JPH09149645A - High voltage generator - Google Patents

High voltage generator

Info

Publication number
JPH09149645A
JPH09149645A JP7306315A JP30631595A JPH09149645A JP H09149645 A JPH09149645 A JP H09149645A JP 7306315 A JP7306315 A JP 7306315A JP 30631595 A JP30631595 A JP 30631595A JP H09149645 A JPH09149645 A JP H09149645A
Authority
JP
Japan
Prior art keywords
high voltage
voltage
rectifier circuit
reactor
transformers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7306315A
Other languages
Japanese (ja)
Other versions
JP3101196B2 (en
Inventor
Muneyuki Kawazoe
添 宗 之 川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP07306315A priority Critical patent/JP3101196B2/en
Publication of JPH09149645A publication Critical patent/JPH09149645A/en
Application granted granted Critical
Publication of JP3101196B2 publication Critical patent/JP3101196B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a high voltage generator in which the efficiency of high frequency power supply is enhanced and the ripple voltage superposed on high voltage output can be suppressed easily. SOLUTION: A current IL flowing through a reactor L2 offsets a current IC flowing between the input terminals of a rectifier circuit 1 to prevent the secondary current of transformers T1 , T2 from increasing thus preventing the efficiency of AC power supply from lowering due to increase of current on the primary of transformer. Ripple voltage superposed on high voltage output is suppressed by sliding a ground terminal A on a resistor R1 to vary the voltage being distributed to the rectifier circuit, matching the amplitude of voltage between the transformers T1 , T2 , switching the ground terminal B to one of the taps a, b,..., m, n and altering the ground position on the reactor L2 , and then varying the voltage phase of transformers T1 , T2 .

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】 本発明は、バランス型コッ
ククロフトウオルトン回路を用いた高電圧発生装置に関
する。 【0002】 【従来の技術】 バランス型コッククロフトウオルトン
回路を用いた高電圧発生装置においては、トランス及び
多段式高電圧整流回路の電気的,機械的な不平衡によっ
て、高電圧出力にリップル電圧が重畳されるが、図1は
このリップル電圧を小さくする構成を備えた従来の高電
圧発生装置を示したものである。図中T1 及びT2 は高
周波電源V0 に接続された絶縁トランスで、高周波電源
0 からの交流電圧はトランスT1 及びT2 で昇圧され
る。このトランスT1 及びT
2の2次コイルの一端同士はリップル補正用抵抗R 1
より接続され、抵抗R1 には抵抗R1 上を摺動可能な接
地端子Aが取り付けられている。一方、トランスT1
びT2 の2次コイルの他端には多段式高電圧整流回路1
の入力端が接続されており、トランスT1 及びT2 で昇
圧された電圧は多段式高電圧整流回路1で整流される。
この多段式高電圧整流回路1の出力端には高電圧取り出
し抵抗R2 ,R3 が接続されており、高電圧は抵抗R2
とR3 の間に設けられた高電圧出力ターミナルTから取
り出される。 【0003】このような構成において、高電圧出力に重
畳されているリップル電圧を小さくする調整は、前記接
地端子Aを抵抗R1 上を摺動させて整流回路1へ供給さ
れる電圧の配分を変え、トランスT1 の電圧とトランス
2 の電圧の振幅を合わせると共に、前記高電圧出力タ
ーミナルTの位置を機械的に移動させて高電圧取り出し
抵抗R2 ,R3 の各々に並列に存在する分布容量C2
3 の配分を調整することにより行なわれる。 【0004】図2はリップル電圧を小さくする構成を備
えた従来の他の高電圧発生装置を示しており、図1と同
一符号を記したものは同一構成を示している。図2の高
電圧発生装置においては、トランスT1 及びT2 の出力
の一端同士はリップル補正用可変抵抗R1 ´とリップル
補正用可変リアクトルL1 が直列接続され、その中点は
接地されている。 【0005】このような構成において、高電圧出力に重
畳されているリップル電圧を小さくする調整は、リップ
ル補正用可変抵抗R1 の抵抗値を変えてトランスT1
電圧とトランスT2 の電圧の振幅を合わせると共に、前
記リップル補正用可変リアクトルL1 のリアクトルを変
えてトランスT2 の電圧の位相を変えることにより行わ
れる。 【0006】 【発明が解決しようとする課題】 ところで、図1,2
に示した高電圧発生装置においては、整流回路1の容量
成分により整流回路1の入力端間に電流I
Cが流れてトランスT 1 ,T2 の2次側の電流が上昇
し、それに誘導されて1次側の電流が上昇して高周波電
源V0 の消費電力が増加してしまい、高周波電源V
0の効率が低下してしまう。 【0007】また、図1に示した高電圧発生装置におい
ては、超高圧の中に配置された高電圧ターミナルTの位
置を調整する際には、装置の電源を切って高圧タンクを
開けなければならず、その調整作業は非常に煩しいもの
である。一方、図2に示した高電圧発生装置においては
、バランスのずれ具合によってはリップル補正用可変抵
抗R 1 ´とリップル補正用可変リアクトルL1 を繋ぎ換
えて各々を調整しなければリップル電圧を小さくできな
いことがあり、リップル補正用可変抵抗R1 ´とリップ
ル補正用可変リアクトルL1 の繋ぎ換えの作業は非常に
煩しいものである。 【0008】本発明はこのような点に鑑みて成されたも
ので、その目的は、高周波電源の効率が良く、高電圧出
力に重畳されたリップル電圧を容易に小さくすることが
できる高電圧発生装置を提供することにある。 【0009】 【課題を解決するための手段】 そのため本発明の高電
圧発生装置は、交流電源からの電圧を昇圧する第1,第
2のトランスと、該第1及び第2のトランスの出力の一
端同士を接続する抵抗と、該抵抗の任意の位置を接地電
位とする第1の接地手段と、前記第1及び第2のトラン
スの出力の他端に接続された整流回路と、該整流回路の
入力端に該整流回路に並列に接続されたリアクトルと、
該リアクトルの任意の位置を接地電位とする第2の接地
手段とを備えている。 【0010】 【発明の実施の形態】 以下、図面を参照して本発明の
実施の形態を詳細に説明する。 【0011】図3は本発明の高電圧発生装置の一例を示
しており、図中前記図1と同一符号を付したものは同一
構成を示している。図3の構成において、多段式高電圧
整流回路1の入力端には整流回路に並列にリアクトルL
2 が接続され、このリアクトルL2 にはa,b,…,
m,nの複数のタップが立てられている。Bは接地電位
に保たれた接地端子で、接地端子Bは前記タップa,
b,…,m,nの1つと接続され、その切り換えは可能
である。また、前記高電圧出力ターミナルの位置は固定
である。 【0012】さて、前記リアクトルL2 として、前記整
流回路1の入力端間に流れる電流IC を相殺する電流I
L をその入力端間に流すものが選ばれているので、トラ
ンスT1 ,T2 の2次側の電流は増加しない。このよう
に、図3の構成においては、多段式高電圧整流回路1の
入力端に接続されたリアクトルL2 と多段式高電圧整流
回路1の容量成分とを共振させることにより高周波電源
0 の効率が改善される。 【0013】また、図3の構成において、高電圧出力に
重畳されているリップル電圧を小さくする調整は、前記
接地端子Aを抵抗R1 上を摺動させることにより、整流
回路1へ供給されるトランスT1 の電圧とトランスT2
の電圧の振幅を合わせると共に、接地端子Bを切り換え
てタップa,b,…,m,nの1つに接続してリアクト
ルL2 上での接地位置を変え、トランスT1 の電圧とト
ランスT2 の電圧の位相を変えることにより行われる。
なお、リアクトルL2 上での接地位置を変えてもリアク
トルL2 に流れる共振電流は変わらないので、電源の効
率が低下することはない。 【0014】このように、本発明においては、高周波電
源の効率が改善されると共に、接地電位に保たれた接地
端子A,Bを調整するだけで高電圧出力に重畳されたリ
ップル電圧を小さくすることができ、従来のような高電
圧出力ターミナルの位置を機械的に調整する煩しい作業
や、リップル補正用可変抵抗とリップル補正用可変リア
クトルを繋ぎ換える煩しい作業は不要となる。 【0015】 【発明の効果】 本発明においては、整流回路の入力端
に該整流回路に並列にリアクトルを接続し、整流回路の
容量成分により整流回路の入力端間に流れる電流を相殺
する電流を前記リアクトルに流すようにしたので、交流
電源の効率が改善される。また、第1及び第2のトラン
スの2次コイルの一端に接続された抵抗の接地位置と、
整流回路の入力端に該整流回路に並列に接続されたリア
クトルの接地位置とを調整するだけで容易に高電圧出力
に重畳したリップル電圧を小さくすることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high voltage generator using a balanced Cockcroft-Walton circuit. In a high voltage generator using a balanced Cockcroft-Walton circuit, ripple voltage is generated in a high voltage output due to electrical and mechanical imbalance of a transformer and a multistage high voltage rectifier circuit. Although superposed, FIG. 1 shows a conventional high voltage generator having a structure for reducing the ripple voltage. Figure T 1 and T 2 are the connected isolation transformer to a high-frequency power supply V 0, the AC voltage from the high-frequency power source V 0 is boosted by the transformer T 1 and T 2. This transformer T 1 and T
One ends of the second secondary coil are connected by a ripple correction resistor R 1, the resistor R 1 are slidable ground terminal A is attached on the resistor R 1. On the other hand, the other end of the secondary coil of the transformers T 1 and T 2 is connected to the multistage high voltage rectifier circuit 1
Of the transformers T 1 and T 2 are rectified by the multistage high-voltage rectifier circuit 1.
High-voltage take-out resistors R 2 and R 3 are connected to the output terminal of the multi-stage high-voltage rectifier circuit 1, and a high voltage is applied to the resistor R 2
And a high voltage output terminal T provided between R 3 and R 3 . In such a configuration, the adjustment to reduce the ripple voltage superimposed on the high voltage output, the distribution of the voltage supplied to the rectifier circuit 1 is slid resistor R 1 above the ground terminal A By changing the amplitude of the voltage of the transformer T 1 and the amplitude of the voltage of the transformer T 2 , the position of the high voltage output terminal T is mechanically moved so as to be present in parallel with each of the high voltage extracting resistors R 2 and R 3. Distributed capacity C 2 ,
This is done by adjusting the distribution of C 3 . FIG. 2 shows another conventional high voltage generator having a structure for reducing the ripple voltage, and the same reference numerals as those in FIG. 1 indicate the same structure. In the high voltage generator of FIG. 2, the ripple correction variable resistor R 1 ′ and the ripple correction variable reactor L 1 are connected in series at one end of the outputs of the transformers T 1 and T 2 , and the middle point is grounded. There is. In such a configuration, the adjustment for reducing the ripple voltage superimposed on the high voltage output is performed by changing the resistance value of the ripple correction variable resistor R 1 so that the voltage of the transformer T 1 and the voltage of the transformer T 2 are changed. This is done by matching the amplitudes and changing the phase of the voltage of the transformer T 2 by changing the reactor of the ripple correction variable reactor L 1 . By the way, FIGS.
In the high voltage generator shown in FIG. 1, a current I is applied between the input terminals of the rectifier circuit 1 due to the capacitance component of the rectifier circuit 1.
C flows, the current on the secondary side of the transformers T 1 and T 2 rises, and the current on the primary side rises due to the induction, which increases the power consumption of the high-frequency power source V 0.
The efficiency of 0 decreases. Further, in the high voltage generator shown in FIG.
Is the position of the high voltage terminal T located in the ultra high voltage.
Turn off the power to the high-pressure tank before adjusting the
It has to be opened and its adjustment work is very troublesome.
It is. On the other hand, in the high voltage generator shown in FIG.
, Depending on the degree of balance deviation, the variable resistor for ripple correction may
The ripple voltage may not be reduced unless the anti-R 1 ′ and the ripple correction variable reactor L 1 are connected and adjusted respectively. Therefore, the ripple correction variable resistor R 1 ′ and the ripple correction variable reactor L 1 are connected. The work of is very troublesome. The present invention has been made in view of the above circumstances, and an object thereof is to generate a high voltage which has a high efficiency of a high frequency power supply and which can easily reduce a ripple voltage superimposed on a high voltage output. To provide a device. Therefore, the high voltage generator of the present invention includes a first and a second transformer for boosting a voltage from an AC power supply, and outputs of the first and second transformers. A resistor that connects one ends to each other, a first grounding unit that sets an arbitrary position of the resistor to a ground potential, a rectifying circuit that is connected to the other ends of the outputs of the first and second transformers, and the rectifying circuit. A reactor connected in parallel to the rectifier circuit at the input end of
Second grounding means for setting an arbitrary position of the reactor to a ground potential is provided. Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 3 shows an example of the high voltage generator of the present invention. In the figure, the same reference numerals as in FIG. 1 indicate the same components. In the configuration of FIG. 3, the input terminal of the multistage high voltage rectifier circuit 1 is connected in parallel with the rectifier circuit to a reactor L.
2 is connected, and a, b, ..., Is connected to this reactor L 2 .
A plurality of taps of m and n are set up. B is a ground terminal maintained at the ground potential, and the ground terminal B is the tap a,
It is connected to one of b, ..., M, n, and the switching is possible. The position of the high voltage output terminal is fixed. Now, as the reactor L 2 , a current I that cancels out the current I C flowing between the input terminals of the rectifier circuit 1.
Since the one that flows L between its input terminals is selected, the current on the secondary side of the transformers T 1 and T 2 does not increase. As described above, in the configuration of FIG. 3, the reactor L 2 connected to the input end of the multistage high-voltage rectifier circuit 1 and the capacitive component of the multistage high-voltage rectifier circuit 1 resonate to resonate the high-frequency power source V 0 . Efficiency is improved. Further, in the configuration of FIG. 3, the adjustment for reducing the ripple voltage superimposed on the high voltage output is supplied to the rectifier circuit 1 by sliding the ground terminal A on the resistor R 1. Voltage of transformer T 1 and transformer T 2
, The ground terminal B is switched and connected to one of the taps a, b, ..., M, n to change the grounding position on the reactor L 2 to change the voltage of the transformer T 1 and the transformer T 1. This is done by changing the phase of the voltage of 2 .
Even if the grounding position on the reactor L 2 is changed, the resonance current flowing in the reactor L 2 does not change, so that the efficiency of the power supply does not decrease. As described above, according to the present invention, the efficiency of the high frequency power source is improved, and the ripple voltage superimposed on the high voltage output is reduced only by adjusting the ground terminals A and B kept at the ground potential. Therefore, it is not necessary to perform the troublesome work of mechanically adjusting the position of the high voltage output terminal and the troublesome work of connecting the ripple correction variable resistor and the ripple correction variable reactor as in the conventional case. According to the present invention, a reactor is connected in parallel with the rectifier circuit at the input end of the rectifier circuit, and a current that cancels the current flowing between the input ends of the rectifier circuit due to the capacitance component of the rectifier circuit is applied. Since it is made to flow into the reactor, the efficiency of the AC power supply is improved. In addition, a ground position of the resistor connected to one end of the secondary coil of the first and second transformers,
The ripple voltage superimposed on the high voltage output can be easily reduced only by adjusting the input end of the rectifier circuit and the ground position of the reactor connected in parallel to the rectifier circuit.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の高電圧発生装置を示した図である。FIG. 1 is a diagram showing a conventional high voltage generator.

【図2】従来の高電圧発生装置を示した図である。FIG. 2 is a diagram showing a conventional high voltage generator.

【図3】本発明の高電圧発生装置の一例を示した図であ
る。
FIG. 3 is a diagram showing an example of a high voltage generator of the present invention.

【符号の説明】[Explanation of symbols]

1 多段式高電圧整流回路 V0 高周波電源 T1 ,T2 絶縁トランス R1 リップル補正用抵抗 A,B 接地端子 L1 リップル補正用可変リアクトル R1 ´ リップル補正用可変抵抗 L2 リアクトル R2 ,R3 高電圧取り出し抵抗 T 高電圧出力ターミナル1 Multi-stage high voltage rectifier circuit V 0 High frequency power supply T 1 , T 2 Insulation transformer R 1 Ripple correction resistor A, B Ground terminal L 1 Ripple correction variable reactor R 1 ′ Ripple correction variable resistor L 2 Reactor R 2 , R 3 High voltage output resistance T High voltage output terminal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 交流電源からの電圧を昇圧する第1,第
2のトランスと、該第1及び第2のトランスの出力の一
端同士を接続する抵抗と、該抵抗の任意の位置を接地電
位とする第1の接地手段と、前記第1及び第2のトラン
スの出力の他端に接続された整流回路と、該整流回路の
入力端に該整流回路に並列に接続されたリアクトルと、
該リアクトルの任意の位置を接地電位とする第2の接地
手段とを備えたことを特徴とする高電圧発生装置。
1. A first and second transformer for boosting a voltage from an AC power supply, a resistor connecting one ends of outputs of the first and second transformers, and an arbitrary position of the resistor is grounded. A first grounding means, a rectifier circuit connected to the other ends of the outputs of the first and second transformers, and a reactor connected to the input terminal of the rectifier circuit in parallel with the rectifier circuit,
A high voltage generator comprising: second grounding means for setting an arbitrary position of the reactor to a ground potential.
JP07306315A 1995-11-27 1995-11-27 High voltage generator Expired - Fee Related JP3101196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07306315A JP3101196B2 (en) 1995-11-27 1995-11-27 High voltage generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07306315A JP3101196B2 (en) 1995-11-27 1995-11-27 High voltage generator

Publications (2)

Publication Number Publication Date
JPH09149645A true JPH09149645A (en) 1997-06-06
JP3101196B2 JP3101196B2 (en) 2000-10-23

Family

ID=17955632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07306315A Expired - Fee Related JP3101196B2 (en) 1995-11-27 1995-11-27 High voltage generator

Country Status (1)

Country Link
JP (1) JP3101196B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101069397B1 (en) * 2010-12-14 2011-09-30 주식회사 에프티랩 Apparatus for Supplying Voltage power by Phase Piled

Also Published As

Publication number Publication date
JP3101196B2 (en) 2000-10-23

Similar Documents

Publication Publication Date Title
US5982645A (en) Power conversion and distribution system
US8159841B2 (en) Low harmonic rectifier circuit
CA2217121C (en) Resonant switching power supply circuit
US7724549B2 (en) Integrated power conditioning system and housing for delivering operational power to a motor
US6697265B2 (en) Wide range DC power supply utilizing voltage doubling output capacitors and inductive choke to extend full power load impedance range
US10741325B2 (en) Inductive power transfer apparatus with AC and DC output
US6141227A (en) Power supply with reduced second harmonic
US4661763A (en) Phase shifter
WO2002089285A1 (en) 18-pulse rectification system using a wye-connected autotransformer
US9866103B2 (en) Magnetic capacitive current limit circuit for transformers
WO2020033325A1 (en) Shielded electrical transformer
US7158389B2 (en) Switching power supply circuit
US5317496A (en) DC/DC-converter with a primary circuit and at least one secondary circuit tuned as individually oscillatory circuits
US20030169027A1 (en) Switched- mode power supply
US5721675A (en) Power supply converting circuit
US5995398A (en) Power supply device
US6072709A (en) Multiple output voltage converter with improved cross-regulation
JPH09149645A (en) High voltage generator
US11152918B1 (en) Low modulation index 3-phase solid state transformer
US6441712B2 (en) Tuned filters for electric power systems
JP2000116133A (en) Waveform shaping circuit
US11012001B2 (en) Transformer-less, tapped point AC voltage splitter for full bridge DC AC inverters
EP0481353B1 (en) High power power supply
WO1999067875A2 (en) High voltage pulse generation device for magnetron
SU1709479A1 (en) Single phase ac-to-dc voltage converter

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees