JPH0915106A - Soundness evaluation system for block structure - Google Patents
Soundness evaluation system for block structureInfo
- Publication number
- JPH0915106A JPH0915106A JP7160234A JP16023495A JPH0915106A JP H0915106 A JPH0915106 A JP H0915106A JP 7160234 A JP7160234 A JP 7160234A JP 16023495 A JP16023495 A JP 16023495A JP H0915106 A JPH0915106 A JP H0915106A
- Authority
- JP
- Japan
- Prior art keywords
- soundness
- vibration
- rocking
- measured
- block
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Bridges Or Land Bridges (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ブロック状構造物の上
端面において、短い一定時間の常時微動を測定すること
で、該構造物の転倒に対する健全度を評価する装置に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for evaluating the soundness of a block-shaped structure against a fall by measuring minute movements for a short constant time.
【0002】[0002]
【従来の技術】橋脚をはじめとするブロック状構造物の
転倒に対する健全度を評価する上で、構造物の基礎地盤
の状態を的確に把握することは重要である。現在実施さ
れている検査方法は、まず、全数について目視検査を行
い、その評価結果から転倒の危険性の高いものを選び出
し、30kg程度の重錘を該構造物に当てることによっ
て衝撃を与え、その衝撃によって生じる振動から該構造
物の固有振動数を計測し、予め求められている固有振動
数の標準値と比較することで該構造物の転倒に対する健
全度を評価してきた。2. Description of the Related Art In evaluating the soundness of a block-shaped structure such as a pier against a fall, it is important to accurately grasp the state of the foundation ground of the structure. In the inspection method currently implemented, first, a visual inspection is performed on all of them, and one having a high risk of falling is selected from the evaluation results, and a shock is applied by applying a weight of about 30 kg to the structure, The natural frequency of the structure is measured from the vibration generated by the impact, and compared with a standard value of the natural frequency which is obtained in advance, and the soundness of the structure against falling has been evaluated.
【0003】しかし、目視検査は検査員の技量に左右さ
れるものであるし、当然、目視検査にかからない変状も
存在する。また、重錘を構造物に当てて固有振動数を計
測する方法は、該構造物に無用の損傷を与える危険性が
高いばかりでなく、作業者自身にも高所からの重錘つり
下げ作業など危険な作業が伴う。However, the visual inspection depends on the skill of the inspector, and naturally, there are some variations that do not affect the visual inspection. In addition, the method of measuring the natural frequency by applying a weight to the structure not only has a high risk of causing unnecessary damage to the structure, but also causes the worker himself to suspend the weight from a high place. Dangerous work is involved.
【0004】さらに、この方法での評価精度に関する問
題点としては、予め求められている固有振動数の標準値
の算出過程における前提条件が、その構造物とどの程度
一致しているのかが不明である点や、測定された固有振
動数の標準値からの乖離が、転倒の危険性の高さとどう
結びつくのかが不明である点など、評価方法の本質に関
わる問題点がある。Further, as a problem regarding the evaluation accuracy in this method, it is unclear to what extent the preconditions in the process of calculating the standard value of the natural frequency that are obtained in advance agree with the structure. There are problems related to the essence of the evaluation method, such as certain points and how it is related to how the deviation from the standard value of the measured natural frequency is associated with the high risk of falls.
【0005】[0005]
【発明が解決しようとする課題】従来の技術の項でも述
べたように、全数検査は、検査員の技量に左右される目
視検査に頼っている上、重錘を構造物に当てて固有振動
数を計測する方法は、重錘つり下げ作業などの高所危険
作業を伴うとともに、評価方法の本質に関わる評価精度
に対する問題点があった。As described in the section of the prior art, the 100% inspection depends on the visual inspection which depends on the skill of the inspector, and the weight is applied to the structure to cause the natural vibration. The method of measuring the number involves dangerous work at a high place such as hanging the weight, and has a problem in the evaluation accuracy related to the essence of the evaluation method.
【0006】本発明は、前記のような従来の技術の問題
点を解決するもので、ブロック状構造物の転倒に対する
健全度を評価する装置について、全数を対象とすること
ができ、検査員の技量に左右されない、重錘つり下げ作
業などの高所危険作業のない、評価精度の高い装置を提
供することである。The present invention solves the above-mentioned problems of the prior art, and all of the devices for evaluating the soundness of a block-shaped structure against a fall can be applied to all the inspection devices. It is an object of the present invention to provide a device having high evaluation accuracy, which does not depend on the skill and does not perform dangerous work at a high place such as hanging work of a weight.
【0007】[0007]
【課題を解決するための手段】本発明は、ブロック状の
構造体から成り立っている構造物の転倒に対する健全度
を評価する場合に、対象とする構造物の上端面に転倒に
対する健全度を評価したい方向に測線をとり、その測線
の両端2カ所に水平方向と鉛直方向の常時微動を検出す
るセンサを置き、短い一定時間の常時微動を同時測定
し、測定した常時微動を利用して、ブロック状構造物の
転倒に対する健全度を評価するR値など、該構造物の転
倒に対する健全度を評価する値を求めることを特徴とす
る装置であって、振動を検出するセンサと、検出した振
動データをA/D変換して記録するA/D変換・記録部
と、A/D変換した振動データからその構造物の転倒に
対する健全度を評価する処理部と、求めた健全度を出力
する出力部とを有することを特徴とする。According to the present invention, when assessing the soundness of a structure composed of block-shaped structures against a fall, the soundness of a target structure against a fall is evaluated. Take a survey line in the desired direction, place sensors at both ends of the survey line to detect microtremor in the horizontal and vertical directions, measure microtremor at the same time for a short fixed time, and use the measured microtremor to block. A device for determining a value for evaluating the soundness of a structural object against falling, such as an R value for evaluating the soundness of the structural object against falling, and a sensor for detecting vibration, and detected vibration data. A / D conversion / recording unit for A / D converting and recording, a processing unit for evaluating the soundness of the structure against falling from the A / D converted vibration data, and an output unit for outputting the obtained soundness Have and It is characterized in.
【0008】[0008]
【作用】図2は、ブロック状構造物のロッキング振動の
振動形態を示したものである。ここに、1はブロック状
構造物、2はロッキング振動の回転中心位置、3は水平
方向と鉛直方向の常時微動を検出するセンサである。図
2に示すj=1、2は常時微動測定点を示し、H1 、H
2 はそれぞれ測定点1、2で観測される常時微動の水平
方向の振幅、V1 、V2 はそれぞれ測定点1、2で観測
される常時微動の鉛直方向の振幅を表す。また、測定点
1と2の水平距離をBとする。FIG. 2 shows the vibration mode of rocking vibration of the block-shaped structure. Here, 1 is a block-shaped structure, 2 is a rotation center position of rocking vibration, and 3 is a sensor which detects a fine movement in horizontal and vertical directions. In FIG. 2, j = 1 and 2 always indicate fine movement measurement points, and H 1 and H
Reference numeral 2 represents the horizontal amplitude of microtremor observed at measurement points 1 and 2, respectively, and V 1 and V 2 represent the vertical amplitude of microtremor observed at measurement points 1 and 2, respectively. The horizontal distance between the measurement points 1 and 2 is B.
【0009】従来のブロック状構造物の健全度評価の考
え方は、該構造物の固有振動数の低下で健全度を判断し
ようとするものである。分かり易い考え方ではあるが、
実際の橋脚をはじめとするブロック状構造物の振動に
は、さまざまな振動が関与しており、転倒の危険性に直
接関わる振動を見極めるのは容易ではない。また、比較
すべき基準となる固有振動数が明確に求められていない
と、正確な判断を下すことは難しい。The conventional way of thinking about the soundness evaluation of a block-shaped structure is to judge the soundness based on a decrease in the natural frequency of the structure. Although it is an easy-to-understand idea,
Various vibrations are involved in the vibrations of block-shaped structures such as actual piers, and it is not easy to determine the vibrations that are directly related to the risk of falling. In addition, it is difficult to make an accurate judgment unless the natural frequency, which is the reference to be compared, is clearly obtained.
【0010】本発明は、ブロック状構造物のロッキング
振動に着目している。転倒の危険性の高いブロック状構
造物ほど、ロッキング振動が支配的になる。したがっ
て、全体振動の中に占めるロッキング振動の割合を正確
に見積もることができれば、対象とする構造物の大きさ
に関わらず、絶対的な判断が可能となる。The present invention focuses on the rocking vibration of the block-shaped structure. The rocking vibration becomes dominant in the block-like structure having a higher risk of falling. Therefore, if the proportion of rocking vibration in the total vibration can be accurately estimated, it is possible to make an absolute judgment regardless of the size of the target structure.
【0011】図2に示す構造物上で観測されるHj とV
j は、それぞれ(式1)、(式2)で示すように、ロッ
キング振動の水平方向の振幅Hrjと鉛直方向の振幅
Vrj、ならびにそれ以外の振動の水平方向の振幅Hnjと
鉛直方向の振幅Vnjに分けて考えることができる。ここ
に、これら振幅の値の正負は、図2の紙面右方向、同下
方向を正とする。Bj 、Lj は、それぞれj点からのロ
ッキング中心までの水平距離と鉛直距離で、振幅の正負
と同じ方向の正負を持つ。θはロッキング振動の回転角
振幅(ラジアン)で、時計回りを正とする。 Hj =Hrj+Hn =Lj θ+Hn (式1) Vj =Vrj+Vn =−Bj θ+Vn (式2)H j and V observed on the structure shown in FIG.
j is a horizontal vibration amplitude H rj and a vertical vibration amplitude V rj of the rocking vibration, and a horizontal vibration amplitude H nj and a vertical vibration amplitude of other vibrations as shown in (Equation 1) and (Equation 2). it can be considered separately of the amplitude V nj. Here, the positive and negative values of these amplitudes are positive in the rightward direction and the downward direction in the plane of FIG. B j and L j are the horizontal distance and the vertical distance from the point j to the rocking center, and have positive and negative signs in the same direction as the positive and negative signs of the amplitude. θ is the rotation angle amplitude (radian) of the rocking vibration, and the clockwise direction is positive. H j = H rj + H n = L j θ + H n (Equation 1) V j = V rj + V n = −B j θ + V n (Equation 2)
【0012】ブロック状構造物の転倒に対する健全度を
評価するR値は、(式3)のように算出される。ここ
に、添字iは常時微動波形データのi番目の値であるこ
とを示し、Σはiをステップ数として、短い一定時間測
定した常時微動波形データのサンプル数の総和をとると
いう意味である。以下も同様である。 R=Σ(θi 2 )/Σ(Vni 2 ) =Σ{(V1i−V2i)2 }/Σ{(B2 V1i−B1 V2i)2 } (式3) R>1は、ロッキング振動が全体振動の5割超を占める
状態であることを示している。The R value for evaluating the soundness of the block-shaped structure against a fall is calculated as in (Equation 3). Here, the subscript i indicates the i-th value of the constant movement waveform data, and Σ means that i is the number of steps and the sum of the number of samples of the constant movement waveform data measured for a short fixed time is taken. The same applies to the following. R = Σ (θ i 2 ) / Σ (V ni 2 ) = Σ {(V 1i −V 2i ) 2 } / Σ {(B 2 V 1i −B 1 V 2i ) 2 } (Formula 3) R> 1 Indicates that the rocking vibration occupies more than 50% of the total vibration.
【0013】(式1)から、(式4)が求まる。 V1 −V2 =−(B1 −B2 )θ=−Bθ (式4) Σ(θi Vni)=0と考えられるから、(式1)と(式
4)から、(式5)、(式6)が導かれる。 B1 =[Σ{V1i(V1i−V2i)}/Σ{(V1i−V2i)2 }]×B (式5) B2 =[Σ{V2i(V1i−V2i)}/Σ{(V1i−V2i)2 }]×B (式6) よって、(式5)、(式6)から、該構造物の中心線か
らのロッキング中心の右側への偏心量eは、(式7)の
ように求まる。 e=(B1 +B2 )/2 (式7) 同様に、Σ(θi Hni)=0と考えられるから、(式
2)と(式4)から、(式8)、(式9)が導かれる。 L1 =[Σ{H1i(V1i−V2i)}/Σ{V1i(V1i−V2i)}] ×(−B) (式8) L2 =[Σ{H2i(V1i−V2i)}/Σ{V2i(V1i−V2i)}] ×(−B) (式9) 通常、L1 とL2 は同じ値になるはずであり、両者の相
違は推定精度の高さを示す。ここでは、両者を平均した
ものをロッキング中心の該構造物の上端面からの深さL
とする。ここで求められたロッキング中止の偏心量eや
深さLは、該構造物の転倒に対する安定性を判断する重
要な指標になる。(Equation 4) is obtained from (Equation 1). V 1 −V 2 = − (B 1 −B 2 ) θ = −Bθ (Equation 4) Since it is considered that Σ (θ i V ni ) = 0, from (Equation 1) and (Equation 4), (Equation 5 ) And (Equation 6) are derived. B 1 = [Σ {V 1i (V 1i −V 2i )} / Σ {(V 1i −V 2i ) 2 }] × B (Equation 5) B 2 = [Σ {V 2i (V 1i −V 2i ). } / Σ {(V 1i −V 2i ) 2 }] × B (Equation 6) Therefore, from (Equation 5) and (Equation 6), the amount of eccentricity e from the center line of the structure to the right side of the rocking center e Is calculated as in (Equation 7). e = (B 1 + B 2 ) / 2 (Equation 7) Similarly, since Σ (θ i H ni ) = 0 is considered, from (Equation 2) and (Equation 4), (Equation 8), (Equation 9) ) Is introduced. L 1 = [Σ {H 1i (V 1i −V 2i )} / Σ {V 1i (V 1i −V 2i )}] × (−B) (Equation 8) L 2 = [Σ {H 2i (V 1i −V 2i )} / Σ {V 2i (V 1i −V 2i )}] × (−B) (Equation 9) Normally, L 1 and L 2 should have the same value, and the difference between them is the estimation accuracy. Indicates the height of. Here, the average of the two is the depth L from the upper end surface of the structure at the locking center.
And The eccentricity e and the depth L of the rocking suspension obtained here are important indexes for judging the stability of the structure against falling.
【0014】一方、ロッキング振動以外の振動の水平方
向の振動Hn は、ロッキング振動の水平方向の振動Hr
の入力と考えることができる。したがって、それぞれの
振動のスペクトルをそれぞれS(Hn )、S(Hr )で
表すと、両者のスペクトル比S(Hr )/S(Hn )
は、該構造物の地震応答特性、すなわち、伝達関数と見
なすことができる。よって、卓越するピーク振動数は、
ロッキング振動の振動数と考えることができる。さら
に、この振動数において、Hr とVr の相関が極めて高
くなっている。したがって、両者のスペクトルのコヒー
レンス関数を求めることによって、相関度の高い振動数
を抽出でき、それをロッキング振動の振動数と考えるこ
とができる。On the other hand, the horizontal vibration H n other than the rocking vibration is the horizontal vibration H r of the rocking vibration.
Can be thought of as input. Therefore, if the spectra of the respective vibrations are respectively represented by S (H n ) and S (H r ), the spectral ratio of the two, S (H r ) / S (H n )
Can be regarded as the seismic response characteristic of the structure, that is, the transfer function. Therefore, the predominant peak frequency is
It can be considered as the frequency of rocking vibration. Furthermore, at this frequency, the correlation between H r and V r is extremely high. Therefore, by obtaining the coherence function of both spectra, the frequency with a high degree of correlation can be extracted and can be considered as the frequency of rocking vibration.
【0015】また、ロッキング振動以外の振動の水平方
向の振動Hn とロッキング振動以外の振動の鉛直方向の
振動Vn は、該構造物がたっている基礎地盤の性質に依
存した振動である。したがって、それぞれの振動のスペ
クトルをそれぞれS(Hn )、S(Vn )で表すと、両
者のスペクトル比S(Hn )/S(Vn )は、該基礎地
盤の地震応答特性、すなわち、伝達関数と見なすことが
できる。よって、卓越するピーク振動数は、該基礎地盤
の卓越振動数を表し、そのピークが応答倍率を表してい
る。The horizontal vibration H n other than the rocking vibration and the vertical vibration V n other than the rocking vibration are vibrations depending on the properties of the foundation ground on which the structure is built. Therefore, when the spectrum of each vibration is represented by S (H n ) and S (V n ), respectively, the spectrum ratio S (H n ) / S (V n ) of both is the seismic response characteristic of the foundation ground, that is, , Can be regarded as a transfer function. Therefore, the dominant peak frequency represents the dominant frequency of the foundation ground, and the peak represents the response magnification.
【0016】[0016]
【実施例】図1は、本発明の1実施例で、1はブロック
状構造物、2はロッキング振動の回転中心位置、3は水
平方向と鉛直方向の常時微動を検出するセンサ、4は基
礎地盤、5はケーブル、6はA/D変換ならびに記録媒
体への波形記録部、7は記録媒体あるいはケーブル、8
は波形データからR値やe、Lなどを求める波形処理
部、9は表示部である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an embodiment of the present invention, 1 is a block-like structure, 2 is a rotation center position of rocking vibration, 3 is a sensor for constantly detecting fine movements in horizontal and vertical directions, and 4 is a foundation. Ground, 5 cable, 6 A / D conversion and waveform recording section on recording medium, 7 recording medium or cable, 8
Is a waveform processing unit for obtaining R value, e, L, etc. from the waveform data, and 9 is a display unit.
【0017】図3は、本発明を用いて測定した橋梁の全
体図で、4は基礎地盤、10は桁、11は橋台、12は
橋脚、13は木杭である。FIG. 3 is an overall view of a bridge measured using the present invention. 4 is a foundation ground, 10 is a girder, 11 is an abutment, 12 is a pier, and 13 is a wooden pile.
【0018】図4は、図3に示した測定した橋梁の1P
と2PのR値とロッキング中心位置を表したものであ
る。FIG. 4 shows the measured bridge 1P shown in FIG.
And the R value of 2P and the rocking center position.
【0019】図5は、図3に示した測定した橋梁の1P
と2Pの固有振動数を本発明と従来の技術で求めたもの
を比較したものである。FIG. 5 shows 1P of the measured bridge shown in FIG.
And the natural frequencies of 2P are compared between those obtained by the present invention and the conventional technique.
【0020】この橋梁は、過去に変状履歴はないが、1
Pは流水路中にあり、橋脚基礎が露出するほど洗掘され
ている。測定は、各橋脚の橋軸直角方向の転倒に対する
健全度を求めるように行った。本発明により各橋脚で測
定したのは約41秒間の常時微動で、健全度判定の結
果、図4に示すように、1PのR値が1を越えて要注意
と判断された。一方、2Pは健全と判断され、現状を反
映した結果となった。いずれの橋脚も、ロッキング中心
の偏心量は小さく、また、深さは橋脚底面付近にあるこ
とが分かった。図5に、本発明により得られた橋脚の固
有振動数と、従来の技術である橋脚に衝撃を与えて得ら
れた固有振動数を比較して示す。両者は極めてよく一致
していることが分かる。This bridge has no history of deformation, but
P is located in the running channel and is scoured to expose the pier foundation. The measurement was carried out so as to obtain the soundness of each bridge pier in the direction perpendicular to the bridge axis. According to the present invention, the microtremor was measured for each pier for about 41 seconds, and as a result of the soundness determination, as shown in FIG. 4, the R value of 1P exceeded 1, and it was determined that caution was required. On the other hand, 2P was judged to be sound, and the results reflected the current situation. It was found that the eccentricity of the rocking center of each pier was small and the depth was near the bottom of the pier. FIG. 5 shows a comparison between the natural frequency of the pier obtained by the present invention and the natural frequency obtained by impacting the pier, which is a conventional technique. It can be seen that the two agree very well.
【0021】以上のように、本発明は、従来の技術を十
分に満たしているだけでなく、該構造物のロッキング振
動に着目して健全度を判断しているので、固有振動数の
変化だけに着目している従来の技術では得られなかった
的確な判定を下すことができる。As described above, the present invention not only sufficiently satisfies the conventional technology but also determines the soundness by focusing on the rocking vibration of the structure. It is possible to make an accurate determination that could not be obtained by the conventional technique focusing on.
【0022】[0022]
【発明の効果】本発明により、重錘をつり下げるなどの
高所危険作業の必要がなくなり、測定対象のブロック状
構造物の上端面に転倒に対する健全度を評価したい方向
に測線をとり、その測線の両端2カ所に水平方向と鉛直
方向の常時微動を検出するセンサを置き、短い一定時間
の常時微動を測定するだけで、該構造物の転倒に対する
健全度を的確に評価することができる。本発明から得ら
れる情報量は多く、固有振動数の変化だけに頼って健全
度を判断する従来の技術に付きまとう不安感が完全に払
拭できる。短時間のうちに常時微動測定から健全度判定
まで行われるので、多くの場所の健全度判定をこなすこ
とができ、全数検査が可能になる。EFFECTS OF THE INVENTION According to the present invention, it is not necessary to perform dangerous work at a high place such as hanging a weight, and a line is taken on the upper end surface of the block-shaped structure to be measured in the direction in which the soundness against a fall is to be evaluated. It is possible to accurately evaluate the soundness of the structure with respect to a fall, by placing sensors for detecting fine movements in the horizontal direction and the vertical direction at two positions on both ends of the survey line and measuring the fine movements for a short fixed time. The amount of information obtained from the present invention is large, and it is possible to completely eliminate the anxiety associated with the conventional technique of judging the soundness based only on the change in natural frequency. Since the microtremor measurement and the soundness determination are always performed within a short time, the soundness determination at many places can be performed, and 100% inspection can be performed.
【図1】本発明の1実施例である。FIG. 1 is an embodiment of the present invention.
【図2】ブロック状構造物のロッキング振動の振動形態
である。FIG. 2 is a vibration mode of rocking vibration of a block-shaped structure.
【図3】本発明を用いて測定した橋梁の全体図である。FIG. 3 is an overall view of a bridge measured using the present invention.
【図4】測定した橋梁の橋脚のR値、ロッキング中心位
置である。FIG. 4 shows the measured R value of the bridge pier and the rocking center position.
【図5】本発明により得られた橋脚の固有振動数と、従
来の技術である橋脚に衝撃を与えて得られた固有振動数
の比較である。FIG. 5 is a comparison of the natural frequency of the bridge pier obtained by the present invention and the natural frequency obtained by impacting the pier which is the conventional technique.
1 ブロック状構造物 2 ロッキング振動の回転中心位置 3 水平方向と鉛直方向の常時微動を検出するセンサ 4 基礎地盤 5 ケーブル 6 A/D変換ならびに記録媒体への波形記録部 7 記録媒体あるいはケーブル 8 波形データからR値やe、Lなどを求める波形処理
部 9 表示部 10 桁 11 橋台 12 橋脚 13 木杭1 Block-shaped structure 2 Rotation center position of rocking vibration 3 Sensor for detecting micro-movement in horizontal and vertical directions 4 Foundation ground 5 Cable 6 A / D conversion and waveform recording section to recording medium 7 Recording medium or cable 8 Waveform Waveform processing unit for obtaining R value, e, L, etc. from data 9 Display unit 10 digits 11 Abutments 12 Bridge piers 13 Wooden piles
Claims (5)
造物の転倒に対する健全度を評価する場合に、対象とす
る構造物の上端面に転倒に対する健全度を評価したい方
向に測線をとり、その測線の両端2カ所において、水平
方向と鉛直方向の常時微動を短い一定時間同時測定し、
測定した常時微動から求めた該構造物の振動をロッキン
グ振動の成分rとそれ以外の振動の成分nに分け、R=
(r/n)2 で算定されるR値が1を越えたことで、該
構造物の転倒に対する健全度が十分でないと評価し、R
値が大きくなるほど該構造物の転倒に対する危険性が高
いと評価する装置であって、振動を検出するセンサと、
検出した振動データをA/D変換して記録するA/D変
換・記録部と、A/D変換した振動データから該構造物
の転倒に対する健全度を評価する処理部と、求めた健全
度を出力する出力部とを有することを特徴とするブロッ
ク状構造物の健全度評価装置。1. When assessing the soundness of a structure made up of block-shaped structures against a fall, a line is drawn on the upper end surface of the target structure in the direction in which the soundness against a fall is to be evaluated. At both ends of the survey line, horizontal and vertical microtremors are measured simultaneously for a short period of time.
The vibration of the structure obtained from the measured microtremor is divided into a rocking vibration component r and another vibration component n, and R =
Since the R value calculated by (r / n) 2 exceeded 1, it was evaluated that the soundness of the structure against fall was not sufficient, and R
A device that evaluates that the greater the value, the higher the risk of falling of the structure, and a sensor that detects vibration,
The A / D conversion / recording unit that A / D-converts and records the detected vibration data, the processing unit that evaluates the soundness of the structure from falling from the A / D-converted vibration data, and the calculated soundness A soundness evaluation device for a block-shaped structure, comprising: an output unit for outputting.
グ振動の回転中心位置の鉛直中心線からの偏心量や上端
面からの深さを求め、それらの値の大きさによって該構
造物の安定性を評価することを特徴とする請求項1のブ
ロック状構造物の健全度評価装置。2. The amount of eccentricity of the rocking vibration of the structure from the vertical center line and the depth from the upper end surface are obtained from the measured microtremor, and the stability of the structure is determined by the magnitude of these values. The apparatus for evaluating the soundness of a block-shaped structure according to claim 1, wherein the soundness is evaluated.
動の水平成分スペクトルとそれ以外の振動の水平成分ス
ペクトルの比のピークからロッキング振動数を読み取る
ことを特徴とする請求項1または請求項2のブロック状
構造物の健全度評価装置。3. The rocking frequency is read from the peak of the ratio of the horizontal component spectrum of the rocking vibration and the horizontal component spectrum of the other vibrations obtained from the measured microtremor. Equipment for evaluating the soundness of block-shaped structures.
動の水平成分スペクトルとロッキング振動の鉛直成分ス
ペクトルのコヒーレンス関数において、相関度の高い振
動数を該構造物のロッキング振動数とすることを特徴と
する請求項1または請求項2または請求項3のブロック
状構造物の健全度評価装置。4. In the coherence function of the horizontal component spectrum of the rocking vibration and the vertical component spectrum of the rocking vibration obtained from the measured microtremors, the frequency having a high degree of correlation is set as the rocking frequency of the structure. The soundness evaluation device for a block-shaped structure according to claim 1, 2 or 3.
動以外の振動の水平成分スペクトルをロッキング振動以
外の振動の鉛直方向スペクトルで除すことにより、該構
造物の基礎地盤の地震動特性を把握することを特徴とす
る請求項1または請求項2または請求項3または請求項
4のブロック状構造物の健全度評価装置。5. The seismic motion characteristics of the foundation ground of the structure are grasped by dividing the horizontal component spectrum of the vibration other than the rocking vibration obtained from the measured microtremor by the vertical spectrum of the vibration other than the rocking vibration. The soundness evaluation device for a block-shaped structure according to claim 1, 2 or 3, or 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16023495A JP3475313B2 (en) | 1995-06-27 | 1995-06-27 | Soundness evaluation device for block-like structures |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16023495A JP3475313B2 (en) | 1995-06-27 | 1995-06-27 | Soundness evaluation device for block-like structures |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0915106A true JPH0915106A (en) | 1997-01-17 |
JP3475313B2 JP3475313B2 (en) | 2003-12-08 |
Family
ID=15710612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16023495A Expired - Fee Related JP3475313B2 (en) | 1995-06-27 | 1995-06-27 | Soundness evaluation device for block-like structures |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3475313B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002257671A (en) * | 2000-12-28 | 2002-09-11 | Structural Quality Assurance Inc | Method and system for diagnosing object by micromotion observation |
JP2004093579A (en) * | 2000-12-28 | 2004-03-25 | Structural Quality Assurance Inc | Diagnostic method and diagnostic system of structure by jogging observation |
JP2007270552A (en) * | 2006-03-31 | 2007-10-18 | Univ Waseda | Signal processing method, signal processing program and recording medium |
JP2007333635A (en) * | 2006-06-16 | 2007-12-27 | East Japan Railway Co | Bridge soundness evaluation system, bridge soundness evaluation method and bridge soundness evaluation program |
JP2009186383A (en) * | 2008-02-08 | 2009-08-20 | Railway Technical Res Inst | Real-time earthquake damage estimation method for elevated bridge and its apparatus |
JP2009186384A (en) * | 2008-02-08 | 2009-08-20 | Railway Technical Res Inst | Real-time earthquake damage estimation method by shaking of elevated bridge and its apparatus |
JP2009203767A (en) * | 2008-02-29 | 2009-09-10 | Railway Technical Res Inst | Aseismatic reinforcing method and reinforcing structure for structure |
JP2017166922A (en) * | 2016-03-15 | 2017-09-21 | 公益財団法人鉄道総合技術研究所 | Natural frequency detection method of structure and natural frequency detection method of structure |
JP2019132635A (en) * | 2018-01-30 | 2019-08-08 | 公益財団法人鉄道総合技術研究所 | Natural frequency determination device and method for determining natural frequency |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0694583A (en) * | 1991-12-20 | 1994-04-05 | Railway Technical Res Inst | Method for inspecting fixed condition or bridge pier and its device |
-
1995
- 1995-06-27 JP JP16023495A patent/JP3475313B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0694583A (en) * | 1991-12-20 | 1994-04-05 | Railway Technical Res Inst | Method for inspecting fixed condition or bridge pier and its device |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002257671A (en) * | 2000-12-28 | 2002-09-11 | Structural Quality Assurance Inc | Method and system for diagnosing object by micromotion observation |
JP2004093579A (en) * | 2000-12-28 | 2004-03-25 | Structural Quality Assurance Inc | Diagnostic method and diagnostic system of structure by jogging observation |
JP2007270552A (en) * | 2006-03-31 | 2007-10-18 | Univ Waseda | Signal processing method, signal processing program and recording medium |
JP2007333635A (en) * | 2006-06-16 | 2007-12-27 | East Japan Railway Co | Bridge soundness evaluation system, bridge soundness evaluation method and bridge soundness evaluation program |
JP2009186383A (en) * | 2008-02-08 | 2009-08-20 | Railway Technical Res Inst | Real-time earthquake damage estimation method for elevated bridge and its apparatus |
JP2009186384A (en) * | 2008-02-08 | 2009-08-20 | Railway Technical Res Inst | Real-time earthquake damage estimation method by shaking of elevated bridge and its apparatus |
JP2009203767A (en) * | 2008-02-29 | 2009-09-10 | Railway Technical Res Inst | Aseismatic reinforcing method and reinforcing structure for structure |
JP2017166922A (en) * | 2016-03-15 | 2017-09-21 | 公益財団法人鉄道総合技術研究所 | Natural frequency detection method of structure and natural frequency detection method of structure |
JP2019132635A (en) * | 2018-01-30 | 2019-08-08 | 公益財団法人鉄道総合技術研究所 | Natural frequency determination device and method for determining natural frequency |
Also Published As
Publication number | Publication date |
---|---|
JP3475313B2 (en) | 2003-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112629647B (en) | Real-time identification, monitoring and early warning method for vortex vibration event of large-span suspension bridge | |
Gopalkrishnan | Vortex-induced forces on oscillating bluff cylinders | |
Swamidas et al. | Monitoring crack growth through change of modal parameters | |
JPH02212734A (en) | Apparatus and method for detecting change in structual integrity of structural member | |
US4565099A (en) | Method and apparatus for determining tension in a cable | |
CN107300432B (en) | Method and device for realizing field self-adaptive cable force measurement | |
CN205843918U (en) | Slab and girder load identification and the multi-function test stand of non-destructive tests | |
CN100547372C (en) | The method and system of confirmed test frequency in a kind of conductor vibration test | |
JPH0915106A (en) | Soundness evaluation system for block structure | |
JP3313028B2 (en) | Measurement method of bending stiffness and tension of cable under tension | |
JP2020125942A (en) | Structure soundness determining device and structure soundness determining method | |
Nguyen et al. | A Correlation Coefficient Approach for Evaluation of Stiffness Degradation of Beams Under Moving Load. | |
CN110399683A (en) | Bridge Impact Coefficient extracting method based on frequency domain amplitude spectrum similitude filtering technique | |
JP2021139237A (en) | Soundness evaluation method for bridge piers and viaducts | |
CN116522085A (en) | Full-automatic inhaul cable frequency extraction, fixed-order and cable force identification method and application | |
KR100553124B1 (en) | Energy-Dissipation-Ratio based structural health monitoring method | |
JPH0694583A (en) | Method for inspecting fixed condition or bridge pier and its device | |
JPH0915343A (en) | Method and device for detecting ground cavity | |
US5578756A (en) | Method and apparatus for evaluating soundness of block-like structures | |
JP4057548B2 (en) | Block-like structure soundness evaluation method and block-like structure soundness evaluation apparatus | |
CN108151957B (en) | Cable force dynamic tester calibration device and method | |
RU2284489C1 (en) | Vibration testing method to control technical bridge span state | |
Aulakh et al. | Piezo Sensors Based Operational Strain Modal Analysis for SHM | |
JP3696298B2 (en) | Seismic evaluation method and apparatus for buildings | |
Orai et al. | A trial of simple and easy health monitoring for power poles by using ‘ipod’ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |