JP16092595 A JP 16092595A JP H0915142 A JPH0915142 A JP H0915142A
Authority
JP
Japan
Prior art keywords
fruit
simulated
calibration
aqueous solution
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16092595A
Other languages
Japanese (ja)
Other versions
JP3352848B2 (en
Inventor
Takeshi Ota
健 太田
Hiroshi Hashimoto
広嗣 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP16092595A priority Critical patent/JP3352848B2/en
Publication of JPH0915142A publication Critical patent/JPH0915142A/en
Application granted granted Critical
Publication of JP3352848B2 publication Critical patent/JP3352848B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • G01N21/278Constitution of standards

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE: To calibrate an analyzer conveniently and quickly with high reproducibility without employing an actual sample, e.g., a vegetable or fruit, by employing a simulated object for calibration obtained by filling the gap of a transparent double tube structure with an aqueous solution containing the target substance of an object at a specified concentration. CONSTITUTION: A reflective material is set on the inner tube of a double structure container made of a transparent material, e.g. glass or polyethylene, and filled an aqueous solution of cane sugar having same concentration as a fruit or the like thus obtaining a simulated fruit for which the light transmitted through the aqueous solution and reflected on the reflective material is received. A plurality of sets of simulated fruit, designed to have calibration coefficients identical to those of an objective vegetable, are formed and encapsulated with aqueous solution of cane sugar having different concentration. They are mounted sequentially on a conveyor and the calibration is carried out automatically. Since intricate calibration work using an actual object is not required, the measuring apparatus can be calibrated quickly with high reproducibility.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は青果物等の内部品質
を非破壊で測定する装置の校正方法に関する。
TECHNICAL FIELD The present invention relates to a method for calibrating an apparatus for nondestructively measuring the internal quality of fruits and vegetables.

【0002】[0002]

【従来の技術】青果物等の内部性状を非破壊で定量的に
把握するために、被験体に近赤外光を投射し、その反射
光や透過光を分光分析し、その周波数分布から糖等の含
有成分量を測定することが行われている。このような内
部成分の分析を精度良く行うためには、分析値の算出に
使用する正確な検量線(キャリブレーション式)を適切
に設定することが重要であるから、従来から、精度の高
いキャリブレーション式を得るための様々な手法が提案
されている。例えば岩本等著「近赤外分光法入門」(幸
書房)第54−93頁にはキャリブレーション式の精度
を高めるための種々のデータ処理方法、解析方法が記載
されている。
2. Description of the Related Art In order to quantitatively grasp the internal properties of fruits and vegetables in a non-destructive manner, near infrared light is projected onto a subject, the reflected light and transmitted light are spectrally analyzed, and sugars, etc. are analyzed from the frequency distribution. It is performed to measure the amount of contained components. In order to analyze such internal components with high accuracy, it is important to properly set the accurate calibration curve (calibration formula) used to calculate the analysis value. Various methods have been proposed for obtaining the equation. For example, various data processing methods and analysis methods for improving the accuracy of the calibration formula are described in "Introduction to Near Infrared Spectroscopy" by Iwamoto et al. (Koshobo), pp. 54-93.

【0003】ところで、上述のごとき手法で正しいキャ
リブレーション式を得られたとしても装置の経時変化
等、主としてハードウエア上の理由からこの式は定期的
に見直しを行わなければならない。このような、ハード
ウエア上の問題には主として以下の様なものがある: 測定装置内の分光部の波長のズレ 光源部の色温度の経時変化 受光素子の劣化等に伴う経時変化 電気増幅部等の経時変化
By the way, even if a correct calibration formula can be obtained by the above-described method, this formula must be regularly reviewed mainly due to hardware reasons such as changes in the apparatus over time. Such hardware problems mainly include the following: Deviation of the wavelength of the spectroscopic section in the measuring device Change of the color temperature of the light source section over time Change over time due to deterioration of the light receiving element, etc. Electric amplification section Change over time

【0004】上記に関しては測定装置内に波長標準体
を設置する機種も開発されている(例えば第10回非破
壊計測シンポジウム講演要旨集「近赤外分析を成功させ
るための条件」)。また、−の対策として、反射あ
るいは透過標準体(レファレンス)による校正が一般的
に行われている。例えば装置内にレファレンスを内蔵し
たものとして特開平5−142036、特開平6−25
8225、特開平4−115142、特開平4−116
503、特開平1−284758等がある。
With respect to the above, a model in which a wavelength standard is installed in a measuring device has also been developed (for example, "Conditions for successful near-infrared analysis" of the 10th non-destructive measurement symposium lecture abstract). Further, as a measure against-, calibration by a reflection or transmission standard body (reference) is generally performed. For example, Japanese Patent Laid-Open No. 5-142036 and Japanese Patent Laid-Open No. 6-25 have incorporated a reference in the apparatus.
8225, JP-A-4-115142, and JP-A-4-116.
503 and JP-A-1-284758.

【0005】これらの従来技術はいずれも無機物のレフ
ァレンスを用いて測定装置の光学的、電気的な校正を行
い、装置の経時変化等の影響を除去しようとするもので
ある。しかしながら、上記のごとく、装置の校正を行
い、正しいキャリブレーション式を使用したとしても、
被験体の内部性分分析を行うに当たり取り扱う原信号
(例えば吸光スペクトル)は極めて微弱であり、長期に
わたる正確な測定を期待することは困難である。従っ
て、成分測定を行った商品の品質を保証する上でも定期
的に実サンプルを用いた検定を行うことは不可避であ
る。しかしながら、実サンプル(特に青果物)を使用し
た校正には以下のような問題がある。 サンプルの確保が困難である(入手時期が限られる
上、複数のばらついた成分値のサンプルが同時に必
要)。 サンプルの成分値を手作業により実測する煩わしさ。 サンプルの手分析におけるエラーの可能性(分析誤
差、サンプル中の成分の不均一から生じる誤差)。 サンプルの手分析の結果から校正値を決定するため、
校正に時間がかかる。
In all of these conventional techniques, the reference of an inorganic substance is used to optically and electrically calibrate the measuring device to eliminate the influence of the aging of the device. However, even if you calibrate the device and use the correct calibration formula as described above,
The original signal (for example, an absorption spectrum) handled when performing internal content analysis of a subject is extremely weak, and it is difficult to expect accurate measurement over a long period of time. Therefore, in order to guarantee the quality of the products whose components have been measured, it is inevitable to carry out regular tests using actual samples. However, the calibration using real samples (particularly fruits and vegetables) has the following problems. Difficult to secure samples (due to limited availability, samples with multiple different component values are required at the same time). The hassle of manually measuring the component values of a sample. Possible errors in manual analysis of samples (analysis errors, errors resulting from non-uniformity of components in the sample). To determine the calibration value from the result of manual analysis of the sample,
Calibration takes time.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記の問題
点に鑑みてなされたものであり、青果物等の内部成分を
分光分析により非破壊で測定する装置の校正を実サンプ
ルで行うことなく、簡便な方法で迅速かつ再現性良く行
うことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and does not require calibration of an apparatus for nondestructively measuring internal components of fruits and vegetables by a real sample. The purpose is to carry out the procedure easily and quickly with good reproducibility.

【0007】[0007]

【課題を解決するための手段】上記本願の目的は、被験
体である青果物と光学的に類似した特性を持ち、あらか
じめ所定の目的物質の成分濃度に相当する分光測定値を
発生させる校正用の標準擬似サンプルを2つ以上用いて
装置の校正を行うことによって達成される。
Means for Solving the Problems The above-mentioned object of the present application is for calibration, which has a characteristic optically similar to that of a fruit or vegetable as a test subject and generates a spectroscopic measurement value corresponding to the concentration of a predetermined target substance component in advance. This is accomplished by calibrating the instrument with more than one standard pseudo sample.

【0008】[0008]

【実施例】図1は実果実の構造と本願発明にかかる2種
類の模擬果実の内部構造を比較した模式図である。
EXAMPLE FIG. 1 is a schematic diagram comparing the structure of a fruit with the internal structures of two types of simulated fruit according to the present invention.

【0009】(A)は実際の果実の構造を示し、表皮の
下の果肉はセルロース等の網目構造に水、糖、有機質等
の水溶液が浸透した構造をしている。(B)は本願発明
にかかる模擬果実の第1の実施例であり、実果実の内部
構造に近似した光学特性を実現することを目的としたも
のである。ガラス、ポリエチレン等の透明材料によって
作成された容器内部には牛乳、ペンキ、セルロース等を
混合してコロイド状とした水溶液を満たし、実果実と同
等の濃度のしょ糖を添加して、実果実と同等の反射スペ
クトルを発生するように構成する。このように、本実施
例は実果実と光学特性が近似していることから、精度の
高い校正が期待できるが、適切な分散質を作成すること
が難しく、経時変化による劣化や沈澱等が発生しやすい
面がある。(C)はガラス、ポリエチレン等の透明材料
を二重管構造とした実施例であり、内側管上に反射材を
設け、実果実と同等の濃度のしょ糖水溶液を透過して該
反射材によって反射された光を受光するタイプの実施例
である。水溶液は目的物質のみを含んでいるため反射ス
ペクトルの構成は実果実とは相違するが、水溶液の経時
変化や劣化の恐れは少ない。
(A) shows the actual fruit structure, and the flesh under the epidermis has a structure in which a network structure of cellulose or the like is permeated with an aqueous solution of water, sugar, organic matter or the like. (B) is a first embodiment of the simulated fruit according to the present invention, which is intended to realize optical characteristics similar to the internal structure of the actual fruit. Fill the inside of the container made of transparent material such as glass and polyethylene with colloidal solution of milk, paint, cellulose, etc., add sucrose at the same concentration as the fruit, and make it equivalent to the fruit. To generate a reflection spectrum of. As described above, since the optical characteristics of the present example are similar to those of the fruit, accurate calibration can be expected, but it is difficult to create an appropriate dispersoid, and deterioration or precipitation due to aging occurs. There is a side that is easy to do. (C) is an example in which a transparent material such as glass or polyethylene has a double-tube structure, in which a reflecting material is provided on the inner tube, and a sucrose aqueous solution having a concentration similar to that of fruit is transmitted and reflected by the reflecting material. It is an embodiment of a type that receives the emitted light. The composition of the reflection spectrum is different from that of the fruit, because the aqueous solution contains only the target substance, but there is little risk of aging or deterioration of the aqueous solution.

【0010】本測定装置における果実糖度キャリブレー
ション式は次の通りである。 C_BX=Af1・F(λ1、λ2、・・・λn)+Bf1 ・・・式1 ここで、 C_BX :測定糖度 F(λ1、λ2、・・・λn):複数の波長における測
定サンプルの吸光データで形成される糖度算出関数 Af1、Bf1 :定数(キャリブレーション係数) 通常行われている実果実を用いた検定では、手作業で行
う実分析値と式1によって算出された測定値との相関図
によってキャリブレーション式を評価するのに対し、本
発明では既知の、糖度の異なる擬似果実体を2つ以上測
定すれば、迅速かつ正確に校正を行うことができる(図
2)。本発明にかかる擬似果実による校正の利点の一つ
は異なった測定対象物に対しても適切なサンプルを簡単
に準備できるという点にある。即ち、式1におけるキャ
リブレーション係数(Af1,Bf1)は全ての対象物
に対して適用できるわけではなく、例えば多水分系(ト
マト)とそうでないもの(桃)では当然異なる係数が必
要となる。検定に際して、式1のキャリブレーション係
数の内、Af1(傾斜値)がより重要であり、擬似果実
と実果実のAf1が一致すれば、校正は容易になる。図
1(B)の実施例においては水溶液中に添加する分散質
の量を変えることによって測定対象物である青果物と同
一のAF1(傾斜値)を持つ擬似果実対を作成すること
ができ(図3参照)、一方、図1(C)の場合には二重
管の間隙及び反射材の材質を変えることによって所定の
傾斜値を持つ擬似果実を作成することができる(図4参
照)。
The fruit sugar content calibration formula in this measuring apparatus is as follows. C_BX = Af1 · F (λ1, λ2, ... λn) + Bf1 Equation 1 where C_BX: measured sugar content F (λ1, λ2, ... λn): absorption data of measurement samples at a plurality of wavelengths Formed sugar content calculation functions Af1, Bf1: Constant (calibration coefficient) In the test using actual fruits, which is usually performed, the correlation diagram between the actual analysis value manually performed and the measurement value calculated by Equation 1 is used. In contrast to evaluating the calibration formula, if two or more pseudo fruit bodies with different sugar contents known in the present invention are measured, the calibration can be performed quickly and accurately (FIG. 2). One of the advantages of the artificial fruit calibration according to the present invention is that appropriate samples can be easily prepared for different measurement objects. That is, the calibration coefficients (Af1, Bf1) in Expression 1 cannot be applied to all objects, and, for example, different coefficients are naturally required for the high water content system (tomato) and the non-moisture system (peach). In the test, Af1 (slope value) is more important among the calibration coefficients of Equation 1, and if Af1 of the pseudo fruit and the actual fruit match, the calibration becomes easy. In the example of FIG. 1 (B), a pseudo fruit pair having the same AF1 (inclination value) as that of the fruit or vegetable to be measured can be created by changing the amount of the dispersoid added to the aqueous solution (see FIG. 3)), on the other hand, in the case of FIG. 1 (C), a pseudo fruit having a predetermined inclination value can be created by changing the gap between the double tubes and the material of the reflecting material (see FIG. 4).

【0011】対象青果物のキャリブレーション係数Af
1と同一になるように設計したガラス2重管型擬似果実
(図1(C)のタイプ)を4セット作成し、それぞれに
しょ糖濃度10.6%、13.5%、16.8%、1
9.8%の水溶液を封入して検定実験を行った。図5に
実験結果を示す。直線的で極めて再現性の高い測定結果
が得られたことがわかる。本サンプルを用意しておけ
ば、次回の検定時において、測定値に乖離がなければ、
実果実のサンプルを用意することなく、キャリブレーシ
ョン式の修正の必要のないことがわかる。
Calibration coefficient Af of target fruits and vegetables
4 sets of glass double tube type pseudo fruit (type of FIG. 1 (C)) designed to be the same as 1 were made, and sucrose concentration was 10.6%, 13.5%, 16.8%, 1
A test experiment was conducted by enclosing a 9.8% aqueous solution. Experimental results are shown in FIG. It can be seen that linear and extremely reproducible measurement results were obtained. If you prepare this sample, if there is no discrepancy in the measured values at the next test,
It can be seen that there is no need to modify the calibration formula without preparing a sample of fruit.

【0012】次に、本発明にかかる擬似果実を用いた測
定装置について説明する。図6は上記の4種類の擬似果
実を搬送コンベアに載せて自動キャリブレーションを行
った場合の説明図である。測定装置に検定モードを設
け、4つの擬似果実をコンベア上に定められた順番に載
置するだけで、キャリブレーションの校正を自動的に行
うことができる。
Next, a measuring device using the simulated fruit according to the present invention will be described. FIG. 6 is an explanatory diagram of a case where the above-mentioned four types of simulated fruits are placed on a conveyor and automatic calibration is performed. The calibration mode can be automatically performed only by providing the measuring device with the verification mode and placing the four simulated fruits on the conveyor in a predetermined order.

【0013】更に、これらの擬似果実体を測定装置内部
に内蔵すれば、擬似果実をコンベア上にセットする必要
もなく、完全自動のキャリブレーション作業を実現する
ことができる。図7はこのような擬似果実体を内部に備
えた測定装置の構成図である。光源1から射出した測定
光は登校用ファイバ8を経てファイバ切り替え器2に入
る。ファイバ切り替え器2は、入射光を、青果物測定時
には光路10に、キャリブレーションモード時には光路
11側に切り替える。青果物測定モードの場合、光路1
0から投射された測定光は青果物に反射されて受光用フ
ァイバ12に入り、キャリブレーションモード時にはス
テッピングモータ6によって回転制御された複数の板状
擬似果実体7を経て切り替え器2に入光する。分光器3
は上記のごとく入力された光束を分光分析し、信号増幅
器4に送り電気信号に変換する。処理装置5は以上のご
とくして得られた分光分析情報を解析し、青果物の測定
情報及びキャリブレーション情報を解析する。
Furthermore, if these artificial fruit bodies are built in the measuring device, it is not necessary to set the artificial fruit on the conveyor, and a fully automatic calibration operation can be realized. FIG. 7 is a block diagram of a measuring device having such a pseudo fruit body inside. The measuring light emitted from the light source 1 enters the fiber switching device 2 via the school attending fiber 8. The fiber switch 2 switches the incident light to the optical path 10 when measuring fruits and vegetables and to the optical path 11 side in the calibration mode. Optical path 1 when measuring fruits and vegetables
The measurement light projected from 0 is reflected by fruits and vegetables and enters the light receiving fiber 12, and enters the switch 2 through the plurality of plate-shaped pseudo fruit bodies 7 whose rotation is controlled by the stepping motor 6 in the calibration mode. Spectroscope 3
Performs spectral analysis of the luminous flux input as described above and sends it to the signal amplifier 4 to convert it into an electric signal. The processing device 5 analyzes the spectroscopic analysis information obtained as described above, and analyzes the measurement information and the calibration information of fruits and vegetables.

【0014】[0014]

【発明の効果】以上述べたごとく、本願発明にかかる擬
似対象物は実対象物の有する反射光特性に近似した特性
を備えるように設定されているため、実対象物を用いた
煩雑な校正操作をする必要なく測定装置のキャリブレー
ションを迅速に、再現性良く行うことができる。
As described above, since the pseudo object according to the present invention is set to have the characteristics similar to the reflected light characteristics of the actual object, a complicated calibration operation using the actual object is performed. The calibration of the measuring device can be performed quickly and with good reproducibility without the need for

【図面の簡単な説明】[Brief description of the drawings]

【図1】実果実と本願発明にかかる擬似果実の校正を比
較した模式図である。
FIG. 1 is a schematic diagram comparing the proofreading of an actual fruit and a pseudo fruit according to the present invention.

【図2】実果実と擬似果実による校正結果の比較を示す
図である。
FIG. 2 is a diagram showing a comparison of proofreading results of actual fruits and pseudo fruits.

【図3】擬似果実中のセルロース量の変化に伴う測定糖
度の変化を示す図である。
FIG. 3 is a diagram showing changes in measured sugar content with changes in the amount of cellulose in simulated fruits.

【図4】二重管の間隔を変化させた場合の測定値の相違
を表す図である。
FIG. 4 is a diagram showing a difference in measured values when the distance between the double tubes is changed.

【図5】擬似果実を用いた校正実験の結果を示す図であ
る。
FIG. 5 is a diagram showing the results of a calibration experiment using simulated fruits.

【図6】4種類の擬似果実を用いた測定装置の校正方法
を示す図である。
FIG. 6 is a diagram showing a calibration method of a measuring device using four kinds of simulated fruits.

【図7】擬似対象物を装置内に内蔵した測定器の説明図
である。
FIG. 7 is an explanatory diagram of a measuring device in which a simulated object is built in the device.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 円筒又は球状をなし、透明あるいは半透
明材料による外筒と、所定の光反射率を備えた内筒から
なる二重管構造からなり、該二重管構造の間隙に、被験
体中に含まれる目的物資を所定濃度含有した水溶液を充
填してなることを特徴とする被験体内部性状測定器校正
用擬似対象物。
1. A double tube structure comprising a cylindrical or spherical outer cylinder made of a transparent or semi-transparent material and an inner cylinder having a predetermined light reflectance, and a test is made in the gap of the double tube structure. A simulated object for calibrating a device for measuring internal properties of a subject, characterized by being filled with an aqueous solution containing a target substance contained in the body in a predetermined concentration.
【請求項2】 透明あるいは半透明材料を円筒又は球状
に形成し、その内部に、被験体中に含まれる目的物資を
所定濃度含有した水溶液に所定の分散質を添加してコロ
イド状とした物質を充填したことを特徴とする被験体内
部性状測定器校正用擬似対象物。
2. A substance which is formed into a cylindrical or spherical transparent or translucent material and into which a predetermined dispersoid is added to an aqueous solution containing a target substance contained in a subject at a predetermined concentration to form a colloidal substance. A pseudo object for calibrating the internal property measuring instrument of a subject, characterized by being filled with.
【請求項3】 異なる所定の目的物質濃度に設定した請
求項1又は2に記載の擬似対象物を複数個用意し、測定
光を前記擬似対象物に順次照射し、測定器によって反射
光を連続測定し、測定結果をあらかじめ定められた評価
式と比較することにより該測定器の校正を行うことを特
徴とする校正方法。
3. A plurality of simulated objects according to claim 1 or 2 which are set to different predetermined target substance concentrations, sequentially irradiate the simulated light with the measurement light, and continuously measure reflected light by a measuring instrument. A calibration method characterized by calibrating the measuring device by measuring and comparing the measurement result with a predetermined evaluation formula.
【請求項4】 前記測定器は前記複数個の擬似対象物を
装置内にあらかじめ備えていることを特徴とする校正方
法。
4. The calibration method, wherein the measuring device is provided with the plurality of simulated objects in advance in the apparatus.
【請求項5】 前記光反射率と二重管の間隔を適宜変更
することにより測定対象物に合わせた反射光特性に設定
可能であることを特徴とする請求項1に記載の擬似対象
物。
5. The simulated object according to claim 1, wherein the simulated object can be set to have a reflected light characteristic suitable for the object to be measured by appropriately changing the light reflectance and the distance between the double tubes.
【請求項6】 前記分散質濃度を適宜変更することによ
り測定対象物に合わせた反射光特性に設定可能であるこ
とを特徴とする請求項2に記載の擬似対象物。
6. The pseudo target object according to claim 2, wherein the pseudo light target property can be set to a reflected light characteristic suitable for the target object by appropriately changing the dispersoid concentration.
JP16092595A 1995-06-27 1995-06-27 Pseudo-object for calibration of internal property measuring device and calibration method of internal property measuring device Expired - Fee Related JP3352848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16092595A JP3352848B2 (en) 1995-06-27 1995-06-27 Pseudo-object for calibration of internal property measuring device and calibration method of internal property measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16092595A JP3352848B2 (en) 1995-06-27 1995-06-27 Pseudo-object for calibration of internal property measuring device and calibration method of internal property measuring device

Publications (2)

Publication Number Publication Date
JPH0915142A true JPH0915142A (en) 1997-01-17
JP3352848B2 JP3352848B2 (en) 2002-12-03

Family

ID=15725247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16092595A Expired - Fee Related JP3352848B2 (en) 1995-06-27 1995-06-27 Pseudo-object for calibration of internal property measuring device and calibration method of internal property measuring device

Country Status (1)

Country Link
JP (1) JP3352848B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0957353A2 (en) * 1998-05-15 1999-11-17 Mitsui Mining & Smelting Co., Ltd Apparatus for measuring the internal quality of an object
EP0959353A2 (en) * 1998-05-18 1999-11-24 Sumitomo Metal Mining Company Limited Calibrator for non-destructive transmission optical measuring apparatus
WO2000079247A1 (en) * 1999-06-21 2000-12-28 Kabushikikaisha Kajitsuhihakaihinshitsukenkyujo Side multiple-lamp on-line inside quality inspecting device
US6504154B2 (en) 2000-04-24 2003-01-07 Sumitomo Metal Mining Co., Ltd. Non-destructive sugar content measuring apparatus
WO2005057185A1 (en) * 2003-12-11 2005-06-23 Foss Analytical Ab Optical reference standard
JP2007232741A (en) * 1998-05-15 2007-09-13 Mitsui Mining & Smelting Co Ltd Correction method of object internal quality measurement
WO2019021511A1 (en) * 2017-07-26 2019-01-31 株式会社日阪製作所 Model sample for evaluating heat treatment, and method for evaluating heat treatment using model sample

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232741A (en) * 1998-05-15 2007-09-13 Mitsui Mining & Smelting Co Ltd Correction method of object internal quality measurement
KR100838138B1 (en) * 1998-05-15 2008-06-13 미쓰이 긴조꾸 고교 가부시키가이샤 Measurement apparatus for measuring internal quality of object
EP0957353A3 (en) * 1998-05-15 2000-02-23 Mitsui Mining & Smelting Co., Ltd Apparatus for measuring the internal quality of an object
EP0957353A2 (en) * 1998-05-15 1999-11-17 Mitsui Mining & Smelting Co., Ltd Apparatus for measuring the internal quality of an object
US6094265A (en) * 1998-05-18 2000-07-25 Sumitomo Metal Mining Co., Ltd. Calibrator for non-destructive transmission optical measuring apparatus
EP0959353A3 (en) * 1998-05-18 2001-11-28 Sumitomo Metal Mining Company Limited Calibrator for non-destructive transmission optical measuring apparatus
EP0959353A2 (en) * 1998-05-18 1999-11-24 Sumitomo Metal Mining Company Limited Calibrator for non-destructive transmission optical measuring apparatus
WO2000079247A1 (en) * 1999-06-21 2000-12-28 Kabushikikaisha Kajitsuhihakaihinshitsukenkyujo Side multiple-lamp on-line inside quality inspecting device
US6504154B2 (en) 2000-04-24 2003-01-07 Sumitomo Metal Mining Co., Ltd. Non-destructive sugar content measuring apparatus
WO2005057185A1 (en) * 2003-12-11 2005-06-23 Foss Analytical Ab Optical reference standard
US7477375B2 (en) 2003-12-11 2009-01-13 Foss Analytical Ab Optical reference standard
AU2004297494B2 (en) * 2003-12-11 2009-10-22 Foss Analytical Ab Optical reference standard
WO2019021511A1 (en) * 2017-07-26 2019-01-31 株式会社日阪製作所 Model sample for evaluating heat treatment, and method for evaluating heat treatment using model sample
JP2019027832A (en) * 2017-07-26 2019-02-21 株式会社日阪製作所 Simulated sample for evaluating heating treatment and method for evaluating heating treatment using simulated sample

Also Published As

Publication number Publication date
JP3352848B2 (en) 2002-12-03

Similar Documents

Publication Publication Date Title
JP2517858B2 (en) Nondestructive measurement method of fruit sugar content by near infrared transmission spectrum
US8004670B2 (en) Apparatus and method for spectrophotometric analysis
CA2286093C (en) Method for standardizing raman spectrometers to obtain stable and transferable calibrations
US5696580A (en) Method of and apparatus for measuring absorbance, component concentration or specific gravity of liquid sample
GB2360842A (en) Investigating a sample using electromagnetic radiation
AU2005311440B2 (en) Spectrophotometer
Masithoh et al. Determination of soluble solids content and titratable acidity of intact fruit and juice of satsuma mandarin using a hand-held near infrared instrument in transmittance mode
EP0437249A2 (en) Spectrometric method free from variations of error
Miyamoto et al. Classification of high acid fruits by partial least squares using the near infrared transmittance spectra of intact satsuma mandarins
JPH09113441A (en) Spectroscopic method
JP3352848B2 (en) Pseudo-object for calibration of internal property measuring device and calibration method of internal property measuring device
Andersen et al. Vibrational spectroscopy in the analysis of dairy products and wine
JP2000039397A (en) Calibrator for nondestructive transmission-type light- measuring device
Norris Understanding and correcting the factors which affect diffuse transmittance spectra
EP0823970B1 (en) Method and apparatus for analysis of an object
JP2004317381A (en) Apparatus for nondestructively measuring sugar content of fruits and vegetables
CN109596545A (en) Full spectral water quality monitoring device quality control method
US20220196476A1 (en) Method for configuring a spectrometry device
JPH11248622A (en) Urinalysis device
Workman Jr et al. Using Reference Materials, Part II: Photometric Standards
WO2001004612A2 (en) A method of determining the content of a component in a fluid sample and an apparatus therefor
RU2138042C1 (en) Process determining content of gluten in wheat and device for its implementation
JPS5922171B2 (en) Method and device for measuring the degree of deterioration of organic matter or the ripeness of agricultural products
Saranwong et al. A simple method of instrument standardisation for a near infrared sorting machine: the utilisation of average spectra as input vectors
JP3266422B2 (en) Fruit and vegetable quality judgment device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070920

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees