JPH0915065A - Acoustic thermometer - Google Patents

Acoustic thermometer

Info

Publication number
JPH0915065A
JPH0915065A JP16756095A JP16756095A JPH0915065A JP H0915065 A JPH0915065 A JP H0915065A JP 16756095 A JP16756095 A JP 16756095A JP 16756095 A JP16756095 A JP 16756095A JP H0915065 A JPH0915065 A JP H0915065A
Authority
JP
Japan
Prior art keywords
horn
ash
acoustic
furnace
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16756095A
Other languages
Japanese (ja)
Other versions
JP3564198B2 (en
Inventor
Noriyuki Imada
典幸 今田
Hidehisa Yoshizako
秀久 吉廻
Shunichi Tsumura
俊一 津村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP16756095A priority Critical patent/JP3564198B2/en
Publication of JPH0915065A publication Critical patent/JPH0915065A/en
Application granted granted Critical
Publication of JP3564198B2 publication Critical patent/JP3564198B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure the temperature of gas while reflecting the state of furnace more sensitively by making a large number of ejection holes of a medium for preventing adhesion of ash around the opening of a horn on the sound transmitter side and sound receiver side. SOLUTION: An acoustic sensor comprises a horn 20 coupled with a speaker 3, a large number of ejection holes of a medium for preventing adhesion of ash made in the inner and outer circumferences of a ring 36 fitted at the opening of horn, and an air ejection hole 23. A waveguide tube 21 coupled, at one end thereof, with a microphone 4 is inserted into the horn 20. Since noise is generated at the time of jetting air to disturb the measurement, the air pipe is provided with a solenoid valve 33 for preventing jetting of air when a sound wave is generated from the speaker 3 and the opening/closing of the solenoid valve 33 is controlled by a controller. The controller detects the propagation time of sound wave through the furnace based on a signal generated from the microphone 4 upon receiving the sound wave transmitted from the speaker 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガス流体の温度計に係
り、特に石炭焚ボイラのように溶融灰が浮遊している高
温ガスの音速を測定して、高温ガスの温度を求める音響
式温度計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas fluid thermometer, and more particularly to an acoustic system for determining the temperature of a high temperature gas by measuring the sound velocity of the high temperature gas in which molten ash is suspended, such as in a coal fired boiler. Regarding thermometer.

【0002】[0002]

【従来の技術】ダクト内を流れる流体の温度を計測する
方法の一つとして、流体中の音速が流体の温度T(K)
によって変化することを利用する方法がある。流体中の
音速c(m/s)は、次式のように表される。なお、式
中のαはガスの組成によって決まる定数、Tはガス温度
である。
2. Description of the Related Art As one of the methods for measuring the temperature of a fluid flowing in a duct, the speed of sound in the fluid is the temperature T (K) of the fluid.
There is a way to take advantage of changing by. The sound velocity c (m / s) in the fluid is expressed by the following equation. In the formula, α is a constant determined by the composition of the gas, and T is the gas temperature.

【0003】c=α・√(T) (1) この方法を用いた具体的な装置構成を図6に示す。一般
に流体の温度を測定する場合、同図に示すように、被測
定流体を挟んで音響送信器3と音響受信器4を設置し、
その間の伝播時間tを測定する。この時、伝播時間tは
次式で表すことができる。
C = α√ (T) (1) FIG. 6 shows a specific device configuration using this method. Generally, when measuring the temperature of a fluid, as shown in the figure, an acoustic transmitter 3 and an acoustic receiver 4 are installed with a fluid to be measured interposed therebetween,
The propagation time t during that time is measured. At this time, the propagation time t can be expressed by the following equation.

【0004】 t=L/〔α・√(T)〕 (2) ここに、Lは音響送信器3と音響受信器4間の距離であ
り、予め測定しておく必要がある。この伝播時間tより
ガス温度Tが算出できる。
T = L / [α√ (T)] (2) where L is the distance between the acoustic transmitter 3 and the acoustic receiver 4 and needs to be measured in advance. The gas temperature T can be calculated from this propagation time t.

【0005】この方法を高温ガスの温度計測に適用する
場合には、図7に示す装置構成となる。一般に音響セン
サの耐熱温度は60℃程度であるために、100℃以上
の高温ガスの温度計測のために、導波管2を介してダク
ト19に音響送信器(スピーカ)3および音響受信器
(マイク)4を設置する。また大きな音をダクト19内
に放出するために、音響送信器3側にホーン20を使用
する場合もある。
When this method is applied to the temperature measurement of high temperature gas, the device configuration is as shown in FIG. Generally, the heat resistant temperature of the acoustic sensor is about 60 ° C. Therefore, in order to measure the temperature of the high temperature gas of 100 ° C. or more, the acoustic transmitter (speaker) 3 and the acoustic receiver ( Microphone) 4 is installed. Further, in order to emit a loud sound into the duct 19, the horn 20 may be used on the side of the acoustic transmitter 3.

【0006】また、この音波を用いた温度計測は、図8
に示すように、複数の音響センサ18(音響送信器3と
音響受信器4を兼ね備えたセンサ)をダクト19の周囲
に配置して温度分布が測定できるという特長を有してい
る。
Further, the temperature measurement using this sound wave is shown in FIG.
As shown in FIG. 5, a plurality of acoustic sensors 18 (sensors having both the acoustic transmitter 3 and the acoustic receiver 4) are arranged around the duct 19 to measure the temperature distribution.

【0007】なお、従来の関連技術として、特開昭63
−231682号公報、特開平1−304334号公
報、特開平1−68627号公報などに記載された提案
がある。
Incidentally, as a conventional related art, Japanese Patent Laid-Open No. 63-63
There are proposals described in JP-A-231682, JP-A-1-304334, JP-A-1-68627 and the like.

【0008】図9はボイラ過熱器の火炉側の炉壁に音響
センサ18を設置し、ガス温度を計測した例を示す図で
ある。
FIG. 9 is a diagram showing an example in which an acoustic sensor 18 is installed on the furnace wall of the boiler superheater on the furnace side and the gas temperature is measured.

【0009】過熱器26の火炉側のガス温度を測定でき
れば、火炉での燃焼状態、炉壁での吸熱状態などを的確
に知ることができるようになるので、石炭焚ボイラの制
御に有効である。過熱器26の火炉側に設置された音響
センサ18の信号は音響式温度計27に送られ、それを
基にボイラ制御器28により燃料調整器30を制御して
バーナへの燃料調整を行う。
If the gas temperature on the furnace side of the superheater 26 can be measured, it becomes possible to accurately know the combustion state in the furnace, the endothermic state in the furnace wall, etc., which is effective in controlling the coal-fired boiler. . The signal from the acoustic sensor 18 installed on the furnace side of the superheater 26 is sent to the acoustic thermometer 27, and the boiler controller 28 controls the fuel regulator 30 based on the signal to adjust the fuel to the burner.

【0010】[0010]

【発明が解決しようとする課題】しかし、石炭焚ボイラ
に上記システムを適用する場合、次のような問題が生じ
る。
However, when the above system is applied to a coal-fired boiler, the following problems occur.

【0011】石炭焚ボイラにおいては、燃料である石炭
が燃焼した後に灰が残る。この灰の溶融温度は一般に1
300〜1500℃である。火炉内の温度は火炉出口部
で1200〜1300℃程度であるので、溶融した灰が
炉壁および伝熱管に付着する。
In a coal fired boiler, ash remains after combustion of coal, which is a fuel. The melting temperature of this ash is generally 1
300 to 1500 ° C. Since the temperature inside the furnace is about 1200 to 1300 ° C. at the furnace outlet, the molten ash adheres to the furnace wall and the heat transfer tubes.

【0012】石炭焚ボイラではこの灰が過熱器26に付
着するのを防ぐために、図10に示すように、過熱器2
6の上流側に灰除去用伝熱管29を設置している。この
灰除去用伝熱管29の設置により、炉内の灰は灰除去用
伝熱管29で冷却、固形化され、その殆どが灰除去用伝
熱管29に付着した後、図示していないスートブロアに
よって剥がされ、灰は火炉下部より取り除かれる。補集
されずに灰除去用伝熱管29を通過した灰は殆どが固ま
った状態となっており、過熱器26に付着する灰は僅か
である。
In the coal-fired boiler, in order to prevent this ash from adhering to the superheater 26, as shown in FIG.
An ash removing heat transfer tube 29 is installed on the upstream side of 6. By installing this ash removal heat transfer tube 29, the ash in the furnace is cooled and solidified by the ash removal heat transfer tube 29, and most of it adheres to the ash removal heat transfer tube 29 and is then peeled off by a soot blower (not shown). Ashes are removed from the bottom of the furnace. Most of the ash that has passed through the ash removal heat transfer tube 29 without being collected is in a solidified state, and a small amount of ash adheres to the superheater 26.

【0013】しかし、このような灰除去用伝熱管29が
上流側にあるために、例えば図10のAで示す位置に、
音響センサ18を設置した場合、音響センサ18で測定
したガス温度は灰除去用伝熱管29で冷却されたガス温
度であり、それ故に火炉の状態を敏感に反映したガス温
度ではない。
However, since the ash-removing heat transfer tube 29 is located on the upstream side, the ash removing heat transfer tube 29 is located at the position indicated by A in FIG.
When the acoustic sensor 18 is installed, the gas temperature measured by the acoustic sensor 18 is the gas temperature cooled by the ash removal heat transfer tube 29, and is therefore not the gas temperature sensitively reflecting the state of the furnace.

【0014】火炉状態をより敏感に反映したガス温度を
測定するためには、音響センサ18を灰除去用伝熱管2
9の上流側(図10のB位置)に設置する方法が考えら
れる。しかし、灰除去用伝熱管29の上流側のガス温度
は1300℃以上であり、灰が溶融している状態であ
る。そのため、灰除去用伝熱管29の上流側の側壁に音
響センサ18を設置すると、この音響センサ18に灰が
付着し、音波を発信、受信するための穴が閉塞してしま
うという問題が生じる。
In order to measure the gas temperature which more sensitively reflects the state of the furnace, the acoustic sensor 18 is used as the heat transfer tube 2 for removing ash.
A method of installing on the upstream side of 9 (position B in FIG. 10) can be considered. However, the gas temperature on the upstream side of the ash removal heat transfer tube 29 is 1300 ° C. or higher, and the ash is in a molten state. Therefore, when the acoustic sensor 18 is installed on the side wall on the upstream side of the ash-removing heat transfer tube 29, there is a problem that ash adheres to the acoustic sensor 18 and the holes for transmitting and receiving sound waves are blocked.

【0015】図11は音響センサ18を石炭焚火炉の灰
除去用伝熱管29の上流側に設置した場合の灰の付着状
態を示す図であり、(a)はホーンの正面図、(b)は
側面図である。ホーン20の先端に灰31が付着し、穴
35を塞いでいる。そのために、スピーカ3から発した
音波が炉内に送出できず、ガス温度を測定することがで
きない。21はマイク用導波管、23はスピーカ用導波
管2に開口する空気噴出孔である。
FIGS. 11A and 11B are views showing the state of ash adhesion when the acoustic sensor 18 is installed upstream of the ash removing heat transfer tube 29 of the coal-fired furnace. FIG. 11A is a front view of the horn, and FIG. Is a side view. Ash 31 is attached to the tip of the horn 20 to close the hole 35. Therefore, the sound wave emitted from the speaker 3 cannot be sent into the furnace and the gas temperature cannot be measured. Reference numeral 21 is a microphone waveguide, and 23 is an air ejection hole opened in the speaker waveguide 2.

【0016】本発明は上記従来技術の欠点を解消し、火
炉状態をより敏感に反映したガス温度を測定することが
できる音響式温度計を提供することを目的とする。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide an acoustic thermometer capable of measuring the gas temperature which more sensitively reflects the state of the furnace.

【0017】[0017]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、側壁の一方に音響送信器を設置し、他方
に音響受信器を設置し、音響送信器と音響受信器間の音
波の伝播時間を測定して側壁間を流れるガス温度に換算
する音響式温度計において、音響送信器側および音響受
信器側のホーンの開口部周囲に、灰付着防止用媒体を噴
出する噴出孔を多数形成したことを特徴とする。
In order to achieve the above object, the present invention provides an acoustic transmitter installed on one side wall and an acoustic receiver installed on the other side wall between the acoustic transmitter and the acoustic receiver. In an acoustic thermometer that measures the propagation time of sound waves and converts it to the temperature of the gas flowing between the side walls, a spout hole that spouts an ash adhesion prevention medium around the opening of the horn on the acoustic transmitter side and the acoustic receiver side. It is characterized in that a large number of are formed.

【0018】より具体的には、ホーンの開口部に設けた
リングの内周面および外周面のそれぞれに多数の前記噴
出孔が形成されていることを特徴とする。
More specifically, a large number of the ejection holes are formed on each of the inner peripheral surface and the outer peripheral surface of the ring provided in the opening of the horn.

【0019】[0019]

【作用】本発明においては、ホーン先端の周囲よりガス
を噴出することで、炉内を浮遊している灰がホーンの開
口部に付着しなくなるので、火炉状態をより敏感に反映
したガス温度を測定することができる。
In the present invention, the ash floating in the furnace is prevented from adhering to the opening of the horn by ejecting the gas from around the tip of the horn, so that the gas temperature more sensitively reflecting the state of the furnace can be obtained. Can be measured.

【0020】[0020]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は実施例に係る音響センサの構成図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of an acoustic sensor according to an embodiment.

【0021】この装置は、石炭焚ボイラの火炉出口ガス
温度を測定するために作製した音響式温度計の音響セン
サ部分である。この音響センサは図10に示すように、
石炭焚ボイラの灰除去用伝熱管29の上流側(Bの位
置)に設置し、火炉出口部のガス温度の変動をとらえ
て、ボイラの制御に反映させている。
This apparatus is an acoustic sensor portion of an acoustic thermometer manufactured to measure the furnace outlet gas temperature of a coal-fired boiler. This acoustic sensor, as shown in FIG.
It is installed on the upstream side (position B) of the ash removal heat transfer tube 29 of the coal-fired boiler, and catches the fluctuation of the gas temperature at the furnace outlet to reflect it in the boiler control.

【0022】本発明による音響センサは、スピーカ3を
接続した内径200mmのホーン20と、ホーン開口部
(穴35)に設置されたリング36の内周および外周に
所定間隔で設けた多数の灰付着防止用媒体噴出孔34
と、ホーン20内に入り込んだ灰を吹き飛ばすためにホ
ーン20の絞り部に設けた空気噴出孔23とを備えてい
る。ホーン20は灰が付着しにくく、かつ、炉内からの
輻射熱によりホーン20が加熱されるのを防ぐために水
壁1による水冷構造としている。
The acoustic sensor according to the present invention has a horn 20 having an inner diameter of 200 mm to which the speaker 3 is connected, and a large number of ash deposits provided at predetermined intervals on the inner and outer circumferences of the ring 36 installed in the horn opening (hole 35). Preventing medium ejection hole 34
And an air ejection hole 23 provided in the narrowed portion of the horn 20 for blowing off the ash that has entered the horn 20. The horn 20 has a water cooling structure using the water wall 1 in order to prevent ash from adhering to the horn 20 and to prevent the horn 20 from being heated by radiant heat from the furnace.

【0023】また、一端にマイク4を付けたマイク用導
波管21をホーン20内に挿入している。
A microphone waveguide 21 having a microphone 4 attached to one end is inserted into the horn 20.

【0024】空気を噴出する際に騒音が発生して測定の
妨げとなる。そこで、スピーカ3から音波を発信する際
には、空気を噴出しないように空気配管に電磁弁33を
設け、それの開閉は制御装置によりコントロールされ
る。
Noise is generated when air is ejected, which hinders measurement. Therefore, when transmitting a sound wave from the speaker 3, an electromagnetic valve 33 is provided in the air pipe so as not to eject air, and the opening / closing of the electromagnetic valve 33 is controlled by the control device.

【0025】音波送信器3から音波を発信し、炉内を伝
って他方の音波受信器4で受信した信号から音波が炉内
を伝播する時間を検出し温度に換算する制御装置は、図
2に示すように、制御器5、波形発生器(電源7、コン
デンサ8、スイッチ回路9から構成される)6、リレー
10、受信用アンプ12、バンドパスフィルタ13、A
/D変換器14、伝播時間検出器15、伝播時間補正器
25、温度換算器16および表示器17とからなってい
る。
The control device for transmitting the sound wave from the sound wave transmitter 3, detecting the time during which the sound wave propagates in the furnace from the signal transmitted through the furnace and received by the other sound wave receiver 4 and converting it into temperature is shown in FIG. As shown in FIG. 5, a controller 5, a waveform generator (composed of a power supply 7, a capacitor 8, and a switch circuit 9) 6, a relay 10, a receiving amplifier 12, a bandpass filter 13, A
The D / D converter 14, the propagation time detector 15, the propagation time corrector 25, the temperature converter 16 and the display 17 are provided.

【0026】この装置を用いて温度を測定する手順を以
下に示す。まず、制御器5からリレー制御信号をリレー
10に送出し、リレー10を切り替えて音波を発信する
スピーカ3と波形発生器6とを接続する。いま、スピー
カ3−1から音波を送信するように設定したとする。
The procedure for measuring the temperature using this apparatus will be described below. First, the controller 5 sends a relay control signal to the relay 10, and switches the relay 10 to connect the speaker 3 that emits a sound wave and the waveform generator 6. It is now assumed that the speaker 3-1 is set to transmit sound waves.

【0027】次に、制御器5は、電磁弁33を閉じる信
号を電磁弁33に発信し、電磁弁33を閉じ、空気が各
空気噴出孔23から噴出するのを停止させる。
Next, the controller 5 sends a signal for closing the solenoid valve 33 to the solenoid valve 33, closes the solenoid valve 33, and stops air from being blown out from each air jet hole 23.

【0028】その後、制御器5は、測定開始信号を波形
発生器6に送出し、この信号を受けて波形発生器6はパ
ルスをスピーカ3−1に送出する。波形発生器6はコン
デンサ8に貯えた電荷をスイッチ回路9により一定時間
放電させることによりパルスを発生する。スピーカ3−
1から発した音波は、導波管2−1とホーン20−1を
介して炉内に送出され、炉内のガス中を伝って対向側の
マイク用導波管21−2を伝ってマイク4−2に達す
る。このマイク4−2で受信した信号を一旦音響センサ
部のマイクアンプ11で増幅し、制御盤に送信する。
After that, the controller 5 sends a measurement start signal to the waveform generator 6, and in response to this signal, the waveform generator 6 sends a pulse to the speaker 3-1. The waveform generator 6 generates a pulse by discharging the electric charge stored in the capacitor 8 by the switch circuit 9 for a certain period of time. Speaker 3-
The sound wave emitted from No. 1 is sent to the inside of the furnace via the waveguide 2-1 and the horn 20-1, propagates in the gas in the furnace, and propagates through the microphone waveguide 21-2 on the opposite side to the microphone. Reach 4-2. The signal received by the microphone 4-2 is once amplified by the microphone amplifier 11 of the acoustic sensor unit and transmitted to the control panel.

【0029】制御盤では、この信号を再度受信用アンプ
12で増幅した後、バンドパスフィルタ13を通過し、
A/D変換器14でデジタル化する。伝播時間検出器1
5では、このデジタル信号からスピーカ3−1からマイ
ク4−2間の音波の伝播時間t12を検出する。
In the control panel, this signal is again amplified by the receiving amplifier 12 and then passed through the band pass filter 13,
It is digitized by the A / D converter 14. Propagation time detector 1
At 5, the sound wave propagation time t12 between the speaker 3-1 and the microphone 4-2 is detected from this digital signal.

【0030】一方、ホーン20−1から炉内に音波を送
出する時、音波の一部はマイク用導波管21−1を介し
てマイク4−1に到達する。このマイク4−1で受信し
た信号から時間tm1が求まる。同様に、スピーカ3−
2から音波を発信すれば、スピーカ3−2からマイク4
−1まで音波が伝播する時間t21とスピーカ3−2か
らマイク用導波管21−2を伝って、マイク4−2まで
音波が伝播する時間tm2が求まる。そして、伝播時間
補正器25では以下の式に基づき、炉内を伝わる伝播時
間tを算出する。
On the other hand, when the sound wave is sent from the horn 20-1 into the furnace, a part of the sound wave reaches the microphone 4-1 through the microphone waveguide 21-1. The time tm1 is obtained from the signal received by the microphone 4-1. Similarly, the speaker 3-
If the sound wave is transmitted from 2, the speaker 3-2 to the microphone 4
The time t21 at which the sound wave propagates to −1 and the time tm2 at which the sound wave propagates from the speaker 3-2 through the microphone waveguide 21-2 to the microphone 4-2 are obtained. Then, the propagation time corrector 25 calculates the propagation time t transmitted in the furnace based on the following equation.

【0031】 t=〔(t12+t21)−(tm1+tm2)〕/2 (3) 温度換算器16ではこの伝播時間tを前記式(2)に基
づき、炉内のガス温度に換算し、表示器17で測定温度
を表示する。
T = [(t12 + t21)-(tm1 + tm2)] / 2 (3) In the temperature converter 16, the propagation time t is converted into the gas temperature in the furnace based on the equation (2), and the indicator 17 is used. Display the measured temperature.

【0032】その後、制御器5から電磁弁33を開とす
る信号を電磁弁33に送り、電磁弁33を開き、各空気
噴出孔23から空気を噴出し、灰の付着を防止する。
After that, the controller 5 sends a signal for opening the solenoid valve 33 to the solenoid valve 33, the solenoid valve 33 is opened, and air is ejected from each air ejection hole 23 to prevent ash from adhering.

【0033】以上、電磁弁33を閉じ温度を測定し、再
び電磁弁33を開くまでの時間はおよそ2秒ほどであ
る。温度を測定する間隔は制御器5によって決定するよ
うにしてあるが、通常一定負荷でボイラを運転する場合
は30秒間隔とし、負荷変化等のように火炉内の温度が
急変する場合は2秒間隔としている。
As described above, the time taken to close the electromagnetic valve 33, measure the temperature, and reopen the electromagnetic valve 33 is about 2 seconds. The interval for measuring the temperature is determined by the controller 5. Normally, the interval is 30 seconds when the boiler is operated at a constant load, and 2 seconds when the temperature in the furnace changes suddenly due to load changes. The intervals are set.

【0034】図3は第1の実施例に係るホーンの開口部
の噴出孔から灰付着防止用媒体を噴出する様子を示す模
式図であり、(a)は正面図、(b)は側断面図であ
る。
FIGS. 3A and 3B are schematic views showing how the ash adhesion preventing medium is ejected from the ejection holes in the opening of the horn according to the first embodiment. FIG. 3A is a front view and FIG. It is a figure.

【0035】ホーン20の開口部(穴35)にはリング
36が設けられ、この内周と外周に噴出孔34が形成さ
れている。
A ring 36 is provided in the opening (hole 35) of the horn 20, and ejection holes 34 are formed on the inner and outer circumferences thereof.

【0036】噴出した空気の間から灰31が入り込むこ
とが考えられるので、噴出空気が隣接する穴35から噴
出した空気と重なるように噴出孔34の位置を決めた。
灰付着防止用媒体噴出孔34の直径を3mmとした場
合、噴出空気の広がりを考慮すると、噴出孔34を25
mm以下の間隔で設置する必要がある。
Since it is possible that the ash 31 enters from between the jetted air, the positions of the jet holes 34 were determined so that the jetted air overlaps the air jetted from the adjacent holes 35.
When the diameter of the ash adhesion preventing medium ejection hole 34 is set to 3 mm, the ejection hole 34 has a diameter of 25 mm in consideration of the spread of ejected air.
It is necessary to install at an interval of mm or less.

【0037】本実施例では18mm間隔とし、リング3
6の周囲に32個の噴出孔34を開け、10〜30Nm
3 /hの空気を噴出した。このようにして、ホーン20
の先端の周囲から空気を噴出させた場合、灰31の付着
が防止できることがわかる。次に、ホーンの水冷構造に
ついて説明する。
In this embodiment, the ring 3 is provided at 18 mm intervals.
32 spout holes 34 are formed around 6 and 10 to 30 Nm
3 / h of air was ejected. In this way, the horn 20
It can be seen that the ash 31 can be prevented from adhering when air is ejected from around the tip of the. Next, the water cooling structure of the horn will be described.

【0038】水壁1より火炉側に音響センサ3を設置し
た場合、炉内より受ける熱量(主に輻射熱)が増大す
る。例えば、従来の水壁1の後流のガス温度を1100
℃、水壁1の前流のガス温度を1300℃と仮定する
と、受ける熱量は2倍になる。そのために音響センサ3
のホーン20を水冷構造とする必要がある。
When the acoustic sensor 3 is installed closer to the furnace than the water wall 1, the amount of heat received from the inside of the furnace (mainly radiant heat) increases. For example, the gas temperature of the wake of the conventional water wall 1 is set to 1100.
Assuming that the temperature of the gas in the upstream of the water wall 1 is 1300 ° C., the amount of heat received is doubled. Therefore, the acoustic sensor 3
It is necessary that the horn 20 has a water cooling structure.

【0039】また、温度を測定する際には電磁弁33を
閉じ、空気の噴出を止める。時間的には僅かの間である
が、この際に灰31がホーン20内に侵入する心配があ
る。そのために、ホーン20内に灰31が侵入した場合
についても考慮する必要がある。溶融した灰31が付着
する場合、高温壁に付着する場合と低温(水冷)壁に付
着する場合とで、その付着の強度が違う。低温壁の場合
は灰31が壁に付着すると固形化するが、低温壁で急冷
されるために灰31が収縮する。そのために、壁から剥
がれやすくなる。それ故、ホーン20の絞り部に設置し
た空気噴出孔23より吹き出した空気によって、容易に
灰31を吹き飛ばすことができる。
Further, when measuring the temperature, the electromagnetic valve 33 is closed to stop the ejection of air. Although it is a short time, the ash 31 may enter the horn 20 at this time. Therefore, it is necessary to consider the case where the ash 31 enters the horn 20. When the molten ash 31 adheres, the adhesion strength differs depending on whether it adheres to a high temperature wall or a low temperature (water cooling) wall. In the case of a low temperature wall, the ash 31 solidifies when it adheres to the wall, but the ash 31 contracts because it is rapidly cooled by the low temperature wall. Therefore, it is easy to peel from the wall. Therefore, the ash 31 can be easily blown off by the air blown out from the air ejection holes 23 provided in the narrowed portion of the horn 20.

【0040】図4は第2の実施例に係るホーンの開口部
の噴出孔から灰付着防止用媒体を噴出する様子を示す模
式図であり、(a)は正面図、(b)は側断面図であ
る。
4A and 4B are schematic views showing a state in which the ash adhesion preventing medium is ejected from the ejection hole of the opening portion of the horn according to the second embodiment. FIG. 4A is a front view and FIG. It is a figure.

【0041】この実施例では、灰付着防止用媒体噴出孔
34の向きを円周方向に角度を付けて旋回流を形成する
ように設置している。旋回させながら空気を噴出するこ
とで、噴出流の間から灰31が入り込むのを防げるの
で、噴出孔34の数を減らすことができる。
In this embodiment, the ash adhesion preventing medium ejection holes 34 are installed so as to form a swirling flow at an angle to the circumferential direction. By ejecting the air while swirling, it is possible to prevent the ash 31 from entering between the jet flows, so that the number of the jet holes 34 can be reduced.

【0042】図4の例では、音響マイク4を取り付けた
導波管21の縁の接線に対し、20度の角度となるよう
に取り付けているが、10〜40度の範囲内ではほぼ同
等の効果がある。
In the example of FIG. 4, the acoustic microphone 4 is attached so as to form an angle of 20 degrees with respect to the tangent to the edge of the waveguide 21, but within the range of 10 to 40 degrees, it is almost the same. effective.

【0043】図5は第3の実施例に係るホーンの開口部
の噴出孔から灰付着防止用媒体を噴出する様子を示す模
式図であり、(a)は正面図、(b)は側断面図であ
る。
FIGS. 5A and 5B are schematic views showing how the ash adhesion preventing medium is ejected from the ejection holes in the opening of the horn according to the third embodiment. FIG. 5A is a front view and FIG. It is a figure.

【0044】この実施例は、灰付着防止用媒体噴出孔3
4をスリット状にし、かつ、2列に重なるように配置し
た例である。このような構造においても、上記と同様の
灰の付着を防止する効果がある。
In this embodiment, the ash adhesion preventing medium ejection hole 3 is used.
This is an example in which 4 is formed in a slit shape and arranged so as to overlap in two rows. Even in such a structure, there is an effect of preventing adhesion of ash similar to the above.

【0045】以上は、灰の付着を防止するための噴出媒
体として空気を使用した例について述べてきたが、この
灰付着防止用媒体は空気以外の例えば、低温の排ガスや
蒸気等であってもよく、空気とほぼ同一の効果が得られ
る。
Although the above has described the example in which air is used as the ejection medium for preventing the adhesion of ash, the medium for preventing ash adhesion may be other than air, for example, low temperature exhaust gas or steam. Well, almost the same effect as air can be obtained.

【0046】[0046]

【発明の効果】本発明によれば、ホーン先端の周囲より
ガスを噴出することで、炉内を浮遊している灰がホーン
の開口部に付着しなくなるので、溶融した灰が浮遊して
いる火炉内であっても、ガス温度を常に計測することが
できる。そのため、水系の影響を殆ど受けない温度が測
定できるので、より高精度に石炭焚ボイラの制御ができ
るようになる。
According to the present invention, by blowing gas from around the tip of the horn, the ash floating in the furnace does not adhere to the opening of the horn, so the molten ash floats. The gas temperature can always be measured even in the furnace. Therefore, the temperature that is hardly affected by the water system can be measured, and the coal-fired boiler can be controlled with higher accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係る音響センサの構成図であ
る。
FIG. 1 is a configuration diagram of an acoustic sensor according to an embodiment of the present invention.

【図2】本発明の実施例に係る音響式温度計の構成図で
ある。
FIG. 2 is a configuration diagram of an acoustic thermometer according to an embodiment of the present invention.

【図3】本発明の第1の実施例に係るホーンの開口部の
噴出孔から灰付着防止用媒体を噴出する様子を示す模式
図である。
FIG. 3 is a schematic diagram showing how the ash adhesion preventing medium is jetted from the jet holes in the opening of the horn according to the first embodiment of the present invention.

【図4】本発明の第2の実施例に係るホーンの開口部の
噴出孔から灰付着防止用媒体を噴出する様子を示す模式
図である。
FIG. 4 is a schematic diagram showing how an ash adhesion preventing medium is ejected from ejection holes in an opening of a horn according to a second embodiment of the present invention.

【図5】本発明の第3の実施例に係るホーンの開口部の
噴出孔から灰付着防止用媒体を噴出する様子を示す模式
図である。
FIG. 5 is a schematic diagram showing how an ash adhesion preventing medium is ejected from ejection holes in an opening of a horn according to a third embodiment of the present invention.

【図6】音響式温度計の基本概念図である。FIG. 6 is a basic conceptual diagram of an acoustic thermometer.

【図7】音響式温度計を高温のガス温度計測に適用する
際の概略図である。
FIG. 7 is a schematic diagram when an acoustic thermometer is applied to high temperature gas temperature measurement.

【図8】音響式温度計を応用し、温度分布を計測する例
を示す概略図である。
FIG. 8 is a schematic diagram showing an example of measuring a temperature distribution by applying an acoustic thermometer.

【図9】音響式温度計をボイラの制御に利用した例を示
す概略図である。
FIG. 9 is a schematic diagram showing an example in which an acoustic thermometer is used for controlling a boiler.

【図10】音響式温度計をボイラの制御に利用した他の
例を示す概略図である。
FIG. 10 is a schematic diagram showing another example in which an acoustic thermometer is used for controlling a boiler.

【図11】ホーン先端に灰が付着した状態を示す模式図
である。
FIG. 11 is a schematic view showing a state in which ash is attached to the tip of the horn.

【符号の説明】[Explanation of symbols]

3 音波送信器 4 音波受信器 20 ホーン 34 噴出孔 36 リング 3 Sound wave transmitter 4 Sound wave receiver 20 Horn 34 Spout hole 36 Ring

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 側壁の一方に音響送信器を設置し、側壁
の他方に音響受信器を設置し、その音響送信器と音響受
信器間の音波の伝播時間を測定して側壁間を流れるガス
の温度に換算する音響式温度計において、 音響送信器側および音響受信器側のホーンの開口部周囲
に、灰付着防止用媒体を噴出する噴出孔を形成したこと
を特徴とする音響式温度計。
1. A gas flowing between sidewalls by installing an acoustic transmitter on one side wall and an acoustic receiver on the other side wall, measuring a propagation time of a sound wave between the acoustic transmitter and the acoustic receiver. In the acoustic thermometer for converting to the temperature of the above, an acoustic thermometer characterized by forming ejection holes for ejecting the ash adhesion preventing medium around the opening of the horn on the acoustic transmitter side and the acoustic receiver side. .
【請求項2】 請求項1記載において、前記ホーンの開
口部に設けたリングの内周面および外周面のそれぞれに
多数の前記噴出孔が形成されていることを特徴とする音
響式温度計。
2. The acoustic thermometer according to claim 1, wherein a large number of ejection holes are formed on each of an inner peripheral surface and an outer peripheral surface of a ring provided in the opening of the horn.
JP16756095A 1995-07-03 1995-07-03 Acoustic thermometer and coal-fired boiler using it Expired - Fee Related JP3564198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16756095A JP3564198B2 (en) 1995-07-03 1995-07-03 Acoustic thermometer and coal-fired boiler using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16756095A JP3564198B2 (en) 1995-07-03 1995-07-03 Acoustic thermometer and coal-fired boiler using it

Publications (2)

Publication Number Publication Date
JPH0915065A true JPH0915065A (en) 1997-01-17
JP3564198B2 JP3564198B2 (en) 2004-09-08

Family

ID=15851997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16756095A Expired - Fee Related JP3564198B2 (en) 1995-07-03 1995-07-03 Acoustic thermometer and coal-fired boiler using it

Country Status (1)

Country Link
JP (1) JP3564198B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202015106820U1 (en) 2015-12-15 2016-02-23 Z & J Technologies Gmbh Device and system for acoustic temperature measurement
DE102016107113B3 (en) * 2016-04-18 2017-06-01 Z & J Technologies Gmbh Apparatus for acoustic temperature measurement, sealing device for such a device and system for acoustic temperature measurement

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202015106820U1 (en) 2015-12-15 2016-02-23 Z & J Technologies Gmbh Device and system for acoustic temperature measurement
DE102016107113B3 (en) * 2016-04-18 2017-06-01 Z & J Technologies Gmbh Apparatus for acoustic temperature measurement, sealing device for such a device and system for acoustic temperature measurement
DE102016107113C5 (en) 2016-04-18 2023-05-04 Z & J Technologies Gmbh Acoustic temperature measurement device, sealing arrangement for such device and system for acoustic temperature measurement

Also Published As

Publication number Publication date
JP3564198B2 (en) 2004-09-08

Similar Documents

Publication Publication Date Title
EP0995088B1 (en) Acoustic pyrometer
US4848924A (en) Acoustic pyrometer
EP2738372B1 (en) Gas turbine temperature measurement
JP3876370B2 (en) Acoustic flow velocity measuring device
US6715499B2 (en) Water lance blower with monitoring device for quality of a water jet and method of operating the same
CN112629453A (en) Ultrasonic monitoring device, system and method for ash deposition and slag bonding of water-cooled wall of coal gasifier
CN101793908A (en) Ultrasonic flue gas flow rate meter
JP3564198B2 (en) Acoustic thermometer and coal-fired boiler using it
JP3632121B2 (en) Acoustic thermometer
CN109115360B (en) Water-cooled wall and temperature detection system thereof
JP3574522B2 (en) Acoustic gas body temperature measuring device and boiler device using the same
JPH1019691A (en) Acoustic temperature meter
JPH10111187A (en) Fluidized bed combustor
JP2000193535A (en) Acoustic gas temperature measuring device
JP3640054B2 (en) Acoustic gas body temperature measuring device
JPH07117669A (en) Tunnel for rapid transit train and the train
JPH05302934A (en) Sound-wave measuring instrument
JP3633753B2 (en) Acoustic gas temperature measuring device
JP2002107235A (en) Acoustic gas temperature measuring device and its operation method
JPH03109925A (en) Denitration reactor
JPH0882518A (en) Slag thickness measuring apparatus
CN110440283A (en) A kind of system of coal fired power plant prevention and treatment water wall high temperature corrosion
JPH04313093A (en) Ultrasonic-wave type distance sensor
JP2675334B2 (en) High temperature fluid temperature measuring device
JPS5824757Y2 (en) Ultrasonic sediment detection device

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040224

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040422

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20040428

Free format text: JAPANESE INTERMEDIATE CODE: A911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040525

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20040607

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080611

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090611

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100611

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110611

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120611

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees