JPH0914774A - Cool storage unit - Google Patents

Cool storage unit

Info

Publication number
JPH0914774A
JPH0914774A JP7164151A JP16415195A JPH0914774A JP H0914774 A JPH0914774 A JP H0914774A JP 7164151 A JP7164151 A JP 7164151A JP 16415195 A JP16415195 A JP 16415195A JP H0914774 A JPH0914774 A JP H0914774A
Authority
JP
Japan
Prior art keywords
regenerator
specific heat
regenerator material
content
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7164151A
Other languages
Japanese (ja)
Other versions
JP3677818B2 (en
Inventor
Wataru Yagi
木 渉 八
Masuo Yamada
田 益 雄 山
Naoto Kurita
田 直 人 栗
Uichiro Mizutani
谷 宇一郎 水
Yoshiki Hoshino
野 善 樹 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP16415195A priority Critical patent/JP3677818B2/en
Publication of JPH0914774A publication Critical patent/JPH0914774A/en
Application granted granted Critical
Publication of JP3677818B2 publication Critical patent/JP3677818B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/003Gas cycle refrigeration machines characterised by construction or composition of the regenerator

Abstract

PURPOSE: To improve the thermal storage efficiency at a specific temperature or lower by improving the specific heat at the specific temperature. CONSTITUTION: In the cool storage unit filled with cool storage material, the material is represented by Ra Agb Mc , where R is rare earth element of at least one or more types of Ce, Pr, Nd, Gd, Dy, Ho, Er and Tm, M is at least one type of element of B, Al, In, Si, Ge, Ga, Sn, Au, Mg, Zn, Pd, Pt, Re, Cs, Ir, Fe, Mn, Cr, Cd, Hg, Os, P, La and Y, the content (a) of the R is 20at%<=a<=96at%, the content (c) of the M is 5at%<=c<=25at%, and the content (b+c) of the total of the Ag and M is 5at%<=b+c<=80at%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低温で比熱の大きい蓄
冷材が充填された蓄冷器に関するもので、各種の冷凍機
に利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a regenerator filled with a regenerator material having a high specific heat at a low temperature and is used in various refrigerators.

【0002】[0002]

【従来の技術】スターリングサイクル、GM(ギフォー
ドマクマホン)サイクル、パルス管式等の各種の冷凍機
に用いられる蓄冷器には、冷凍能力の向上という点から
蓄冷材が充填されることが必須になる。この蓄冷器は、
一方向に流れる圧縮された作動ガスから熱を奪ってその
熱を蓄えると共に、反対方向に流れる膨張した作動ガス
に蓄えた熱を伝達するものである。
2. Description of the Related Art A regenerator used in various refrigerators such as a Stirling cycle, a GM (Gifford McMahon) cycle, and a pulse tube type must be filled with a regenerator material from the viewpoint of improving the refrigerating capacity. . This regenerator
The heat is taken from the compressed working gas flowing in one direction to store the heat, and the heat stored in the expanded working gas flowing in the opposite direction is transferred.

【0003】従来、蓄冷器内に充填される蓄冷材として
は、銅や鉛等の合金が多用されている。ところが、銅や
鉛からなる蓄冷材では、格子系の比熱しかもたないた
め、比熱は40K以上では大きいものの、20K以下の
極低温で過度に小さくなる。そのため、前記蓄冷材が充
填された蓄冷器を冷凍機(特に多段式の冷凍機)内で使
用した場合には、圧縮された作動ガスから充分に熱を吸
収することができず、又、膨張した作動ガスに充分に熱
を伝達することができなくなる。その結果、このような
蓄冷材が充填された蓄冷器を使用する冷凍機では、極低
温に到達させることができないという問題点があった。
Conventionally, alloys such as copper and lead are often used as the regenerator material filled in the regenerator. However, since the regenerator material made of copper or lead has only the specific heat of the lattice system, the specific heat is large at 40 K or more, but becomes excessively small at an extremely low temperature of 20 K or less. Therefore, when the regenerator filled with the regenerator material is used in a refrigerator (particularly, a multistage refrigerator), heat cannot be sufficiently absorbed from the compressed working gas, and the expansion does not occur. The heat cannot be sufficiently transferred to the working gas. As a result, a refrigerator using a regenerator filled with such a regenerator material has a problem that it cannot reach an extremely low temperature.

【0004】そこで、このような問題点を解決するため
に提案された蓄冷器としては、特開平1−310269
号公報に示されるものが知られている。その代表例とし
て、格子系の比熱だけでなくスピン系の比熱を持つEr
3 Niからなる磁性体の蓄冷材が充填された蓄冷器が開
示されている。これは、20K以下の極低温でその比熱
が銅や鉛からなる蓄冷材よりも大きいため、銅や鉛から
なる蓄冷材よりも20K以下(特に10K未満)の極低
温において蓄冷効率を向上できる。
Therefore, as a regenerator proposed in order to solve such a problem, Japanese Patent Laid-Open No. 1-310269 has been proposed.
What is shown in Unexamined-Japanese-Patent No. 2000-222 is known. As a typical example thereof, Er having not only the specific heat of the lattice system but also the specific heat of the spin system
A regenerator filled with a magnetic regenerator material made of 3 Ni is disclosed. This is because at a cryogenic temperature of 20 K or less, the specific heat thereof is larger than that of the regenerator material made of copper or lead, so that the regenerator efficiency can be improved at a cryogenic temperature of 20 K or less (particularly less than 10 K) than the regenerator material made of copper or lead.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記したE
3 Niからなる蓄冷材では、磁気変態点(即ち磁気的
状態間の相転移)が8K付近に存在することから、比熱
が10K未満で大きいものの、10〜30Kでは小さく
なる。このため、10K未満の極低温では蓄冷効率が高
くなるものの、10〜30Kで蓄冷効率が不充分であ
り、例えばHeの液化を行おうとする場合に10〜30
Kで冷却効率が悪くなり、効率良くHeを液化するには
不充分である。また、上記したEr3 Niからなる蓄冷
材では、10〜30Kの冷凍を発生する冷凍機には適用
し難いという問題点がある。
However, the above-mentioned E
In the regenerator material composed of r 3 Ni, the magnetic transformation point (that is, the phase transition between magnetic states) exists near 8K, so the specific heat is large at less than 10K, but becomes small at 10 to 30K. Therefore, although the cold storage efficiency is high at an extremely low temperature of less than 10K, the cold storage efficiency is insufficient at 10 to 30K, and for example, 10 to 30 when liquefying He is attempted.
When K is used, the cooling efficiency is deteriorated, which is insufficient to efficiently liquefy He. In addition, the above-described cool storage material made of Er 3 Ni has a problem that it is difficult to apply it to a refrigerator that generates freezing at 10 to 30K.

【0006】故に、本発明は、30K以下で比熱が大き
く、特に30K以下での蓄冷効率を向上させ得る蓄冷材
をもつ蓄冷器を提供することを、その技術的課題とする
ものである。
[0006] Therefore, it is a technical object of the present invention to provide a regenerator having a regenerator material which has a large specific heat at 30 K or less and can improve the regenerator efficiency particularly at 30 K or less.

【0007】[0007]

【課題を解決するための手段】上記技術的課題を解決す
るために本発明の請求項1において講じた技術的手段
は、蓄冷材が充填されてなる蓄冷器において、前記蓄冷
材は、次式(1) Ra Agb c ・・・(1) で表され、Rは少なくともCe,Pr,Nd,Gd,D
y,Ho,Er,Tmの1種又は2種以上である希土類
元素であり、MはB,Al,In,Si,Ge,Ga,
Sn,Au,Mg,Zn,Pd,Pt,Re,Cs,I
r,Fe,Mn,Cr,Cd,Hg,Os,P,La,
Yの内の少なくとも1種の元素であり、前記Rの含有率
aは20at%≦a≦95at%であり、前記Mの含有
率cは5at%≦c≦25at%であり、Agと前記M
との合計の含有率b+cは5at%<b+c≦80at
%であることを特徴とする蓄冷器としたことである。
In order to solve the above technical problems, the technical means taken in claim 1 of the present invention is a regenerator filled with a regenerator material, wherein the regenerator material has the following formula: (1) R a Ag b M c ... Represented by (1), R is at least Ce, Pr, Nd, Gd, D
It is a rare earth element which is one or more of y, Ho, Er and Tm, and M is B, Al, In, Si, Ge, Ga,
Sn, Au, Mg, Zn, Pd, Pt, Re, Cs, I
r, Fe, Mn, Cr, Cd, Hg, Os, P, La,
It is at least one element of Y, the content a of R is 20 at% ≦ a ≦ 95 at%, the content c of M is 5 at% ≦ c ≦ 25 at%, and Ag and M are the same.
And the total content b + c is 5 at% <b + c ≦ 80 at
It is a regenerator characterized by being%.

【0008】上記技術的課題を解決するために本発明の
請求項2において講じた技術的手段は、蓄冷材が充填さ
れてなる蓄冷器において、前記蓄冷材は、次式(2) Ra Agb C ・・・(2) で表され、Rは少なくともCe,Pr,Nd,Gd,D
y,Ho,Er,Tmの1種又は2種以上である希土類
元素であり、MはSb,Bi,Te,Zr,Tiの内の
少なくとも1種の元素であり、前記Rの含有率aは20
at%≦a≦95at%であり、前記Mの含有率cは0
at%<c≦25at%であり、Agと前記Mとの合計
の含有率b+cは5at%≦b+c≦80at%である
ことを特徴とする蓄冷器としたことである。
In order to solve the above technical problems, the technical means taken in claim 2 of the present invention is a regenerator filled with a regenerator material, wherein the regenerator material is represented by the following formula (2) Ra Ag. b M C ... (2), R is at least Ce, Pr, Nd, Gd, D
y, Ho, Er, Tm is one or more rare earth elements, M is at least one element of Sb, Bi, Te, Zr and Ti, and the content a of R is 20
at% ≦ a ≦ 95 at%, and the content c of M is 0.
At% <c ≤ 25 at%, and the total content b + c of Ag and M is 5 at% ≤ b + c ≤ 80 at%.

【0009】[0009]

【作用】上記第1の技術的手段における蓄冷材は、30
K以下で比熱のピークを有することが確認されている。
これは、磁気変態点が30K以下の範囲にあるためと考
えられるが、このことにより30K以下での蓄冷効率が
向上する。
The regenerator material in the first technical means is 30
It has been confirmed to have a peak of specific heat at K or less.
It is considered that this is because the magnetic transformation point is in the range of 30K or lower, which improves the cold storage efficiency at 30K or lower.

【0010】上記第2の技術的手段における蓄冷材は、
30K以下で比熱のピークを有することが確認されてい
る。これは、磁気変態点が30K以下の範囲にあるため
と考えられるが、このことにより30K以下での蓄冷効
率が向上する。
The regenerator material in the second technical means is
It has been confirmed that it has a specific heat peak at 30 K or less. It is considered that this is because the magnetic transformation point is in the range of 30K or lower, which improves the cold storage efficiency at 30K or lower.

【0011】[0011]

【実施例】以下に本発明の実施例を示す。Examples of the present invention will be described below.

【0012】本実施例は、Er−Ag−Ga系合金及び
Er−Ag−Ti系合金を主成分とする蓄冷材に関する
ものである。
This embodiment relates to a regenerator material containing Er-Ag-Ga-based alloy and Er-Ag-Ti-based alloy as main components.

【0013】まず、Er−Ag−Ga系合金からなる蓄
冷材について説明する。
First, a regenerator material made of Er-Ag-Ga alloy will be described.

【0014】Erブロック6.253g(50at
%)、Agブロック3.226g(40at%)、Ga
ブロック0.521g(10at%)をアーク溶解炉に
配置し、アーク溶解炉を真空吸引した後、アルゴンガス
にて置換する。その後、アーク溶解してEr50Ag40
10からなる蓄冷材を製造し、5×5×7mmに切断す
る。
Er block 6.253 g (50 at)
%), Ag block 3.226 g (40 at%), Ga
0.521 g (10 at%) of a block is placed in an arc melting furnace, the arc melting furnace is vacuumed, and then replaced with argon gas. After that, arc melting and Er 50 Ag 40 G
A regenerator material consisting of a 10 is manufactured and cut into 5 × 5 × 7 mm.

【0015】次に、上記の如く製造した蓄冷材の比熱を
Ge温度計を用いて断熱法により略3〜30Kで測定し
た。ここで、断熱法とは、断熱条件下で試料(ここでは
インゴッド)にジュール熱ΔQを加えたときの温度変化
ΔTを測定して、ジュール熱ΔQを温度変化ΔTで割っ
た値を比熱ΔCとする方法である。この比熱測定結果を
図1に実施例1として示す。図1には、上記組成の配合
比を変えて同様に製造したEr50Ag42Ga8 (実施例
2)、Er50Ag39Ga11(実施例3)、の比熱測定結
果、従来のEr3 Ni(従来例1)、Pb(従来例
2)、Er50Ag50(参考例)の比熱測定結果も合わせ
て示す。
Next, the specific heat of the regenerator material manufactured as described above was measured at about 3 to 30 K by the adiabatic method using a Ge thermometer. Here, the adiabatic method is to measure the temperature change ΔT when Joule heat ΔQ is applied to a sample (here, ingot) under adiabatic conditions, and divide the Joule heat ΔQ by the temperature change ΔT to obtain the specific heat ΔC. Is the way to do it. The specific heat measurement result is shown as Example 1 in FIG. FIG. 1 shows the specific heat measurement results of Er 50 Ag 42 Ga 8 (Example 2) and Er 50 Ag 39 Ga 11 (Example 3), which were produced in the same manner by changing the composition ratio of the above composition, and the conventional Er 3 The specific heat measurement results of Ni (conventional example 1), Pb (conventional example 2), and Er 50 Ag 50 (reference example) are also shown.

【0016】図1から明らかなように、実施例の蓄冷材
と、Er3 Niを用いた蓄冷材(従来例1)及びPbを
用いた蓄冷材(従来例2)とを比較すると、Er50Ag
39Ga11では3〜25Kの測定域全域において比熱が大
きくなっていることが認められ、またEr50Ag40Ga
10においても8〜25Kの範囲において、比熱が大きく
なっていることが認められる。またEr50Ag50と本実
施例とを比較すると、Gaの含有量が増加するに従い、
比熱のピークは低温側へ移行する傾向が認めら^る。こ
の原因は必ずしも明らかでないが、以下のように考えら
れる。
As is apparent from FIG. 1, when the regenerator material of the embodiment is compared with the regenerator material using Er 3 Ni (conventional example 1) and the regenerator material using Pb (conventional example 2), Er 50 Ag
With 39 Ga 11 , it was observed that the specific heat increased over the entire measurement range of 3 to 25 K, and Er 50 Ag 40 Ga
It is recognized that in 10 as well, the specific heat is large in the range of 8 to 25K. Further, comparing Er 50 Ag 50 with this example, as the content of Ga increases,
The specific heat peak tends to shift to the low temperature side. The cause of this is not clear, but it is considered as follows.

【0017】即ち、Er50Ag40Ga10は、Er50Ag
50のAgを一部Gaで置き換えたものであり、またGa
は非磁性体であることからして磁気的な相互作用が大き
く変化することは考え難いが、AgをGaに置き換える
量が増加するに従い格子定数が小さくなることが判明し
ている。重希土類系の合金において格子定数が小さくな
るにつれ、磁気変態温度が低下する傾向が一般的にあ
り、この影響によってGaの含有量が増加するに従い比
熱のピークが低温側に移行するものと考えられる。
That is, Er 50 Ag 40 Ga 10 is Er 50 Ag
50 Ag is partially replaced by Ga.
Since it is a non-magnetic substance, it is difficult to think that the magnetic interaction changes greatly, but it has been found that the lattice constant becomes smaller as the amount of Ag replaced by Ga increases. In the heavy rare earth alloys, the magnetic transformation temperature generally tends to decrease as the lattice constant becomes smaller, and it is considered that due to this effect, the specific heat peak shifts to the low temperature side as the Ga content increases. .

【0018】図2は、Er50Ag50-YY (X:Ge,
Ga,Al)で示される合金で、Xの置換量Yを変えて
比熱ピークを示す温度を測定したものをグラフ上に示し
たものである。これによると、置換量Yが5at%以上
の領域では比熱ピークを示す温度が低下することがわか
る。また置換量Yが25at%以上のものである場合は
5K以下に比熱のピークが移行し、しかもピーク比熱が
小さくなてしまう傾向にあるため、十分な蓄冷材とはし
がたい。従って、30K以下において比熱ピークを有
し、この温度範囲で蓄冷効率を向上させるためには、X
の置換量を5〜25at%とすることが望ましい。
FIG. 2 shows that Er 50 Ag 50-Y XY (X: Ge,
Ga, Al), which is an alloy represented by Ga and Al) and whose temperature at which a specific heat peak is measured by changing the substitution amount Y of X is shown on the graph. According to this, it can be seen that the temperature at which the specific heat peak appears decreases in the region where the substitution amount Y is 5 at% or more. Further, when the substitution amount Y is 25 at% or more, the peak of the specific heat tends to shift to 5 K or less, and the peak specific heat tends to be small, so that it is difficult to obtain a sufficient regenerator material. Therefore, in order to improve the cold storage efficiency in this temperature range, there is a specific heat peak at 30 K or below.
It is desirable to set the substitution amount of 5 to 25 at%.

【0019】次に、Er−Ag−Ti系合金からなる蓄
冷材について説明する。
Next, the regenerator material composed of Er-Ag-Ti alloy will be described.

【0020】Erブロック6.125g(50at
%)、Agブロック3.607g(45at%)、Ti
ブロック0.178g(5at%)をアーク溶解炉に配
置し、アーク溶解炉を真空吸引した後、アルゴンガスに
て置換する。その後、アーク溶解してEr50Ag45Ti
5 からなる蓄冷材を製造し、5×5×7mmに切断す
る。
Er block 6.125 g (50 at)
%), Ag block 3.607 g (45 at%), Ti
0.178 g (5 at%) of a block is placed in an arc melting furnace, the arc melting furnace is vacuumed, and then replaced with argon gas. After that, arc melting and Er 50 Ag 45 Ti
A regenerator material consisting of 5 is manufactured and cut into 5 × 5 × 7 mm.

【0021】比熱の測定方法については、上記Er−A
g−Ga系合金の場合と同様であるため、説明を省略す
る。
As to the method for measuring the specific heat, the above-mentioned Er-A is used.
The description is omitted because it is similar to the case of the g-Ga alloy.

【0022】第3図に上記方法により作製したEr50
45Ti5 の比熱特性(実施例4)を、従来のEr3
i(従来例1)、Pb(従来例2)と共に示す。図3に
おいて、実施例4と従来例1とを比較すると、11〜2
5Kの領域にて比熱が大きくなっていること認められ、
また従来例2と比較すると、3〜25Kの測定域全域に
おいて比熱が大きくなっていることが認められる。Er
−Agに対するTiの添加効果が実施例1,2,3のG
aの添加効果と同様にあるものと考えられる。
FIG. 3 shows the Er 50 A prepared by the above method.
g 45 Ti 5 specific heat properties (Example 4), a conventional Er 3 N
i (conventional example 1) and Pb (conventional example 2) are shown. In FIG. 3, comparing Example 4 with Conventional Example 1, 11 to 2
It was recognized that the specific heat was large in the 5K region,
Further, as compared with Conventional Example 2, it is recognized that the specific heat is large in the entire measurement range of 3 to 25K. Er
-The effect of adding Ti to Ag is G in Examples 1, 2, and 3.
It is considered to have the same effect as the addition effect of a.

【0023】〔従来例1〕Erブロック8.95g(7
5at%)とNiブロック1.05g(25at%)と
をアーク溶解炉に配置したこと以外は、実施例と同様で
ある。ここで、従来例1の蓄冷材は、Er3 Ni(磁気
変態点8K)であり、その比熱を実施例1と同様に測定
し、その測定結果を実施例による合金と同時に図1に示
す。
[Conventional Example 1] Er block 8.95 g (7
5 at%) and Ni block 1.05 g (25 at%) were placed in the arc melting furnace, and the same as the example. Here, the regenerator material of Conventional Example 1 was Er 3 Ni (magnetic transformation point 8K), and its specific heat was measured in the same manner as in Example 1, and the measurement results are shown in FIG.

【0024】図1から明らかなように、従来例1の蓄冷
材は、8K以下での比熱は大きいが、8K以上での比熱
は実施例と比較して小さくなっている。これは、Er3
Niの磁気変態点が8Kに存在し、比熱のピークが7K
付近に存在するためであると考えられる。
As is apparent from FIG. 1, the regenerator material of Conventional Example 1 has a large specific heat at 8 K or less, but the specific heat at 8 K or more is smaller than that of the embodiment. This is Er 3
The magnetic transformation point of Ni exists at 8K and the peak of specific heat is 7K.
It is thought to be because it exists in the vicinity.

【0025】〔従来例2〕Pb10gを溶解して蓄冷材
を製造したもので、この蓄冷材の比熱を実施例1と同様
に測定し、その測定結果を実施例による合金と同時に図
1に示す。
[Conventional Example 2] A regenerator material was manufactured by melting 10 g of Pb. The specific heat of this regenerator material was measured in the same manner as in Example 1, and the measurement results are shown in FIG. .

【0026】図1から明らかなように、従来例2の蓄冷
材は、25K以下での比熱は実施例と比較して小さくな
っている。これは、格子振動に基づく格子系の比熱が温
度降下と共に著しく低下すると共にスピン系の比熱をも
たないためであると考えられる。
As is apparent from FIG. 1, the specific heat of the regenerator material of Conventional Example 2 at 25 K or less is smaller than that of the embodiment. It is considered that this is because the specific heat of the lattice system due to the lattice vibration is remarkably lowered with the temperature drop and does not have the specific heat of the spin system.

【0027】尚実施例に係る蓄冷材が充填された蓄冷器
は、30K以下の冷凍を発生するスターリングサイク
ル,GMサイクル,パルス管式の各種の冷凍機に適用で
きる。
The regenerator filled with the regenerator material according to the embodiment can be applied to various Stirling cycle, GM cycle, and pulse tube type refrigerators that generate refrigeration at 30K or less.

【0028】又、多段冷凍機の温度に合わせて、各段に
用いることも可能である。
It is also possible to use each stage according to the temperature of the multistage refrigerator.

【0029】[0029]

【発明の効果】本発明は、以下の如く効果を有する。The present invention has the following effects.

【0030】本発明の請求項1によれば、蓄冷材を、次
式(1) Ra Agb c ・・・(1) で表され、Rは少なくともCe,Pr,Nd,Gd,D
y,Ho,Er,Tmの1種又は2種以上である希土類
元素であり、MはB,Al,In,Si,Ge,Ga,
Sn,Au,Mg,Zn,Pd,Pt,Re,Cs,I
r,Fe,Mn,Cr,Cd,Hg,Os,P,La,
Yの内の少なくとも1種の元素であり、前記Rの含有率
aは20at%≦a≦95at%であり、前記Mの含有
率cは5at%≦c≦25at%であり、Agと前記M
との合計の含有率b+cは5at%<b+c≦80at
%であるものとした。このため、30K以下での蓄冷効
率を向上させることができ、極低温に到達可能な蓄冷器
を提供することができ、また30K以下の冷凍を発生す
る冷凍機に適用可能となる。
According to claim 1 of the [0030] present invention, the cold storage material, represented by the following formula (1) R a Ag b M c ··· (1), R is at least Ce, Pr, Nd, Gd, D
It is a rare earth element which is one or more of y, Ho, Er and Tm, and M is B, Al, In, Si, Ge, Ga,
Sn, Au, Mg, Zn, Pd, Pt, Re, Cs, I
r, Fe, Mn, Cr, Cd, Hg, Os, P, La,
It is at least one element of Y, the content a of R is 20 at% ≦ a ≦ 95 at%, the content c of M is 5 at% ≦ c ≦ 25 at%, and Ag and M are the same.
And the total content b + c is 5 at% <b + c ≦ 80 at
%. Therefore, the cold storage efficiency at 30 K or less can be improved, a regenerator capable of reaching a cryogenic temperature can be provided, and it can be applied to a refrigerator that generates refrigeration at 30 K or less.

【0031】本発明の請求項2によれば、蓄冷材を、次
式(2) Ra Agb C ・・・(2) で表され、Rは少なくともCe,Pr,Nd,Gd,D
y,Ho,Er,Tmの1種又は2種以上である希土類
元素であり、MはSb,Bi,Te,Zr,Tiの内の
少なくとも1種の元素であり、前記Rの含有率aは20
at%≦a≦95at%であり、前記Mの含有率cは0
at%<c≦25at%であり、Agと前記Mとの合計
の含有率b+cは5at%≦b+c≦80at%である
ものとした。このため、30K以下での蓄冷効率を向上
させることができ、極低温に到達可能な蓄冷器を提供す
ることができ、また30K以下の冷凍を発生する冷凍機
に適用可能となる。
According to claim 2 of the present invention, the regenerator material is represented by the following formula (2): Ra ag b M C (2), where R is at least Ce, Pr, Nd, Gd, D.
y, Ho, Er, Tm is one or more rare earth elements, M is at least one element of Sb, Bi, Te, Zr and Ti, and the content a of R is 20
at% ≦ a ≦ 95 at%, and the content c of M is 0.
It is assumed that at% <c ≦ 25 at% and the total content b + c of Ag and M is 5 at% ≦ b + c ≦ 80 at%. Therefore, the cold storage efficiency at 30 K or less can be improved, a regenerator that can reach a cryogenic temperature can be provided, and it can be applied to a refrigerator that generates refrigeration at 30 K or less.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1、2、3及び従来例1、2、
参考例の低温での比熱特性を示すグラフである。
FIG. 1 is a first example of the present invention, a second example, and a third example of the related art.
It is a graph which shows the specific heat characteristic in the low temperature of a reference example.

【図2】本発明の請求項1に係る合金において、添加物
の配合比率を変えて比熱ピークを示す温度を測定したも
のをグラフ上に示したものである。
FIG. 2 is a graph showing an alloy according to claim 1 of the present invention, in which a temperature at which a specific heat peak is measured by changing a compounding ratio of an additive.

【図3】本発明の実施例4及び従来例1、2の低温での
比熱特性を示すグラフである。
FIG. 3 is a graph showing the specific heat characteristics at low temperature of Example 4 of the present invention and Conventional Examples 1 and 2.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水 谷 宇一郎 愛知県名古屋市南区外山2丁目12−6 (72)発明者 星 野 善 樹 愛知県丹羽郡扶桑町高木473 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Uichiro Mizutani 2-6-6 Sotoyama, Minami-ku, Aichi Prefecture Nagoya City (72) Inventor Yoshiki Hoshino 473 Takagi, Fuso-cho, Niwa-gun, Aichi Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 蓄冷材が充填されてなる蓄冷器におい
て、 前記蓄冷材は、次式(1) Ra Agb c ・・・(1) で表され、Rは少なくともCe,Pr,Nd,Gd,D
y,Ho,Er,Tmの1種又は2種以上である希土類
元素であり、MはB,Al,In,Si,Ge,Ga,
Sn,Au,Mg,Zn,Pd,Pt,Re,Cs,I
r,Fe,Mn,Cr,Cd,Hg,Os,P,La,
Yの内の少なくとも1種の元素であり、前記Rの含有率
aは20at%≦a≦95at%であり、前記Mの含有
率cは5at%≦c≦25at%であり、Agと前記M
との合計の含有率b+cは5at%<b+c≦80at
%であることを特徴とする蓄冷器。
1. A regenerator filled with a regenerator material, wherein the regenerator material is represented by the following formula (1) R a Ag b M c (1), and R is at least Ce, Pr, Nd. , Gd, D
It is a rare earth element which is one or more of y, Ho, Er and Tm, and M is B, Al, In, Si, Ge, Ga,
Sn, Au, Mg, Zn, Pd, Pt, Re, Cs, I
r, Fe, Mn, Cr, Cd, Hg, Os, P, La,
It is at least one element of Y, the content a of R is 20 at% ≦ a ≦ 95 at%, the content c of M is 5 at% ≦ c ≦ 25 at%, and Ag and M are the same.
And the total content b + c is 5 at% <b + c ≦ 80 at
A regenerator characterized by being%.
【請求項2】 蓄冷材が充填されてなる蓄冷器におい
て、 前記蓄冷材は、次式(2) Ra Agb C ・・・(2) で表され、Rは少なくともCe,Pr,Nd,Gd,D
y,Ho,Er,Tmの1種又は2種以上である希土類
元素であり、MはSb,Bi,Te,Zr,Tiの内の
少なくとも1種の元素であり、前記Rの含有率aは20
at%≦a≦95at%であり、前記Mの含有率cは0
at%<c≦25at%であり、Agと前記Mとの合計
の含有率b+cは5at%≦b+c≦80at%である
ことを特徴とする蓄冷器。
2. A regenerator filled with a regenerator material, wherein the regenerator material is represented by the following formula (2) R a Ag b M C (2), and R is at least Ce, Pr, Nd. , Gd, D
y, Ho, Er, Tm is one or more rare earth elements, M is at least one element of Sb, Bi, Te, Zr and Ti, and the content a of R is 20
at% ≦ a ≦ 95 at%, and the content c of M is 0.
The regenerator characterized in that at% <c ≦ 25 at% and the total content b + c of Ag and M is 5 at% ≦ b + c ≦ 80 at%.
JP16415195A 1995-06-29 1995-06-29 Regenerator Expired - Fee Related JP3677818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16415195A JP3677818B2 (en) 1995-06-29 1995-06-29 Regenerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16415195A JP3677818B2 (en) 1995-06-29 1995-06-29 Regenerator

Publications (2)

Publication Number Publication Date
JPH0914774A true JPH0914774A (en) 1997-01-17
JP3677818B2 JP3677818B2 (en) 2005-08-03

Family

ID=15787717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16415195A Expired - Fee Related JP3677818B2 (en) 1995-06-29 1995-06-29 Regenerator

Country Status (1)

Country Link
JP (1) JP3677818B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004225920A (en) * 2002-11-27 2004-08-12 Aisin Seiki Co Ltd Cool accumulator
JP2017058079A (en) * 2015-09-17 2017-03-23 株式会社東芝 Cold storage material for cryogenic refrigeration machine, cryogenic regenerator, cold storage type cryogenic refrigeration machine and system with cryogenic cold storage type cryogenic refrigeration machine
US10101061B2 (en) 2016-08-19 2018-10-16 Kabushiki Kaisha Toshiba Cryogenic regenerator material, regenerative cryocooler, and system including regenerative cryocooler
WO2020067356A1 (en) 2018-09-28 2020-04-02 株式会社東芝 Cold storage material, refrigerator, device incorporating superconducting coil, and method of manufacturing cold storage material
WO2022039150A1 (en) * 2020-08-18 2022-02-24 株式会社 東芝 Cold storage material particles, cold storage device, refrigerating machine, cryopump, superconducting magnet, nuclear magnetic resonance imaging apparatus, nuclear magnetic resonance apparatus, magnetic field application type single crystal pulling apparatus, and mehod for producing cold storage material particles

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004225920A (en) * 2002-11-27 2004-08-12 Aisin Seiki Co Ltd Cool accumulator
JP2017058079A (en) * 2015-09-17 2017-03-23 株式会社東芝 Cold storage material for cryogenic refrigeration machine, cryogenic regenerator, cold storage type cryogenic refrigeration machine and system with cryogenic cold storage type cryogenic refrigeration machine
US10393412B2 (en) 2015-09-17 2019-08-27 Kabushiki Kaisha Toshiba Cryocooler regenerator material, cryogenic regenerator, regenerative cryocooler and system comprising regenerative cryocooler
US10101061B2 (en) 2016-08-19 2018-10-16 Kabushiki Kaisha Toshiba Cryogenic regenerator material, regenerative cryocooler, and system including regenerative cryocooler
WO2020067356A1 (en) 2018-09-28 2020-04-02 株式会社東芝 Cold storage material, refrigerator, device incorporating superconducting coil, and method of manufacturing cold storage material
WO2022039150A1 (en) * 2020-08-18 2022-02-24 株式会社 東芝 Cold storage material particles, cold storage device, refrigerating machine, cryopump, superconducting magnet, nuclear magnetic resonance imaging apparatus, nuclear magnetic resonance apparatus, magnetic field application type single crystal pulling apparatus, and mehod for producing cold storage material particles

Also Published As

Publication number Publication date
JP3677818B2 (en) 2005-08-03

Similar Documents

Publication Publication Date Title
US9383125B2 (en) Magnetic material for magnetic refrigeration
EP0327293B1 (en) USE OF A MAGNETIC MATERIAL, AMz
US7063754B2 (en) Magnetic material for magnetic refrigeration and method for producing thereof
Korte et al. The correlation of the magnetic properties and the magnetocaloric effect in (Gd 1− x Er x) NiAl alloys
Sahashi et al. New magnetic material R 3 T system with extremely large heat capacities used as heat regenerators
JPH0914774A (en) Cool storage unit
EP0882938B1 (en) Regenerator material for very low temperature use
EP0777089A1 (en) Cold heat accumulating material for extremely low temperatures and cold heat accumulator for extremely low temperatures using the same
EP0947785B1 (en) Cold-accumulating material and cold-accumulating refrigerator
KR0142859B1 (en) Amorphous Refrigerant
Foldeaki et al. Development of intermetallic compounds for use as magnetic refrigerators or regenerators
JP3265821B2 (en) Regenerator
US5462610A (en) Lanthanide Al-Ni base Ericsson cycle magnetic refrigerants
US6334909B1 (en) Cold-accumulating material and cold-accumulating refrigerator using the same
JP2923705B2 (en) Cold storage material
JP2004225920A (en) Cool accumulator
JP3327161B2 (en) Regenerator
JP3292005B2 (en) Regenerator
JPH08178443A (en) Cold heat accumulator
Canepa et al. Magnetocaloric properties of Gd/sub 7/Pd/sub 3/and related intermetallic compounds
JPS6230829A (en) Working substance for magnetic refrigeration and its production
JP3122214B2 (en) Cool storage material and refrigerator
JP2004143341A (en) Cold storage material and cold storage type refrigerator using the same
JPS6073267A (en) Refrigerator
JP2837795B2 (en) Cryogenic regenerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050502

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees