JPH0914925A - Ultraviolet/visible region optical system - Google Patents

Ultraviolet/visible region optical system

Info

Publication number
JPH0914925A
JPH0914925A JP7164201A JP16420195A JPH0914925A JP H0914925 A JPH0914925 A JP H0914925A JP 7164201 A JP7164201 A JP 7164201A JP 16420195 A JP16420195 A JP 16420195A JP H0914925 A JPH0914925 A JP H0914925A
Authority
JP
Japan
Prior art keywords
light
ultraviolet
optical element
optical
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7164201A
Other languages
Japanese (ja)
Inventor
Masaya Arai
正也 新井
Daiyu Son
大雄 孫
Noriaki Okada
憲明 岡田
Tsuyoshi Tsuda
剛志 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shincron Co Ltd
Nikon Corp
Original Assignee
Shincron Co Ltd
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shincron Co Ltd, Nikon Corp filed Critical Shincron Co Ltd
Priority to JP7164201A priority Critical patent/JPH0914925A/en
Publication of JPH0914925A publication Critical patent/JPH0914925A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE: To provide an ultraviolet and visible region optical system which can maintain a proper balance of quantity of light, is less affected by stray light, and can correct aberration. CONSTITUTION: A rear back side mirror 15 of a light source 12 is arranged to increase the quantity of ultraviolet rays from the back. Also, optical elements 44 and 55 are arranged within a light path. The optical element 44 changes its radius of curvature between the front and back, forms a high-reflectively dielectric multilayer film on the front to reflect ultraviolet rays, and reflects transmitted light on the back where a high-reflectivlity metal film is formed. The optical element 55 has a dielectric multilayer film for highly reflecting only ultraviolet light and less reflects visible light.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、紫外・可視域光学系に
係り、特に、膜厚制御計用光学系、例えば、真空成膜装
置の膜厚制御に使用する紫外・可視光測光膜厚制御計用
光学系に好ましく用いることができる紫外・可視域光学
系に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultraviolet / visible optical system, and more particularly to an optical system for a film thickness control meter, for example, an ultraviolet / visible photometric film thickness used for film thickness control of a vacuum film forming apparatus. The present invention relates to an ultraviolet / visible range optical system which can be preferably used in a control meter optical system.

【0002】[0002]

【従来の技術】従来の真空成膜装置の測光膜厚制御計用
光学系は、図2の構成のものが知られている。その構成
は、成膜中のモニタガラス11の光量変化を制御するた
めに、光源12から得た光をレンズ13にて集光させ、
光学素子14で反射させて、モニタガラス11に入射さ
せ、モニタガラス11からの反射光を光学素子14で反
射して、測光系(図示せず)に導くようになっている。
光学素子14としては、図3に示すように、光学ガラス
基板21上に高反射率金属膜31を蒸着し、さらに、そ
の上に、誘電体保護膜32をオーバーコートしたものが
用いられる。この光学系は、光源からの光量が多く、ま
た、レンズや光学素子による収差の影響が少ない可視域
の波長の測光では有効である。また、この光学系での受
光部には、可視域で透過率の高い干渉フィルタを用いた
波長選択を行っている。
2. Description of the Related Art A conventional optical system for a photometric film thickness control meter of a vacuum film forming apparatus is known to have a structure shown in FIG. The configuration is such that the light obtained from the light source 12 is condensed by the lens 13 in order to control the change in the light amount of the monitor glass 11 during film formation,
The light is reflected by the optical element 14 and made incident on the monitor glass 11, and the reflected light from the monitor glass 11 is reflected by the optical element 14 and guided to a photometric system (not shown).
As the optical element 14, as shown in FIG. 3, a high reflectance metal film 31 is vapor-deposited on an optical glass substrate 21, and a dielectric protective film 32 is overcoated thereon. This optical system is effective in the photometry of wavelengths in the visible range where the amount of light from the light source is large and the influence of aberrations due to lenses and optical elements is small. Further, for the light receiving portion of this optical system, wavelength selection is performed using an interference filter having a high transmittance in the visible range.

【0003】[0003]

【発明が解決しようとする課題】しかし、紫外から可視
の波長域の測光では、光源からの光量は紫外域で少なく
なり、この光学素子14で与えられるような分光特性
(図4参照)では、全体の光量バランスが悪くなる。ま
た、紫外域での干渉フィルタは、透過率が低いため、測
光には使えない。そのため、モノクロメータを用いた測
光を行うことが考えられる。しかし、モノクロメータを
用いる場合には、紫外光の波長選択を行う際に可視光に
よる迷光の影響を受けやすくなる。さらに、レンズや光
学素子の材料は、紫外域で使用できるガラスが少ないた
めに、色収差補正が充分に行えない。また、表面反射の
みの光学素子14では、収差補正は行えない。従って、
このような光学系を用いると、紫外域での測光による高
精度な膜厚制御に対し、悪影響を招いてしまい、膜厚制
御が難しくなる。
However, in photometry in the ultraviolet to visible wavelength range, the amount of light from the light source decreases in the ultraviolet range, and the spectral characteristics given by this optical element 14 (see FIG. 4) The overall light intensity balance becomes poor. Also, the interference filter in the ultraviolet region cannot be used for photometry because of its low transmittance. Therefore, it is conceivable to perform photometry using a monochromator. However, when a monochromator is used, it becomes more susceptible to stray light due to visible light when selecting the wavelength of ultraviolet light. Furthermore, as the materials for lenses and optical elements, glass that can be used in the ultraviolet region is scarce, so that chromatic aberration cannot be sufficiently corrected. In addition, aberration correction cannot be performed by the optical element 14 that only has surface reflection. Therefore,
When such an optical system is used, it adversely affects the highly accurate film thickness control by photometry in the ultraviolet region, and it becomes difficult to control the film thickness.

【0004】以上に述べたように、モノクロメータを用
いた光学系で紫外から可視域での測光を行う際には、光
量バランスの違いから生じる迷光の影響や、紫外域で使
用できるガラスが少ないために、色収差の補正が充分に
行えず、そして、光学素子の耐久性から生じる安定性等
による問題点があり、その使用は困難であった。
As described above, when performing photometry in the ultraviolet to visible range with an optical system using a monochromator, there are few glasses that can be used in the ultraviolet range and the effect of stray light caused by the difference in the balance of light quantity. Therefore, the chromatic aberration cannot be sufficiently corrected, and there are problems due to the stability and the like caused by the durability of the optical element, which makes its use difficult.

【0005】なお、このような問題は、膜厚制御計に限
らず、広帯域の光を用いて測定を行なう光学測定装置に
おいても、同様に存在する。
Incidentally, such a problem exists not only in the film thickness control meter but also in the optical measuring device for performing measurement using light in a wide band.

【0006】本発明では、従来技術のかかる問題点を解
決するもので、第1の目的は、適度な光量バランスを保
つことができて、迷光の影響が少ない紫外・可視域光学
系を提供することにある。
The present invention solves the above problems of the prior art. The first object of the present invention is to provide an ultraviolet / visible range optical system capable of maintaining an appropriate light amount balance and less affected by stray light. Especially.

【0007】本発明の第2の目的は、収差の補正するこ
とができる紫外・可視域光学系を提供することにある。
A second object of the present invention is to provide an ultraviolet / visible range optical system capable of correcting aberrations.

【0008】[0008]

【課題を解決するための手段】上記第1の目的を達成す
るため、本発明の第1の態様によれば、光源からの光を
導く光路中に、紫外域を可視域より相対的に高反射させ
る光学素子を設けることを特徴とする紫外・可視域光学
系が提供される。
In order to achieve the above first object, according to the first aspect of the present invention, the ultraviolet region is relatively higher than the visible region in the optical path for guiding the light from the light source. An ultraviolet / visible range optical system is provided which is provided with an optical element for reflecting light.

【0009】前記光学素子としては、例えば、光源の後
方に配置され、紫外域を可視域より相対的に高反射させ
る反射鏡を配置することが挙げられる。この光学素子
は、例えば、紫外光を選択的に反射する裏面鏡とするこ
とができる。
As the above-mentioned optical element, for example, a reflecting mirror which is arranged behind the light source and which reflects the ultraviolet region with a higher reflection than the visible region can be cited. This optical element can be, for example, a rear surface mirror that selectively reflects ultraviolet light.

【0010】また、前記光学素子として、紫外光を選択
的に高反射する誘電体多層膜を有する反射光学素子を用
いることができる。
As the optical element, it is possible to use a reflective optical element having a dielectric multilayer film that selectively reflects ultraviolet light highly highly.

【0011】さらに、第1の反射領域と第2の反射領域
とを持つ反射光学素子を光路中に備えることができる。
この反射光学素子は、第1の反射領域で紫外光を反射
し、第2の反射領域で、第1の反射領域を透過した光を
反射する構造とすることができる。また、前記反射光学
素子としては、光学基板を有し、この光学基板の表面側
に前記第1の反射領域が設けられ、裏面側に前記第2の
反射領域が設けられ、かつ、光学基板の表面側と裏面側
とは、異なる曲率半径で構成される構造としたものを用
いることができる。
Furthermore, a reflective optical element having a first reflection area and a second reflection area can be provided in the optical path.
The reflective optical element may have a structure in which ultraviolet light is reflected by the first reflective area and light transmitted through the first reflective area is reflected by the second reflective area. The reflective optical element has an optical substrate, the first reflective region is provided on the front surface side of the optical substrate, and the second reflective region is provided on the rear surface side of the optical substrate. It is possible to use a structure in which the front surface side and the back surface side have different radii of curvature.

【0012】さらに、この反射光学素子は、第1の反射
領域に、紫外光を反射するための高反射率誘電体多層膜
を有し、第2の反射領域に、前記高反射率誘電体多層膜
を透過した光を反射するための高反射率金属膜を有する
構造とすることができる。
Further, the reflective optical element has a high-reflectance dielectric multilayer film for reflecting ultraviolet light in the first reflection area, and the high-reflectance dielectric multilayer film in the second reflection area. A structure having a high reflectance metal film for reflecting light transmitted through the film can be adopted.

【0013】また、本発明の第2の目的を達成するた
め、本発明の第2の態様によれば、光源からの光を導く
光路中に、表面側に第1の反射領域を有し、裏面側に第
2の反射領域を有し、表面側で紫外光を反射し、裏面側
で、表面側の反射面を透過した光を反射する構造を持つ
第1の反射光学素子を有し、前記第1の反射光学素子
は、表面側と裏面側が異なる曲率を持つことを特徴とす
る紫外・可視域光学系が提供される。
Further, in order to achieve the second object of the present invention, according to the second aspect of the present invention, a first reflection region is provided on the surface side in the optical path for guiding the light from the light source, A first reflective optical element having a structure having a second reflection area on the back surface side, reflecting ultraviolet light on the front surface side, and reflecting light transmitted through the reflection surface on the front surface side on the back surface side; An ultraviolet / visible range optical system is provided in which the first reflective optical element has different curvatures on the front surface side and the back surface side.

【0014】また、第2の態様において、光源からの光
を導く光路中に、光源の後方に配置され、紫外域を可視
域より相対的に高反射させる反射鏡と、紫外光を選択的
に高反射する誘電体多層膜を有する第2の反射光学素子
とをさらに備えることができる。
In the second aspect, a reflecting mirror disposed behind the light source in the optical path for guiding the light from the light source, for reflecting the ultraviolet region relatively higher than the visible region, and the ultraviolet light selectively. A second reflective optical element having a highly reflective dielectric multilayer film may be further provided.

【0015】このように構成される本発明の紫外・可視
域光学系を用いることにより、前記紫外・可視域光学系
の光路中に測定対象が配置され、配置される位置は、光
源からの光が当該測定対象に導かれると共に、測定対象
からの光が、測定すべき位置に導き得る位置である光学
測定装置用光学系が得られる。
By using the ultraviolet / visible range optical system of the present invention having the above-described structure, the object to be measured is arranged in the optical path of the ultraviolet / visible range optical system, and the arranged position is the light from the light source. Is guided to the measurement target, and an optical system for an optical measuring device, which is a position where light from the measurement target can be guided to a position to be measured, is obtained.

【0016】また、成膜装置内に置かれる膜厚モニタか
らの光を用いて、膜厚を測定して、膜厚制御を行なう膜
厚制御計に用いられる光学系において、本発明の紫外・
可視域光学系を用いることにより、前記紫外・可視域光
学系の光路中に膜厚モニタが配置され、配置される位置
は、光源からの光が当該膜厚モニタに導かれると共に、
膜厚モニタからの光が、膜厚制御計に導き得る位置であ
る膜厚制御計用光学系が得られる。
Further, in the optical system used in the film thickness control meter for controlling the film thickness by measuring the film thickness using the light from the film thickness monitor placed in the film forming apparatus,
By using the visible range optical system, the film thickness monitor is arranged in the optical path of the ultraviolet / visible range optical system, and the position where the film thickness monitor is arranged is such that the light from the light source is guided to the film thickness monitor.
An optical system for a film thickness controller, which is a position where light from the film thickness monitor can be guided to the film thickness controller, can be obtained.

【0017】[0017]

【作用】本発明によれば、光路中において、紫外光を選
択的に反射する光学素子を介在させることにより、紫外
光の光量を相対的に増加させて、紫外光と可視光との光
量バランスを適度に保つことができる。その結果、迷光
の影響が少ない紫外・可視域光学系を実現できる。特
に、従来、光量の少ない紫外光についての測定時に問題
となった、可視光による迷光の影響を低減することがで
きる。
According to the present invention, by interposing an optical element that selectively reflects ultraviolet light in the optical path, the amount of ultraviolet light is relatively increased and the amount of ultraviolet light and visible light is balanced. Can be kept moderate. As a result, it is possible to realize an ultraviolet / visible range optical system that is less affected by stray light. In particular, it is possible to reduce the influence of stray light due to visible light, which has been a problem when measuring ultraviolet light with a small light amount.

【0018】また、本発明によれば、反射光学素子の反
射面を、表面と裏面の2面とすると共に、それぞれの面
における曲率半径を変えることによって、収差の影響を
補正することができる。
Further, according to the present invention, it is possible to correct the influence of aberration by forming the reflecting surface of the reflecting optical element into two surfaces, the front surface and the back surface, and changing the radius of curvature of each surface.

【0019】さらに、本発明によれば、光学素子に、裏
面鏡や高反射率誘電体多層膜を設けることで、膜の表面
付着力の低下や、紫外光による表面劣化等のミラーの耐
久性を向上させることができる。
Further, according to the present invention, by providing a rear surface mirror or a high-reflectivity dielectric multilayer film on the optical element, the durability of the mirror such as a decrease in the surface adhesive force of the film and a deterioration of the surface due to ultraviolet light. Can be improved.

【0020】[0020]

【実施例】以下、本発明の実施例について、図面を参照
して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0021】図1は、本発明の第1実施例の光学系を示
した図である。図1において、本実施例の光学系は、光
源12と、その後方に配置される光学素子15と、光源
12の前方に、順次配置される、集光レンズ13と、収
差補正用光学素子44と、光学素子14と、モニタガラ
ス11を間において、光学素子14と、光量調整用光学
素子55とで構成される。
FIG. 1 is a diagram showing an optical system according to the first embodiment of the present invention. In FIG. 1, the optical system of the present embodiment includes a light source 12, an optical element 15 disposed behind the light source 12, a condenser lens 13 and an aberration correction optical element 44 sequentially disposed in front of the light source 12. And the optical element 14 and the monitor glass 11 with the optical element 14 and the light amount adjusting optical element 55 interposed therebetween.

【0022】光源12の後ろに配置された光学素子15
は、光源12から放射される光量が少ない紫外光につい
て、光源前方に向かう紫外光の光量を増やすための裏面
鏡である。また、光学素子55は、図7に、その分光反
射率特性を示すように、紫外光のみ高反射させ、可視光
は低反射する誘電体多層膜を用いた光量調整用光学素子
として機能する反射鏡である。従って、光路中に光学素
子55が含まれると、この部分で、可視域が抑えられる
ので、光学系全体における紫外域から可視域までの光量
バランスが調節される。
An optical element 15 arranged behind the light source 12
Is a rear surface mirror for increasing the amount of ultraviolet light that is directed toward the front of the light source with respect to the ultraviolet light having a small amount of light emitted from the light source 12. Further, the optical element 55 has a spectral reflectance characteristic shown in FIG. 7, and has a reflection function that functions as a light quantity adjusting optical element that uses a dielectric multilayer film that highly reflects only ultraviolet light and lowly reflects visible light. It's a mirror. Therefore, when the optical element 55 is included in the optical path, the visible region is suppressed in this portion, so that the light amount balance from the ultraviolet region to the visible region in the entire optical system is adjusted.

【0023】この光学系において、光源12として、キ
セノンランプを用いた場合における光量スペクトルを、
図8において実線41で示す。比較例として、図2で示
す従来の光学系を用いて測定方法したキセノンランプの
光量スペクトルを、図8において実線42に示す。同図
に示す結果から明らかなように、本実施例によれば、紫
外光での光量が増え、可視光での光量が少なくなること
で、光学系全体として適度な光量バランスが保てること
がわかる。このため、紫外域で測光をする際に、可視光
による迷光の影響が少なくなることがわかる。
In this optical system, the light quantity spectrum when a xenon lamp is used as the light source 12 is
This is indicated by the solid line 41 in FIG. As a comparative example, a light intensity spectrum of a xenon lamp measured by using the conventional optical system shown in FIG. 2 is shown by a solid line 42 in FIG. As is clear from the results shown in the figure, according to the present embodiment, the light amount in the ultraviolet light is increased, and the light amount in the visible light is decreased, so that it is possible to maintain a proper light amount balance as the entire optical system. . Therefore, it is understood that the effect of stray light due to visible light is reduced when performing photometry in the ultraviolet region.

【0024】なお、光学素子の配置は、図1に示すもの
に限られない。例えば、図11および図12に示すよう
に、光学素子55の配置を変えることもできる。図11
は、光学素子55を、収差補正用光学素子44の直後に
ある光学素子14と入れ替えた例を示す。また、図12
は、光学素子55を、モニタガラス11の直後の光学素
子14と入れ替えた例を示す。いずれの場合も、可視光
と紫外光の光量バランスが保てるようになっている。
The arrangement of the optical elements is not limited to that shown in FIG. For example, as shown in FIGS. 11 and 12, the arrangement of the optical element 55 can be changed. FIG.
Shows an example in which the optical element 55 is replaced with the optical element 14 immediately after the aberration correcting optical element 44. FIG.
Shows an example in which the optical element 55 is replaced with the optical element 14 immediately behind the monitor glass 11. In either case, the light quantity balance between visible light and ultraviolet light can be maintained.

【0025】次に、本発明の第2実施例について、図1
および図5を参照して説明する。
Next, a second embodiment of the present invention will be described with reference to FIG.
This will be described with reference to FIG.

【0026】本実施例では、図1の光学系の中で、光学
素子44として、図5に示す光学素子を用いる例であ
る。図5に示す光学素子は、表面と裏面で曲率を変え、
表面には、紫外域用高反射率誘電体多層膜23を被着
し、裏面には、可視域用高反射率金属膜23を被着す
る。これにより、光学素子44は、表面側に紫外光を反
射するための第1の反射領域が形成され、裏面側に、第
1の反射領域を透過した光、例えば、可視光を反射する
ための第2の反射領域が形成される。これにより、それ
ぞれの幾何光学的収差を補正することを可能としてい
る。すなわち、本実施例によれば、従来では行えなかっ
た収差補正が、行えることがわかる。
In this embodiment, the optical element shown in FIG. 5 is used as the optical element 44 in the optical system shown in FIG. The optical element shown in FIG. 5 has different curvatures on the front surface and the back surface,
A high reflectance dielectric multilayer film 23 for the ultraviolet region is deposited on the front surface, and a high reflectance metal film 23 for the visible region is deposited on the back surface. As a result, the optical element 44 has a first reflection region for reflecting ultraviolet light formed on the front surface side, and a light for transmitting visible light, for example, visible light, transmitted through the first reflection region on the back surface side. A second reflective area is formed. This makes it possible to correct each geometrical optical aberration. That is, according to the present embodiment, it is understood that the aberration correction, which cannot be performed conventionally, can be performed.

【0027】次に、本発明の実施例による収差補正の効
果について、図9を参照して説明する。
Next, the effect of aberration correction according to the embodiment of the present invention will be described with reference to FIG.

【0028】図9は、本発明の光学系での収差の効果を
計算した際の配置図である。本例での光学素子の曲率半
径は、光学素子15は、r1=40、r2=−40、中
心厚を10とし、また、光学素子44は、r1=−30
0、r2=300、中心厚を16とした。光源12から
モニタガラス11面上までの光路長は、光源12から光
学素子11までを30、光学素子11から光学素子44
までを100、光学素子44からモニタガラス面上まで
を280.7とした。また、可視光と紫外光の硝材の屈
折率は、可視光でn=1.5、紫外光でn=1.53と
した。ここで、光学素子44を従来の光学素子14を用
いて表面のみで可視光と紫外光を反射させた場合の可視
光と紫外光の近軸のバックフォーカスの計算を行うと、
可視光では333.476mm、紫外光では280.7
6mmとなり収差の影響があることがわかる。また、本
例での光学素子44を用いて表面で可視光を裏面で紫外
光を反射させた場合は、可視光で280.72mm、紫
外光で280.76mmとなり収差補正が行われている
ことがわかる。
FIG. 9 is a layout diagram when the effect of aberration in the optical system of the present invention is calculated. Regarding the radius of curvature of the optical element in this example, the optical element 15 has r1 = 40, r2 = −40, and the center thickness is 10, and the optical element 44 has r1 = −30.
0, r2 = 300, and the center thickness was 16. The optical path length from the light source 12 to the surface of the monitor glass 11 is 30 from the light source 12 to the optical element 11, and the optical element 11 to the optical element 44.
Is 100, and the distance from the optical element 44 to the surface of the monitor glass is 280.7. Further, the refractive index of the glass material for visible light and ultraviolet light was n = 1.5 for visible light and n = 1.53 for ultraviolet light. Here, when the paraxial back focus of the visible light and the ultraviolet light when the visible light and the ultraviolet light are reflected only on the surface of the optical element 44 using the conventional optical element 14 is calculated,
33.476 mm for visible light, 280.7 for ultraviolet light
It becomes 6 mm, which shows that there is an influence of aberration. When visible light is reflected on the front surface and ultraviolet light is reflected on the rear surface using the optical element 44 in this example, the visible light is 280.72 mm and the ultraviolet light is 280.76 mm, and aberration correction is performed. I understand.

【0029】次に、本発明の光学系の応用例について、
図10を参照して説明する。
Next, application examples of the optical system of the present invention will be described.
This will be described with reference to FIG.

【0030】図10は、本発明の光学系を、真空成膜装
置の膜厚制御計に組み込んだ例を示す構成図である。本
実施例では、真空成膜装置60中に設置されたモニタガ
ラス11に成膜される成膜物質の光学的反射強度を、モ
ノクロメータ61にて波長選択を行い、制御計62にて
膜厚の制御を行う仕組みになっている。図10に示す例
では、図1に示す光学系が適用されている。モニタガラ
ス11への光の入射、および、モニタガラス11からの
光の出射は、真空成膜装置60の真空容器60aの一部
に設けられた窓60bを介して行なわれる。なお、光学
系についての説明は、第1の実施例に関する説明を参照
されたい。
FIG. 10 is a block diagram showing an example in which the optical system of the present invention is incorporated in a film thickness controller of a vacuum film forming apparatus. In this embodiment, the wavelength of the optical reflection intensity of the film forming substance formed on the monitor glass 11 installed in the vacuum film forming apparatus 60 is selected by the monochromator 61, and the film thickness is set by the controller 62. It is a mechanism to control. In the example shown in FIG. 10, the optical system shown in FIG. 1 is applied. The incidence of light on the monitor glass 11 and the emission of light from the monitor glass 11 are performed through a window 60b provided in a part of the vacuum container 60a of the vacuum film forming apparatus 60. For the description of the optical system, refer to the description of the first embodiment.

【0031】以上説明した実施例によれば、本発明は、
光源の後方に配置した裏面鏡により、紫外光を選択的に
前方に向けて反射することで、前方に向かう紫外光の光
量を増加させる。また、紫外光のみ高反射させ可視光は
低反射する誘電体多層膜を用いた光学素子により、紫外
光を相対的に増加させて、光学系全体の光量バランスを
調整し、紫外光と可視光との光量バランスを適度に保
つ。その結果、モノクロメータによる紫外光の測光の際
に、可視光による迷光の影響を少なくすることが可能と
なる。
According to the embodiments described above, the present invention is
The rear-view mirror disposed behind the light source selectively reflects the ultraviolet light forward, thereby increasing the amount of ultraviolet light traveling forward. In addition, by using an optical element that uses a dielectric multilayer film that only highly reflects ultraviolet light and lowly reflects visible light, the ultraviolet light is relatively increased, and the light amount balance of the entire optical system is adjusted. Keep the light intensity balance with and moderate. As a result, it is possible to reduce the influence of stray light due to visible light when the ultraviolet light is measured by the monochromator.

【0032】また、反射光学素子の表面に高反射率誘電
体多層膜を成膜して紫外光を反射させ、透過した光は高
反射率金属膜を成膜した裏面で反射させるようにして、
反射面を表面と裏面とすると共に、表面と裏面で曲率半
径を変えることで、光学系で生じる収差を補正すること
を可能とする。
Further, a high reflectance dielectric multilayer film is formed on the surface of the reflective optical element to reflect ultraviolet light, and the transmitted light is reflected on the back surface on which the high reflectance metal film is formed.
By using the reflecting surface as the front surface and the back surface and changing the radius of curvature between the front surface and the back surface, it becomes possible to correct the aberration generated in the optical system.

【0033】さらに、光学素子に、裏面鏡や、高反射率
誘電体多層膜を設けることで、膜の表面付着力の低下
や、紫外光による表面劣化等のミラーの耐久性を向上さ
せ長期使用の際の安定性を確保することができる。従っ
て、測光膜厚制御を安定して行なえる。すなわち入、長
期間に渡って、安定して使用できる効果がある。
Further, by providing a rear-view mirror or a high-reflectivity dielectric multilayer film on the optical element, the durability of the mirror such as a decrease in the surface adhesive force of the film and surface deterioration due to ultraviolet light is improved, and long-term use is achieved. The stability at the time of can be ensured. Therefore, the photometric film thickness control can be stably performed. That is, there is an effect that it can be used stably for a long period of time after being turned on.

【0034】なお、上記した実施例では、モニタガラス
に集光させるために配置されるレンズの曲率半径を大き
くすることにより、収差を小さくしている。レンズの曲
率半径が大きくなった分、焦点距離が長くなるので、反
射光学素子を追加して、光路長を長くすることにより、
吸収している。
In the above-mentioned embodiment, the aberration is reduced by increasing the radius of curvature of the lens arranged for focusing on the monitor glass. As the radius of curvature of the lens increases, the focal length increases, so by adding a reflective optical element and increasing the optical path length,
Absorbing.

【0035】このように本発明によれば、従来は行えな
かった紫外域での測光膜厚制御が可能になったことで、
紫外域の波長で膜厚制御方式が光学的膜厚で行えるの
で、膜厚の薄い紫外域用薄膜の高精度成膜が可能とな
る。
As described above, according to the present invention, it has become possible to control the photometric film thickness in the ultraviolet region, which has heretofore been impossible.
Since the film thickness control method can be performed with an optical film thickness at a wavelength in the ultraviolet region, it is possible to form a thin film for the ultraviolet region with high precision.

【0036】[0036]

【発明の効果】本発明によれば、紫外光の光量を相対的
に増加させて、紫外光と可視光との光量バランスを適度
に保つことができる。また、本発明によれば、反射光学
素子の反射面の表面と裏面の2面とすると共に、それぞ
れの面における曲率半径を変えることによって、収差の
影響を補正することができる。
According to the present invention, the light amount of ultraviolet light can be relatively increased and the light amount balance between ultraviolet light and visible light can be appropriately maintained. Further, according to the present invention, it is possible to correct the influence of aberration by forming the reflecting surface of the reflecting optical element into two surfaces, the front surface and the back surface, and changing the radius of curvature of each surface.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例における光学系の構成を
示す光路図。
FIG. 1 is an optical path diagram showing a configuration of an optical system in a first embodiment of the present invention.

【図2】従来の光学系の構成を示す光路図。FIG. 2 is an optical path diagram showing a configuration of a conventional optical system.

【図3】従来の光学系で使用された光学素子の断面図。FIG. 3 is a sectional view of an optical element used in a conventional optical system.

【図4】従来の光学素子の分光反射率特性を示すグラ
フ。
FIG. 4 is a graph showing a spectral reflectance characteristic of a conventional optical element.

【図5】本発明の第2の実施例で用いられる光学素子の
断面図。
FIG. 5 is a sectional view of an optical element used in the second embodiment of the present invention.

【図6】本発明の第2の実施例の光学素子の分光反射率
特性を示すグラフ。
FIG. 6 is a graph showing the spectral reflectance characteristics of the optical element according to the second embodiment of the present invention.

【図7】本発明の第1の実施例の光学素子の分光反射率
特性を示すグラフ。
FIG. 7 is a graph showing spectral reflectance characteristics of the optical element according to the first embodiment of the present invention.

【図8】本発明の第1の実施例によるキセノンランプの
光量と従来例によるキセノンランプの光量とを比較して
示すグラフ。
FIG. 8 is a graph showing a comparison between the light amount of the xenon lamp according to the first embodiment of the present invention and the light amount of the xenon lamp according to the conventional example.

【図9】本発明における収差の効果を示す説明図。FIG. 9 is an explanatory diagram showing an effect of aberration in the present invention.

【図10】本発明を真空成膜装置の膜厚制御計に組み込
んだ状態を示す説明図。
FIG. 10 is an explanatory view showing a state in which the present invention is incorporated in a film thickness controller of a vacuum film forming apparatus.

【図11】本発明の光学系での光学素子の配置を変えた
例を示す光路図。
FIG. 11 is an optical path diagram showing an example in which the arrangement of optical elements is changed in the optical system of the present invention.

【図12】本発明の光学系の光学素子55の配置を変え
た例を示す光路図。
FIG. 12 is an optical path diagram showing an example in which the arrangement of the optical element 55 of the optical system of the present invention is changed.

【符号の説明】[Explanation of symbols]

11…モニタガラス、12…光源、13…集光レンズ、
14…光学素子、15…光学素子(裏面鏡)、21…基
板、22…紫外域用高反射率誘電体多層膜、23…可視
域用高反射率金属膜、31…可視域用高反射金属膜、3
2…誘電体保護膜、41…本発明の光学系でのキセノン
ランプの光量、42…従来の光学系でのキセノンランプ
の光量、44…収差補正用光学素子、55…光量調整用
光学素子、60…真空成膜装置、61…モノクロメー
タ、62…制御計。
11 ... Monitor glass, 12 ... Light source, 13 ... Condensing lens,
14 ... Optical element, 15 ... Optical element (rear surface mirror), 21 ... Substrate, 22 ... High reflectance dielectric multilayer film for ultraviolet region, 23 ... High reflectance metal film for visible region, 31 ... High reflectance metal for visible region Membrane, 3
2 ... Dielectric protective film, 41 ... Xenon lamp light quantity in optical system of the present invention, 42 ... Xenon lamp light quantity in conventional optical system, 44 ... Aberration correction optical element, 55 ... Light quantity adjusting optical element, 60 ... Vacuum film forming apparatus, 61 ... Monochromator, 62 ... Control meter.

フロントページの続き (72)発明者 岡田 憲明 東京都千代田区丸の内3丁目2番3号 株 式会社ニコン内 (72)発明者 津田 剛志 東京都千代田区丸の内3丁目2番3号 株 式会社ニコン内Front page continuation (72) Inventor Noriaki Okada 3 2-3 Marunouchi, Chiyoda-ku, Tokyo Nikon Corporation (72) Inventor Takeshi Tsuda 3 2-3 Marunouchi, Chiyoda-ku, Tokyo Nikon Corporation

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 光源からの光を導く光路中に、紫外域を
可視域より相対的に高反射させる光学素子を設けること
を特徴とする紫外・可視域光学系。
1. An ultraviolet / visible range optical system, wherein an optical element for relatively reflecting the ultraviolet range from the visible range is provided in an optical path for guiding light from a light source.
【請求項2】 請求項1において、前記光学素子とし
て、光源の後方に配置され、紫外域を可視域より相対的
に高反射させる反射鏡を配置することを特徴とする紫外
・可視域光学系。
2. The ultraviolet / visible range optical system according to claim 1, wherein, as the optical element, a reflecting mirror arranged behind the light source and reflecting the ultraviolet range relatively higher than the visible range is arranged. .
【請求項3】 請求項2において、前記光学素子は、紫
外光を選択的に反射する裏面鏡である紫外・可視域光学
系。
3. The ultraviolet / visible region optical system according to claim 2, wherein the optical element is a rear surface mirror that selectively reflects ultraviolet light.
【請求項4】 請求項1において、前記光学素子とし
て、紫外光を選択的に高反射する誘電体多層膜を有する
反射光学素子を有することを特徴とする紫外・可視域光
学系。
4. The ultraviolet / visible range optical system according to claim 1, further comprising a reflective optical element having a dielectric multilayer film that selectively highly reflects ultraviolet light as the optical element.
【請求項5】 請求項1、2、3または4において、第
1の反射領域と第2の反射領域とを持つ反射光学素子を
光路中にさらに備え、上記反射光学素子は、第1の反射
領域で紫外光を反射し、第2の反射領域で、第1の反射
領域を透過した光を反射する構造を持つことを特徴とす
る紫外・可視域光学系。
5. The reflection optical element according to claim 1, further comprising a reflection optical element having a first reflection area and a second reflection area in an optical path, wherein the reflection optical element has a first reflection area. An ultraviolet / visible optical system having a structure that reflects ultraviolet light in a region and reflects light that has passed through the first reflective region in the second reflective region.
【請求項6】 請求項5において、前記反射光学素子
は、光学基板を有し、この光学基板の表面側に前記第1
の反射領域が設けられ、裏面側に前記第2の反射領域が
設けられ、かつ、光学基板の表面側と裏面側とは、異な
る曲率半径で構成されることを特徴とする紫外・可視域
光学系。
6. The reflective optical element according to claim 5, wherein the reflective optical element has an optical substrate, and the first optical element is provided on a front surface side of the optical substrate.
Is provided, the second reflection area is provided on the back surface side, and the front surface side and the back surface side of the optical substrate are configured with different radii of curvature. system.
【請求項7】 請求項6において、前記反射光学素子
は、第1の反射領域に、紫外光を反射するための高反射
率誘電体多層膜を有し、第2の反射領域に、前記高反射
率誘電体多層膜を透過した光を反射するための高反射率
金属膜を有することを特徴とする紫外・可視域光学系。
7. The reflective optical element according to claim 6, wherein the reflective optical element has a high-reflectivity dielectric multilayer film for reflecting ultraviolet light in the first reflective region, and the high reflective dielectric multilayer film in the second reflective region. An ultraviolet / visible optical system having a high-reflectance metal film for reflecting light transmitted through a reflectance dielectric multilayer film.
【請求項8】 光源からの光を導く光路中に、表面側に
第1の反射領域を有し、裏面側に第2の反射領域を有
し、表面側で紫外光を反射し、裏面側で、表面側の反射
面を透過した光を反射する構造を持つ第1の反射光学素
子を有し、 前記第1の反射光学素子は、表面側と裏面側が異なる曲
率を持つことを特徴とする紫外・可視域光学系。
8. An optical path for guiding light from a light source has a first reflection area on the front surface side, a second reflection area on the back surface side, and reflects ultraviolet light on the front surface side, and the back surface side. And a first reflective optical element having a structure for reflecting light transmitted through a reflective surface on the front surface side, wherein the first reflective optical element has different curvatures on the front surface side and the rear surface side. Ultraviolet / visible optical system.
【請求項9】 光源からの光を導く光路中に、 光源の後方に配置され、紫外域を可視域より相対的に高
反射させる反射鏡と、 紫外光を選択的に高反射する誘電体多層膜を有する第2
の反射光学素子とをさらに備えることを特徴とする紫外
・可視域光学系。
9. A reflecting mirror, which is disposed behind the light source in the optical path for guiding the light from the light source, and which reflects the ultraviolet region relatively higher than the visible region, and a dielectric multilayer which selectively and highly reflects the ultraviolet light. Second with membrane
The ultraviolet / visible range optical system further comprising:
【請求項10】 請求項9記載の紫外・可視域光学系を
備え、 前記紫外・可視域光学系の光路中に測定対象が配置さ
れ、配置される位置は、光源からの光が当該測定対象に
導かれると共に、測定対象からの光が、測定すべき位置
に導き得る位置であることを特徴とする光学測定装置用
光学系。
10. The ultraviolet / visible range optical system according to claim 9, wherein a measurement target is arranged in an optical path of the ultraviolet / visible range optical system, and at a position where the measurement target is light from a light source. An optical system for an optical measuring device, characterized in that the light from the measurement target is guided to the position where it can be guided to a position to be measured.
【請求項11】 成膜装置内に置かれる膜厚モニタから
の光を用いて、膜厚を測定して、膜厚制御を行なう膜厚
制御計に用いられる光学系において、 請求項9記載の紫外・可視域光学系を備え、前記紫外・
可視域光学系の光路中に膜厚モニタが配置され、配置さ
れる位置は、光源からの光が当該膜厚モニタに導かれる
と共に、膜厚モニタからの光が、膜厚制御計に導き得る
位置であることを特徴とする膜厚制御計用光学系。
11. An optical system used in a film thickness controller for controlling film thickness by measuring film thickness using light from a film thickness monitor placed in a film forming apparatus. Equipped with an ultraviolet / visible optical system,
The film thickness monitor is arranged in the optical path of the visible region optical system, and the position where the film thickness monitor is arranged can be such that the light from the light source is guided to the film thickness monitor and the light from the film thickness monitor is guided to the film thickness controller. An optical system for a film thickness control meter, which is a position.
JP7164201A 1995-06-29 1995-06-29 Ultraviolet/visible region optical system Pending JPH0914925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7164201A JPH0914925A (en) 1995-06-29 1995-06-29 Ultraviolet/visible region optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7164201A JPH0914925A (en) 1995-06-29 1995-06-29 Ultraviolet/visible region optical system

Publications (1)

Publication Number Publication Date
JPH0914925A true JPH0914925A (en) 1997-01-17

Family

ID=15788600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7164201A Pending JPH0914925A (en) 1995-06-29 1995-06-29 Ultraviolet/visible region optical system

Country Status (1)

Country Link
JP (1) JPH0914925A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310621A (en) * 2001-04-12 2002-10-23 Shin Meiwa Ind Co Ltd Film thickness monitor
JP2008151944A (en) * 2006-12-15 2008-07-03 Sanyo Electric Co Ltd Illuminator and projection type video display device
CN114787580A (en) * 2019-11-26 2022-07-22 浜松光子学株式会社 Optical unit and film thickness measuring apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310621A (en) * 2001-04-12 2002-10-23 Shin Meiwa Ind Co Ltd Film thickness monitor
JP2008151944A (en) * 2006-12-15 2008-07-03 Sanyo Electric Co Ltd Illuminator and projection type video display device
CN114787580A (en) * 2019-11-26 2022-07-22 浜松光子学株式会社 Optical unit and film thickness measuring apparatus

Similar Documents

Publication Publication Date Title
US5031976A (en) Catadioptric imaging system
US5706108A (en) Hologram display apparatus including a curved surface of constant curvature
EP1059550A1 (en) Reflection refraction image-forming optical system and projection exposure apparatus comprising the optical system
US6909548B2 (en) Optical filter using a linear variable filter with elliptical beam geometry
JPH07311337A (en) Optical information recording and reproducing device
WO2000052511A1 (en) Infrared optical system for infrared camera
JP3487386B2 (en) Light source device with double reflector to eliminate shadow of lamp
US4951078A (en) Camera system including catadioptric lens and catadioptric lens system used therein
JP2000235151A (en) Method for correcting optical wave aberration in optical system, and optical system and microscope manufactured based on it
KR20190115089A (en) Reflective Refractive Lenses and Optical Systems Including Such Lenses
US7646982B2 (en) Chromatic dispersion compensator
JP2003307680A (en) Catadioptric system
JPH0784185A (en) Reflection optical system
JP4212721B2 (en) Wide-angle reflective optics
JPH0914925A (en) Ultraviolet/visible region optical system
JP3462126B2 (en) Optical pickup device and lens inclination detecting method
US4456343A (en) High speed catadioptric objective lens system
US7333271B2 (en) Dichroic mangin mirror
JP4732569B2 (en) Method for continuously determining the optical layer thickness of a coating
CA2248501C (en) External resonator light source
EP1895531A2 (en) Optical pickup device
JPH07113948A (en) Focus detecting device
JP4030763B2 (en) Transmission band flattened dispersion compensator
US5164857A (en) Wide band non-coated beam splitter
JPH0915407A (en) Reflection optical element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041026