JPH09148603A - Solar battery and its manufacture - Google Patents

Solar battery and its manufacture

Info

Publication number
JPH09148603A
JPH09148603A JP7303003A JP30300395A JPH09148603A JP H09148603 A JPH09148603 A JP H09148603A JP 7303003 A JP7303003 A JP 7303003A JP 30300395 A JP30300395 A JP 30300395A JP H09148603 A JPH09148603 A JP H09148603A
Authority
JP
Japan
Prior art keywords
grindstone
shaped
blade
multiblade
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7303003A
Other languages
Japanese (ja)
Other versions
JP3189201B2 (en
Inventor
Hiroshi Kumada
浩 熊田
Takeshi Tamura
田村  剛
Hiroaki Nakaya
浩明 中弥
Toru Nunoi
徹 布居
Minoru Murakami
稔 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP30300395A priority Critical patent/JP3189201B2/en
Publication of JPH09148603A publication Critical patent/JPH09148603A/en
Application granted granted Critical
Publication of JP3189201B2 publication Critical patent/JP3189201B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To form regular trenches in a board, by installing a board wherein uneven trenches having an almost V-shape or U-shape are formed in a light receiving surface by using a multiblade grindstone of a wheel type which has blades whose sections are almost V-shaped or U-shaped on a grinding surface. SOLUTION: A metal bond grindstone of wide width which is formed in an almost V-shaped multiblade is used as a multiblade grindstone 3. A crystalline board 4 is fixed on a creep field table 5 of a grinding machine. Grinding is performed by running the table 5 with a specified cutting amount while the multiblade grindstone 3 is rotated. Blade tips of the multiblade grindstone 3 are weared according to the increase of trench machining time. When the life of the multiblade grindstone 3 is finished, discharge is generated between the grindstone 3 and a wire-shaped electrode 7 by using a wire profile unit 2 and a W-EDM controller 6, and the blade tips are made specified shapes. Then the trench machining is again started. Thereby regular trenches can be formed in the board.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、太陽電池および
その製造方法に関し、特に、例えばシリコン太陽電池の
ような結晶性基板を用いた太陽電池およびその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell and a method for manufacturing the same, and more particularly to a solar cell using a crystalline substrate such as a silicon solar cell and a method for manufacturing the same.

【0002】[0002]

【従来の技術】例えばシリコン太陽電池のような結晶性
基板を用いた太陽電池においては、基板の表面に凹凸を
形成し、これにより表面反射を低減させることが、光電
変換の高効率化を図る要素技術の一つとして重要なもの
となっている。
2. Description of the Related Art In a solar cell using a crystalline substrate such as a silicon solar cell, unevenness is formed on the surface of the substrate to reduce surface reflection, thereby improving photoelectric conversion efficiency. It is important as one of the elemental technologies.

【0003】このような従来の結晶性基板を用いた太陽
電池の内、単結晶シリコン基板を用いた太陽電池におい
ては、(100)面を持つ基板を、アルカリ溶液中でエ
ッチングを行うことによって、表面にピラミッド状の凹
凸を形成することができる。あるいは、表面にレジスト
を塗布し、これを格子状にパターンニングした後、アル
カリ溶液中でエッチングを行うことによって、表面に逆
ピラミッド状の凹凸を形成することができる。
Among the conventional solar cells using a crystalline substrate, in the solar cell using a single crystal silicon substrate, a substrate having a (100) plane is etched in an alkaline solution, Pyramid-shaped irregularities can be formed on the surface. Alternatively, an inverted pyramid-shaped unevenness can be formed on the surface by applying a resist on the surface, patterning the resist in a grid pattern, and then performing etching in an alkaline solution.

【0004】しかしながら、低コスト化に有効な多結晶
シリコン基板を用いた太陽電池においては、基板内の面
方位が様々であるため、結晶の面方位に依存するアルカ
リ溶液中のエッチングでは、均一な凹凸は形成できず、
そのため表面反射も低減されない。
However, in a solar cell using a polycrystalline silicon substrate, which is effective for cost reduction, the plane orientation in the substrate varies, so that etching in an alkaline solution depending on the plane orientation of the crystal results in uniform etching. Unevenness cannot be formed,
Therefore, the surface reflection is not reduced.

【0005】そこで、近年、多結晶シリコン基板を用い
た太陽電池においては、結晶の面方位に依存せず表面反
射を低減する方法として、表面にV字状またはU字状の
断面をもつ溝状の凹凸を加工する方法が開発されてい
る。この溝の加工方法としては、表面にレジストを塗布
し、パターンニングをした後、エッチングする化学的加
工法や、レーザビーム、ダイシングマシーン等を用いた
機械的加工法などが提案されている。
Therefore, in recent years, in a solar cell using a polycrystalline silicon substrate, as a method of reducing surface reflection without depending on the crystal plane orientation, a groove shape having a V-shaped or U-shaped cross section is formed on the surface. The method of processing the unevenness of is developed. As a method of processing the groove, a chemical processing method in which a resist is applied on the surface, patterning, and etching, and a mechanical processing method using a laser beam, a dicing machine, or the like have been proposed.

【0006】[0006]

【発明が解決しようとする課題】このように、多結晶シ
リコン基板を用いた太陽電池においては、結晶の面方位
に依存しない溝の加工法として、様々な方法が開発され
ている。しかしながら、上述した方法により、表面に溝
を形成した低コストな太陽電池を量産することは難し
い。その理由は、上述した方法には、反射率低減の効
果、コスト、量産性等に問題があるためである。以下、
これについて詳しく述べる。
As described above, in a solar cell using a polycrystalline silicon substrate, various methods have been developed as a groove processing method that does not depend on the crystal plane orientation. However, it is difficult to mass-produce a low-cost solar cell having a groove formed on the surface by the method described above. The reason is that the method described above has problems in the effect of reducing the reflectance, cost, mass productivity, and the like. Less than,
This will be described in detail.

【0007】まず、エッチングによる化学的加工法にお
いては、アルカリ溶液を用いた異方性エッチングでは、
均一な溝を形成することができず、酸溶液を用いた等方
性エッチングでは、エッチングが幅方向にも進行するた
め、アスペクト比が低く反射率低減の効果が少ない。さ
らに、レジストの塗布工程とパターンニング工程という
コストのかかる工程が必要である。
First, in the chemical processing method by etching, in anisotropic etching using an alkaline solution,
A uniform groove cannot be formed, and in isotropic etching using an acid solution, the etching progresses in the width direction as well, so that the aspect ratio is low and the effect of reducing reflectance is small. Further, costly steps such as a resist coating step and a patterning step are required.

【0008】次に、レーザビームを用いた機械的加工法
においては、溝の形成が一本ずつとなり、量産性に劣
る。また、多数のレーザビームを同時に照射するには高
価なレーザ加工機が複数台必要となり、コストがかか
る。
Next, in the mechanical processing method using the laser beam, the grooves are formed one by one, and the mass productivity is poor. Further, in order to irradiate a large number of laser beams at the same time, a plurality of expensive laser processing machines are required, which is costly.

【0009】そして、ダイシングマシーンを用いた機械
的加工法においては、一度に多数の溝を加工する場合、
何枚も重ね合わせたマルチ刃では、重ね合わせピッチ精
度が出ず、また、重ねしろにより、例えば1mm以下の
ような微細ピッチのマルチ刃は製作が非常に困難であ
り、刃ピッチも精度がでないため加工精度が悪い。した
がって、量産性の点で十分とは言えない。
In the mechanical processing method using a dicing machine, when processing a large number of grooves at one time,
With a multi-blade in which many blades are superposed, the superposition pitch accuracy is not obtained, and due to the superposition margin, it is very difficult to manufacture a multi-blade with a fine pitch of, for example, 1 mm or less, and the blade pitch is also inaccurate. Therefore, the processing accuracy is poor. Therefore, it cannot be said that the mass productivity is sufficient.

【0010】このように、結晶性基板を用いた太陽電池
においては、基板表面への溝の形成は、表面反射の低減
に大きな効果があることがわかっており、その溝の加工
法として、様々な方法が開発されてはいるが、実際に
は、コストの増加や、量産性に劣ることなどの問題があ
る。そのため、基板表面への溝加工を量産工程に導入す
るためのより有効な方法の開発が望まれている。
As described above, in a solar cell using a crystalline substrate, it has been found that forming a groove on the surface of the substrate has a great effect on reducing surface reflection, and there are various methods for processing the groove. Although various methods have been developed, in reality, there are problems such as increased cost and poor mass productivity. Therefore, it is desired to develop a more effective method for introducing the groove processing on the substrate surface into the mass production process.

【0011】本発明の目的は、上記問題を解決し、表面
反射の低減によって、光電変換効率を向上させた太陽電
池を提供し、さらに、その太陽電池を、量産性に富む方
法で製造する製造方法を提供することにある。
An object of the present invention is to solve the above problems, to provide a solar cell having improved photoelectric conversion efficiency by reducing surface reflection, and further to manufacture the solar cell by a method having high mass productivity. To provide a method.

【0012】[0012]

【課題を解決するための手段】この発明は、研削面に断
面が略V字状またはU字状の刃を有するホイール状のマ
ルチ刃砥石によって受光面に略V字状またはU字状の凹
凸溝を形成した基板を備えてなる太陽電池を提供するも
のである。
SUMMARY OF THE INVENTION According to the present invention, a V-shaped or U-shaped irregularity is formed on a light-receiving surface by a wheel-shaped multi-blade grindstone having a blade whose cross section has a V-shaped or U-shaped cross section. It is intended to provide a solar cell including a substrate having a groove formed therein.

【0013】この発明は、また、研削面に断面が略V字
状またはU字状の多数の刃を有するホイール状のマルチ
刃砥石によって略V字状またはU字状の断面形状を有す
る多数の溝を基板の受光面に一度に形成することを特徴
とする太陽電池の製造方法を提供するものである。
The present invention also provides a large number of V-shaped or U-shaped cross-sectional shapes by a wheel-shaped multi-blade grindstone having a large number of blades whose cross-section is substantially V-shaped or U-shaped. It is intended to provide a method for manufacturing a solar cell, which comprises forming a groove on a light receiving surface of a substrate at a time.

【0014】この発明において、ホイール状のマルチ刃
砥石の材質としては、従来公知の砥石と同じ材質のもの
を用いることができる。このホイール状のマルチ刃砥石
の刃の断面形状は、基板の受光面に略V字状またはU字
状の断面形状を有する多数の溝を一度に形成するため
に、溝の形状と同様の略V字状またはU字状の断面形状
を有していることが必要であり、このマルチ刃砥石とし
ては、放電加工により研削面を略V字状またはU字状の
マルチ刃に形成した幅の広いメタルボンド砥石を用いる
ことが適している。
In the present invention, as the material of the wheel-shaped multi-blade grindstone, the same material as the conventionally known grindstone can be used. The cross-sectional shape of the blade of this wheel-shaped multi-blade grindstone is similar to that of the groove in order to form a large number of grooves having a substantially V-shaped or U-shaped cross-sectional shape at one time on the light receiving surface of the substrate. It is necessary to have a V-shaped or U-shaped cross-sectional shape, and this multi-blade grindstone has a width that is formed by electric discharge machining into a substantially V-shaped or U-shaped multi-blade. It is suitable to use a wide metal bond grindstone.

【0015】基板の受光面に形成する略V字状またはU
字状の溝は、ピッチは50〜150μm、深さは50〜
90μm程度が適当であるので、マルチ刃砥石の刃もこ
れに応じて、ピッチ50〜150μm、深さ50〜90
μm程度に形成しておくことが望ましい。
A substantially V shape or U formed on the light receiving surface of the substrate
The V-shaped grooves have a pitch of 50 to 150 μm and a depth of 50 to 150 μm.
Since about 90 μm is suitable, the blade of the multi-blade grindstone also has a pitch of 50 to 150 μm and a depth of 50 to 90 according to this.
It is desirable to form it to about μm.

【0016】このマルチ刃砥石は、研削盤に取り付けて
用いることが望ましい。これにより、ホイール状のマル
チ刃砥石で基板の受光面を研削し、基板の受光面に高精
度で規則的な、断面が略V字状またはU字状の溝を一度
に形成することができる。
This multi-blade grindstone is preferably attached to a grinder for use. This makes it possible to grind the light-receiving surface of the substrate with the wheel-shaped multi-blade grindstone and form highly accurate and regular grooves having a substantially V-shaped or U-shaped cross section at one time on the light-receiving surface of the substrate. .

【0017】上記構成においては、マルチ刃砥石の刃を
放電加工により研磨することが可能な砥石加工装置をさ
らに備えた構成とすることが好ましい。そして、マルチ
刃砥石が寿命に達したときには、研削盤に取り付けた砥
石加工装置によりマルチ刃砥石の刃を研磨して自動的に
刃の形状を復元させ、再度基板を研削できるようにする
ことが望ましい。
In the above structure, it is preferable to further include a grindstone processing device capable of polishing the blade of the multi-blade grindstone by electric discharge machining. Then, when the multi-blade grindstone reaches the end of its life, it is possible to grind the blade of the multi-blade grindstone by the grindstone processing device attached to the grinder to automatically restore the shape of the grindstone so that the substrate can be ground again. desirable.

【0018】マルチ刃砥石を研削盤に取り付けたまま、
マルチ刃砥石の刃を放電加工によって成形する方法につ
いては、特開昭61−4666号公報に記載の砥石成形
方法などを適用することができる。
With the multi-blade whetstone attached to the grinder,
As a method of forming the blade of the multi-blade grindstone by electric discharge machining, the grindstone forming method described in JP-A-61-4666 can be applied.

【0019】この発明によれば、ホイール状のマルチ刃
砥石によって基板が研削され、基板の受光面に、略V字
状またはU字状の断面形状を有する多数の溝が一度に高
精度に加工されるので、基板の受光面の反射率を下げ
て、太陽電池の光電変換効率を向上させることができ
る。
According to the present invention, the substrate is ground by the wheel-shaped multi-blade grindstone, and a large number of grooves having a substantially V-shaped or U-shaped cross-sectional shape are machined at one time on the light-receiving surface of the substrate with high accuracy. Therefore, the reflectance of the light receiving surface of the substrate can be reduced, and the photoelectric conversion efficiency of the solar cell can be improved.

【0020】また、研削盤に砥石加工装置をさらに設け
た構成であれば、研削盤に取り付けたままマルチ刃砥石
の刃を研磨することが可能となり、それによりマルチ刃
砥石の振れをなくし、マルチ刃砥石の刃が磨耗した時に
は、マルチ刃砥石の刃を研磨してもとの形状に復元する
ことができるので、マルチ刃砥石の交換サイクルを極力
減らすことができる。
If the grinder is further provided with a grindstone processing device, the blade of the multi-blade grindstone can be polished while being attached to the grinder, thereby eliminating the run-out of the multi-blade grindstone. When the blade of the blade grindstone is worn, the blade can be restored to its original shape by polishing the blade of the multi-blade grindstone, so that the replacement cycle of the multi-blade grindstone can be reduced as much as possible.

【0021】そして、この発明の太陽電池の製造方法に
よれば、基板に規則的な溝を形成することができ、光電
変換効率の高い太陽電池の安定した加工が可能となるた
め、量産性に富む低コストな方法で太陽電池を製造する
ことができる。
According to the method of manufacturing a solar cell of the present invention, regular grooves can be formed in the substrate, and the solar cell having high photoelectric conversion efficiency can be stably processed. Solar cells can be manufactured in abundant and low cost methods.

【0022】[0022]

【発明の実施の形態】以下、図面に示す実施例に基づい
てこの発明を詳述する。なお、これによってこの発明が
限定されるものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on an embodiment shown in the drawings. Note that the present invention is not limited to this.

【0023】図1はこの発明の太陽電池の基板を研削す
るための工作機械の構成の一例を示す説明図である。こ
の図において、1はワイヤボビン、2はワイヤプロファ
イルユニット、3はホイール状のマルチ刃砥石、4は太
陽電池となる結晶性基板、5はクリープフィードテーブ
ル、6はW−EDM(ワイヤ放電加工)コントローラ、
7はワイヤ状電極である。
FIG. 1 is an explanatory view showing an example of the construction of a machine tool for grinding the substrate of the solar cell of the present invention. In this figure, 1 is a wire bobbin, 2 is a wire profile unit, 3 is a wheel-shaped multi-blade grindstone, 4 is a crystalline substrate to be a solar cell, 5 is a creep feed table, and 6 is a W-EDM (wire electric discharge machining) controller. ,
7 is a wire electrode.

【0024】この例で示す工作機械は研削盤であり、こ
の研削盤にホイール状のマルチ刃砥石3を取り付け、こ
のマルチ刃砥石3で結晶性基板4の受光面を研削し、結
晶性基板4の受光面に高精度で規則的な、断面が略V字
状の溝を形成する。
The machine tool shown in this example is a grinder, and a wheel-shaped multi-blade grindstone 3 is attached to this grinder, and the light-receiving surface of the crystalline substrate 4 is ground with this multi-blade grindstone 3 to form the crystalline substrate 4. A highly accurate and regular groove having a substantially V-shaped cross section is formed on the light receiving surface of the.

【0025】マルチ刃砥石3としては、放電加工により
刃の断面形状を、図2の(a)示すような略V字状のマ
ルチ刃に形成した幅の広いメタルボンド砥石を用いてい
る。このマルチ刃砥石3の刃の断面形状は、結晶性基板
4の受光面に、断面が略U字状の溝を形成する場合に
は、それに応じて、図2の(b)示すような略U字状に
形成しておく。メタルボンド砥石の材質としては、従来
公知の砥石と同じ材質のものを用いている。
As the multi-blade grindstone 3, there is used a wide metal-bonded grindstone in which the cross-sectional shape of the blade is formed by electric discharge machining into a substantially V-shaped multi-blade as shown in FIG. When a groove having a substantially U-shaped cross section is formed on the light-receiving surface of the crystalline substrate 4, the cross-sectional shape of the blade of the multi-blade grindstone 3 is substantially the same as shown in FIG. 2B. It is formed in a U shape. As the material of the metal bond grindstone, the same material as the conventionally known grindstone is used.

【0026】マルチ刃砥石3の略V字状の刃は、ピッチ
が約120μm、深さが約70μmに形成されており、
このマルチ刃砥石3により、結晶性基板4の受光面を研
削し、結晶性基板4の受光面にピッチ約120μm、深
さ約70μmの略V字状の断面形状を有する多数の溝を
一度に形成する。
The approximately V-shaped blade of the multi-blade grindstone 3 is formed with a pitch of about 120 μm and a depth of about 70 μm.
The multi-blade grindstone 3 grinds the light-receiving surface of the crystalline substrate 4 to form a large number of grooves having a substantially V-shaped cross-section with a pitch of about 120 μm and a depth of about 70 μm at one time on the light-receiving surface of the crystalline substrate 4. Form.

【0027】この研削盤には、マルチ刃砥石3の刃を放
電加工により研磨することが可能な砥石加工装置がさら
に設けられている。この砥石加工装置は、ワイヤボビン
1、ワイヤプロファイルユニット2、ワイヤ状電極7、
およびW−EDMコントローラ6から構成されており、
ワイヤボビン1から繰り出されるワイヤをワイヤプロフ
ァイルユニット2で巻き取り、このワイヤを一方のワイ
ヤ状電極7とし、マルチ刃砥石3を他方の電極として、
W−EDMコントローラ6により放電加工を行う。
The grinding machine is further provided with a grindstone processing device capable of polishing the blade of the multi-blade grindstone 3 by electric discharge machining. This grindstone processing apparatus includes a wire bobbin 1, a wire profile unit 2, a wire-shaped electrode 7,
And a W-EDM controller 6,
The wire fed out from the wire bobbin 1 is wound by the wire profile unit 2, this wire is used as one wire-shaped electrode 7, and the multi-blade grindstone 3 is used as the other electrode.
Electric discharge machining is performed by the W-EDM controller 6.

【0028】これにより、マルチ刃砥石3が寿命に達し
たときには、砥石加工装置によりマルチ刃砥石3の刃を
研磨して自動的に刃の形状を復元させ、再度、結晶性基
板4を研削加工できるようにしている。
As a result, when the life of the multi-blade grindstone 3 is reached, the grindstone processing device grinds the blade of the multi-blade grindstone 3 to automatically restore the shape of the blade, and then grinds the crystalline substrate 4 again. I am able to do it.

【0029】以下、マルチ刃砥石3による結晶性基板4
の研削加工手順を説明する。まず、研削盤のクリープフ
ィードテーブル5に結晶性基板4を取り付ける。この結
晶性基板4は、1枚だけをクリープフィードテーブル5
に取り付けてもよいし、図中、X方向とZ方向に規則的
に並べることにより、複数枚をクリープフィードテーブ
ル5に取り付けてもよい。
Hereinafter, the crystalline substrate 4 using the multi-blade grindstone 3
The grinding processing procedure will be described. First, the crystalline substrate 4 is attached to the creep feed table 5 of the grinder. Only one of the crystalline substrates 4 is a creep feed table 5
A plurality of sheets may be attached to the creep feed table 5 by regularly arranging them in the X and Z directions in the figure.

【0030】結晶性基板4への溝加工は、マルチ刃砥石
3を回転させながら図中のX方向に所定の切り込み量を
もって走行させ研削を行う。マルチ刃砥石3のホイール
幅と結晶性基板4の大きさが異なる場合、つまりマルチ
刃砥石3のホイール幅よりも結晶性基板4の幅の方が大
きいときは、マルチ刃砥石3を図中のZ方向に送り、再
び図中のX方向に研削するようにして、結晶性基板4の
全体に溝加工を施す。
Grooving on the crystalline substrate 4 is carried out by rotating the multi-blade grindstone 3 and traveling in the X direction in the drawing with a predetermined depth of cut for grinding. When the wheel width of the multi-blade grindstone 3 and the size of the crystalline substrate 4 are different, that is, when the width of the crystalline substrate 4 is larger than the wheel width of the multi-blade grindstone 3, the multi-blade grindstone 3 is shown in the drawing. Groove processing is performed on the entire crystalline substrate 4 by feeding in the Z direction and grinding again in the X direction in the figure.

【0031】マルチ刃砥石3は、溝加工時間が多くなる
につれ刃先が磨耗し寿命に達する。その時点で、マルチ
刃砥石3を砥石加工装置により放電加工することができ
る位置(図中、破線でマルチ刃砥石3を示す)まで移動
させ、ワイヤプロファイルユニット2とW−EDMコン
トローラ6とを用い、マルチ刃砥石3とワイヤ状電極7
との間で放電を行わせ、磨耗したマルチ刃砥石3の刃先
を所定の形状に自動的に修正する。
In the multi-blade grindstone 3, the blade edge wears and reaches the end of its life as the groove processing time increases. At that time, the multi-blade grindstone 3 is moved to a position where electric discharge machining can be performed by the grindstone machining device (in the figure, the multi-blade grindstone 3 is shown), and the wire profile unit 2 and the W-EDM controller 6 are used. , Multi-blade whetstone 3 and wire electrode 7
And discharge is performed between them and the blade edge of the worn multi-blade grindstone 3 is automatically corrected to a predetermined shape.

【0032】マルチ刃砥石3の刃先の形状を修正した
後、マルチ刃砥石3を結晶性基板4の溝加工のできる位
置に再び移動させ、その刃先の形状が修正されたマルチ
刃砥石3を用いて結晶性基板4の溝加工を再開する。
After the shape of the cutting edge of the multi-blade wheel 3 is corrected, the multi-blade wheel 3 is moved again to a position where a groove can be formed on the crystalline substrate 4, and the multi-blade wheel 3 whose shape of the cutting edge is corrected is used. Then, the groove processing of the crystalline substrate 4 is restarted.

【0033】以上の方法により作成した太陽電池と従来
のアルカリエッチングで表面加工を施した太陽電池とを
比較すると、光電変換効率を12.9%から14.2%
に向上させることができた。
Comparing the solar cell produced by the above method with the conventional solar cell surface-treated by alkali etching, the photoelectric conversion efficiency is 12.9% to 14.2%.
I was able to improve.

【0034】このようにして、多数の刃を有する幅の広
いマルチ刃砥石で研削することにより、太陽電池の結晶
性基板4の受光面に断面が略V字状またはU字状の多数
の溝を一度に高精度に形成することができる。
In this way, by grinding with a wide multi-blade grindstone having a large number of blades, a large number of grooves having a substantially V-shaped or U-shaped cross section are formed on the light-receiving surface of the crystalline substrate 4 of the solar cell. Can be formed at one time with high precision.

【0035】また、研削盤に取り付けたままマルチ刃砥
石の刃を研磨することができるので、マルチ刃砥石の振
れをなくすことができる。そして、マルチ刃砥石の刃が
磨耗した時には、マルチ刃砥石の刃を研磨してもとの形
状に復元することができるので、マルチ刃砥石の交換サ
イクルを極力減らすことができる。
Further, since the blade of the multi-blade grindstone can be polished while it is attached to the grinder, the run-out of the multi-blade grindstone can be eliminated. Then, when the blade of the multi-blade grindstone is worn, the blade can be restored to its original shape by polishing the blade of the multi-blade grindstone, so that the replacement cycle of the multi-blade grindstone can be reduced as much as possible.

【0036】さらに、結晶性基板4の受光面を、マルチ
刃砥石の研削面の粗さに応じて任意の粗さで加工するこ
とができるので、粗さの異なるマルチ刃砥石を多数用意
し、太陽電池の用途に応じてマルチ刃砥石を交換するよ
うにすれば、所望の粗さの受光面を持つ太陽電池を用途
に応じて製造することができる。
Furthermore, since the light-receiving surface of the crystalline substrate 4 can be processed to have an arbitrary roughness according to the roughness of the grinding surface of the multi-blade grindstone, a large number of multi-blade grindstones having different roughness are prepared. If the multi-blade grindstone is replaced according to the application of the solar cell, a solar cell having a light receiving surface with a desired roughness can be manufactured according to the application.

【0037】そして、このようにして結晶性基板4の溝
加工を行って、結晶性基板4に規則的な溝を形成するこ
とにより、光電変換効率の高い太陽電池の安定した加工
が可能となるため、低コストで量産性に富む方法で太陽
電池を製造することができる。
By thus forming the grooves in the crystalline substrate 4 to form regular grooves in the crystalline substrate 4, it is possible to stably process a solar cell having high photoelectric conversion efficiency. Therefore, a solar cell can be manufactured at a low cost and by a method that is rich in mass productivity.

【0038】[0038]

【発明の効果】この発明によれば、基板の光反射率低減
のための溝加工を、多数の刃を有する幅の広いマルチ刃
砥石を用いて行うようにしたので、基板の迅速な形成が
可能となる。その結果、量産プロセスにおいて従来より
低コストで高効率の太陽電池を得ることができる。
According to the present invention, the groove processing for reducing the light reflectance of the substrate is performed by using a wide multi-blade grindstone having a large number of blades, so that the substrate can be quickly formed. It will be possible. As a result, it is possible to obtain a highly efficient solar cell at a lower cost than ever before in a mass production process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の太陽電池の基板を研削するための工
作機械の構成の一例を示す説明図である。
FIG. 1 is an explanatory view showing an example of a configuration of a machine tool for grinding a substrate of a solar cell of the present invention.

【図2】この発明のマルチ刃砥石の刃の形状を示す説明
図である。
FIG. 2 is an explanatory view showing the shape of the blade of the multi-edged grindstone of the present invention.

【符号の説明】[Explanation of symbols]

1 ワイヤボビン 2 ワイヤプロファイルユニット 3 マルチ刃砥石 4 結晶性基板 5 クリープフィードテーブル 6 W−EDMコントローラ 7 ワイヤ状電極 1 Wire bobbin 2 Wire profile unit 3 Multi-blade grindstone 4 Crystalline substrate 5 Creep feed table 6 W-EDM controller 7 Wire electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 布居 徹 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 村上 稔 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Toru Nunoi 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Prefecture Sharp Corporation (72) Minoru Murakami 22-22, Nagaike-cho, Abeno-ku, Osaka Inside the company

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 研削面に断面が略V字状またはU字状の
刃を有するホイール状のマルチ刃砥石によって受光面に
略V字状またはU字状の凹凸溝を形成した基板を備えて
なる太陽電池。
1. A substrate having a V-shaped or U-shaped concave-convex groove formed on a light-receiving surface by a wheel-shaped multi-blade grindstone having a blade having a V-shaped or U-shaped cross section on a grinding surface. Become solar cells.
【請求項2】 研削面に断面が略V字状またはU字状の
多数の刃を有するホイール状のマルチ刃砥石によって略
V字状またはU字状の断面形状を有する多数の溝を基板
の受光面に一度に形成することを特徴とする太陽電池の
製造方法。
2. A large number of grooves having a substantially V-shaped or U-shaped cross-section are formed on a substrate by a wheel-shaped multi-blade grindstone having a large number of blades having a substantially V-shaped or U-shaped cross section on a grinding surface. A method for manufacturing a solar cell, which is characterized in that the solar cell is formed on the light receiving surface at once.
JP30300395A 1995-11-21 1995-11-21 Solar cell manufacturing apparatus and solar cell manufacturing method using the same Expired - Fee Related JP3189201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30300395A JP3189201B2 (en) 1995-11-21 1995-11-21 Solar cell manufacturing apparatus and solar cell manufacturing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30300395A JP3189201B2 (en) 1995-11-21 1995-11-21 Solar cell manufacturing apparatus and solar cell manufacturing method using the same

Publications (2)

Publication Number Publication Date
JPH09148603A true JPH09148603A (en) 1997-06-06
JP3189201B2 JP3189201B2 (en) 2001-07-16

Family

ID=17915774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30300395A Expired - Fee Related JP3189201B2 (en) 1995-11-21 1995-11-21 Solar cell manufacturing apparatus and solar cell manufacturing method using the same

Country Status (1)

Country Link
JP (1) JP3189201B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7615391B2 (en) 2001-03-19 2009-11-10 Shin-Etsu Chemical Co., Ltd. Solar cell and method of fabricating the same
JP2010192640A (en) * 2009-02-18 2010-09-02 Disco Abrasive Syst Ltd Method of processing semiconductor substrate
CN108305913A (en) * 2018-01-25 2018-07-20 山东大学 Silicon wafer solar cell microfabrication fluff making device and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101088280B1 (en) 2007-10-24 2011-11-30 미쓰비시덴키 가부시키가이샤 Process for manufacturing solar cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7615391B2 (en) 2001-03-19 2009-11-10 Shin-Etsu Chemical Co., Ltd. Solar cell and method of fabricating the same
JP2010192640A (en) * 2009-02-18 2010-09-02 Disco Abrasive Syst Ltd Method of processing semiconductor substrate
CN108305913A (en) * 2018-01-25 2018-07-20 山东大学 Silicon wafer solar cell microfabrication fluff making device and method

Also Published As

Publication number Publication date
JP3189201B2 (en) 2001-07-16

Similar Documents

Publication Publication Date Title
JP5853081B2 (en) Method for simultaneously cutting multiple wafers from a workpiece
TWI424580B (en) A trench processing tool, a trench processing method and a cutting device using a thin film solar cell
JPH10256581A (en) Production of solar cell
CN102490121A (en) Method for finishing V-shaped sharp angle of metal-base diamond grinding wheel by electrical discharge grinding in gas
CN86107119A (en) The production method of wafer
CN108747603A (en) The coarse-fine of non-rotating optical array integrates progressive method for grinding
JP3189201B2 (en) Solar cell manufacturing apparatus and solar cell manufacturing method using the same
JP2007030095A (en) Method for manufacturing diamond tool
JPH10217095A (en) Wire saw and work cutting method by wire saw
US6250992B1 (en) Mirror grinding method and glass lens
CN105458930A (en) Leveling and aligning device and method for point of micro abrasive particle protruding edge of rough diamond abrasion wheel
JP2003159642A (en) Work cutting method and multi-wire saw system
CN111113208A (en) Method for machining radial arc groove of guide blade of complex hollow turbine
JP2000126934A (en) Grinding tool and manufacture of solar battery thereby
EP0300224B2 (en) Strainless precision after-treatment process by radical reaction
JP2002075923A (en) Machining method of silicon single-crystal ingot
CN112549331B (en) Square silicon ingot and preparation method thereof, silicon wafer and preparation method thereof
CN113172780A (en) Scribing structure for cutting silicon carbide and online trimming method thereof
CN111558851A (en) Grinding method and grinding device
CN206169887U (en) Polishing pad trimming device
CN105575856A (en) Device for carrying out circle-cutting and chamfering on InSb
JPH11156714A (en) Diamond rotary dresser and manufacture thereof
JP7429080B1 (en) Semiconductor crystal wafer manufacturing equipment and manufacturing method
JP7013026B2 (en) Electroplating tool
JP2015504786A (en) Polishing wheel dressing method using polycrystalline CVD synthetic diamond wheel dresser and manufacturing method of polycrystalline CVD synthetic diamond wheel dresser

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees