JPH09146622A - Method and device for generating track of robot - Google Patents

Method and device for generating track of robot

Info

Publication number
JPH09146622A
JPH09146622A JP32220195A JP32220195A JPH09146622A JP H09146622 A JPH09146622 A JP H09146622A JP 32220195 A JP32220195 A JP 32220195A JP 32220195 A JP32220195 A JP 32220195A JP H09146622 A JPH09146622 A JP H09146622A
Authority
JP
Japan
Prior art keywords
continuation
time
point
teaching point
trajectory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32220195A
Other languages
Japanese (ja)
Inventor
Masahiro Ooto
雅裕 大音
Hisashi Kinoshita
久 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP32220195A priority Critical patent/JPH09146622A/en
Publication of JPH09146622A publication Critical patent/JPH09146622A/en
Pending legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

PROBLEM TO BE SOLVED: To transform a bent track of the tip of a robot arm on a teaching point into a smoothly curved track and to generate the transformed track. SOLUTION: A teaching track (x) passing teaching points P1 to P3 is transformed into a smooth continuous track x0 passing the teaching point P2 by continuation processing based upon a specified continuous function. Then the track x0 is transformed into a corrected continuous track xi which passed smoothly the inside of the teaching point P2 by continuation correcting processing based upon a correcting continuous function. In the continuation processing, inner division points between the time change waveforms q1 , q2 of respective axes of the robot and extended time change waveforms qn1 , qn2 extended from the contact of the waveforms q1 , q2 are found by a smooth S-shaped continuation function between continuation start time Ts and continuation end time Te which are set up at an equal time interval from the teaching point P2 to obtain the continuation time change waveforms (q) of respective axes and a robot track corresponding to the operation of the axes is set up as the continuation track.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、入力された教示点
の間を補間して目標軌道を生成するロボットの軌道生成
方法と軌道生成装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a trajectory generating method and a trajectory generating apparatus for a robot that interpolates between input teaching points to generate a target trajectory.

【0002】[0002]

【従来の技術】近年、ロボットがいろいろな作業現場で
活用されているが、その動作の円滑さと高速性が重要で
ある。
2. Description of the Related Art In recent years, robots have been used in various work sites, but smooth operation and high speed are important.

【0003】以下、従来のロボットの軌道生成装置につ
いて説明する。ロボットが指定された作業を実行するた
めに通過する軌道は、通過すべき複数個の教示点が操作
者によってあらかじめ登録され、その教示点の間の通過
点を直線や円弧、放物線などで補間することにより決定
される。この教示点の情報を与える教示点データは、教
示点の位置、姿勢の座標と、その教示点間を通過する速
度などを指定している。
A conventional robot trajectory generation device will be described below. In the trajectory that the robot passes through to perform the specified work, a plurality of teaching points to be passed are registered in advance by the operator, and the passing points between the teaching points are interpolated by straight lines, arcs, parabolas, etc. It is decided by. The teaching point data giving the information of the teaching point specifies the position and the attitude coordinate of the teaching point, the speed of passing between the teaching points, and the like.

【0004】1つの教示点からつぎの教示点までの間を
単純に直線運動させる場合には、教示点を結ぶ直線軌道
を教示点間の補間演算により求める。また、3つの教示
点間を直線で移動する場合には、折れ線の折れ角が大き
い場合に折れ線の節点で先端部の速度が方向変換による
加速度で大きく変化するため、先端振動発生の原因とな
る。また、折れ点を通過するときのロボットの関節軸に
は大きな加速度が作用するため、減速機などロボットの
構成部品の寿命の短縮や破壊などの原因となる。
In the case of simply making a linear motion from one teaching point to the next teaching point, a linear trajectory connecting the teaching points is obtained by interpolation calculation between the teaching points. Further, when moving linearly between the three teaching points, when the bending angle of the polygonal line is large, the speed of the tip portion at the node of the polygonal line greatly changes due to the acceleration due to the direction change, which causes the occurrence of tip vibration. . In addition, since a large acceleration acts on the joint axis of the robot when passing through the break point, it shortens the service life of the robot components such as the reducer or causes damage.

【0005】このような問題を回避するため、折れ線の
折れ点でロボットを一旦停止させる手段や、特開平1−
27443号公報および特開平4−111006号公報
が開示しているように、折れ線の折れ点を経由せず、折
れ線を構成する2つの線分を滑らかな曲線で接続して節
点を内周りする軌道を生成する手段などがある。
In order to avoid such a problem, means for temporarily stopping the robot at the break point of the broken line, and Japanese Patent Laid-Open No.
As disclosed in Japanese Unexamined Patent Publication No. 27443 and Japanese Unexamined Patent Application Publication No. 4-111006, a track that does not pass through a break point of a broken line but connects two line segments that form the broken line with a smooth curve and goes around a node There is a means for generating.

【0006】[0006]

【発明が解決しようとする課題】このような従来のロボ
ットの軌道生成装置において、折れ線の折れ点で一旦停
止するように動作させる手段では、一定の速度で連続的
に動作させる場合のおよそ2倍の動作時間を必要とす
る。
In such a conventional robot trajectory generating apparatus, the means for temporarily stopping at the break point of the polygonal line is about twice as long as the case of continuously operating at a constant speed. Need operating time.

【0007】また、折れ線の折れ点を内周りする軌道で
動作させる手段では、教示点に挟まれた補間区間ごとに
移動速度が定めらているため、教示点の前後で指定速度
が異なる場合には速度に不連続変化が発生し、振動発生
の原因となる。
Further, in the means for operating on the path that goes around the break point of the broken line, the moving speed is determined for each interpolation section sandwiched between the teach points, so that when the specified speed is different before and after the teach point. Causes discontinuous change in speed, which causes vibration.

【0008】本発明は上記の課題を解決するもので、教
示点での各軸の角度変化を円滑にし、また、動作時間を
短縮できるロボットの軌道生成方法と軌道生成装置を提
供することを目的とする。
The present invention solves the above problems, and an object of the present invention is to provide a trajectory generating method and a trajectory generating apparatus for a robot that can smoothly change the angle of each axis at a teaching point and shorten the operation time. And

【0009】[0009]

【課題を解決するための手段】請求項1に係わる本発明
は、ロボットの先端部が移動する軌道の基準を与える教
示点と、その教示点に基づく軌道形状を指定する移動命
令と、前記軌道上を前記先端部が移動する速度を指定す
る移動速度と、前記教示点と前記軌道との間の誤差の最
大値を指定する許容経路誤差とを備えた教示点データに
より指定される教示軌道上の連続した第1教示点、第2
教示点、および第3教示点について、前記教示点データ
で指定された軌道形状と移動速度とに従う補間演算によ
り、前記第1教示点から前記第3教示点までの移動に対
応するロボット各軸の角度の時間変化波形と移動時間と
を求めるとともに、前記移動時間に基づいて前記第2教
示点の前に連続化開始時点、後に連続化終了時点と称す
通過時点をそれぞれ前記第2教示点から等時間離れた時
点に設定し、前記第1教示点から前記第2教示点への移
動に対応する前記ロボット各軸の第1時間変化波形に第
2教示点で接して前記連続化終了時点まで線形に変化す
る線分で与えられる第1延長時間変化波形と、前記第2
教示点から前記第3教示点への移動に対応する前記ロボ
ット各軸の第2時間変化波形に第2教示点で接して前記
連続化開始時点まで線形に変化する線分で与えられる第
2延長時間変化波形とを求め、前記第1時間変化波形と
前記第2延長時間変化波形との内分点と、前記第2時間
変化波形と前記第1延長時間変化波形との内分点とを所
定の連続化関数による内分比により求め、前記連続化関
数は前記連続化開始時点で内分比を0、前記連続化終了
時点で内分比を1として与えるS字状の滑らかな関数と
することにより、前記連続化開始時点から前記連続化終
了時点まで前記内分点が与えるロボット各軸の角度によ
る前記ロボットの移動軌道を、前記第2教示点を滑らか
に通過するとともに前記教示軌道に滑らかに接続される
連続化軌道とするロボットの軌道生成方法である。
According to a first aspect of the present invention, there is provided a teaching point which gives a reference of a trajectory along which a tip of a robot moves, a movement command for designating a trajectory shape based on the teaching point, and the trajectory. On a teaching trajectory specified by teaching point data, which includes a moving speed that specifies the speed at which the tip moves above, and an allowable path error that specifies the maximum value of the error between the teaching point and the trajectory. Continuous first teaching point, second
With respect to the teaching point and the third teaching point, by interpolation calculation according to the trajectory shape and the moving speed designated by the teaching point data, each robot axis corresponding to the movement from the first teaching point to the third teaching point The time change waveform of the angle and the moving time are obtained, and based on the moving time, a passing time point called a continuation start time point before the second teaching point and a continuation end time point after the second teaching point are respectively set from the second teaching point. It is set at a time point separated by time, and the first time-varying waveform of each axis of the robot corresponding to the movement from the first teaching point to the second teaching point is in contact with the second teaching point at the second teaching point and linearized until the continuation end point. A first extension time change waveform given by a line segment that changes to
A second extension given by a line segment that touches the second time-varying waveform of each axis of the robot corresponding to the movement from the teaching point to the third teaching point at the second teaching point and linearly changes until the continuation start time point. A time-varying waveform is obtained, and an internal division point between the first time-varying waveform and the second extension time-varying waveform and an internal division point between the second time-varying waveform and the first extension time-varying waveform are predetermined. Is calculated by the internal division ratio of the continuous function of S, and the continuous function is an S-shaped smooth function that gives an internal ratio of 0 at the start of the continuation and 1 at the end of the continuation. As a result, the movement trajectory of the robot according to the angle of each robot axis given by the internal division point from the continuation start time to the continuation end time passes smoothly through the second teaching point and the teaching trajectory. To be a continuous orbit connected to It is a trajectory generation method of bot.

【0010】これにより、生成された連続化軌道は第2
教示点を滑らかに通過する曲線になる。また、請求項2
に係わる本発明は、第2教示点における第1時間変化波
形と第2時間変化波形との勾配変化率と所定の連続化補
正関数とに基づく連続化補正量を内分点に加算してロボ
ット各軸の補正連続化時間変化波形の値とし、前記各軸
の補正連続化時間変化波形に対応するロボット軌道が、
第2教示点を内周りするとともに、教示軌道に滑らかに
接続される補正連続化軌道とする請求項1に係わるロボ
ットの軌道生成方法である。
As a result, the continuous trajectory generated is the second
It becomes a curve that smoothly passes the teaching point. Claim 2
The present invention relates to a robot which adds a continuation correction amount based on a slope change rate of a first time change waveform and a second time change waveform at a second teaching point and a predetermined continuation correction function to an internally dividing point. The value of the correction continuous time change waveform of each axis, the robot trajectory corresponding to the correction continuous time change waveform of each axis,
The trajectory generation method for a robot according to claim 1, wherein a corrected continuous trajectory is provided that goes around the second teaching point and is smoothly connected to the teaching trajectory.

【0011】これにより、生成された補正連続化軌道は
第2教示点の内側を滑らかに通過する曲線となる。ま
た、請求項3に係わる本発明は、連続化開始時点と連続
化終了時点とで0、第2教示点通過時点で最大値をとる
滑らかな関数を連続化補正関数とし、第2教示点におけ
る第1時間変化波形と第2時間変化波形との勾配変化率
で重み付けした値を連続化補正量とする請求項2に係わ
るロボットの軌道生成方法である。
As a result, the generated corrected continuous trajectory becomes a curve that smoothly passes inside the second teaching point. In the present invention according to claim 3, a smooth function having 0 at the continuation start time point and the continuation end time point and having the maximum value at the time point when the second teaching point has passed is defined as the continuation correction function, and The trajectory generation method for a robot according to claim 2, wherein a value weighted with a gradient change rate of the first time-varying waveform and the second time-varying waveform is used as the continuation correction amount.

【0012】これにより、第2教示点における教示軌道
の変化の大きさに対応した内周りの補正ができる。ま
た、請求項4に係わる本発明は、設定した連続化開示時
点と連続化終了時点とに対応するロボット各軸の角度に
おける連続化補正量を第2教示点近傍について求め、前
記連続化補正量を基に教示軌道と補正連続化軌道との最
大経路誤差を算出し、前記最大経路誤差が教示点データ
の与える許容経路誤差以上であるとき、連続化開始時点
と連続化終了時点とを再設定して、前記最大経路誤差を
前記許容経路誤差以上とならないようにした請求項2な
いし請求項3のいずれかに係わるロボットの軌道生成方
法である。
This makes it possible to correct the inner circumference corresponding to the magnitude of the change in the teaching trajectory at the second teaching point. Further, in the invention according to claim 4, the continuation correction amount at the angle of each axis of the robot corresponding to the set continuation disclosure time point and the continuation end time point is obtained in the vicinity of the second teaching point, and the continuation correction amount is determined. The maximum path error between the teaching path and the corrected continuous path is calculated based on the above, and when the maximum path error is equal to or more than the allowable path error given by the teaching point data, the continuation start time point and the continuation end time point are reset. Then, the trajectory generation method for a robot according to any one of claims 2 to 3, wherein the maximum path error does not exceed the allowable path error.

【0013】これにより、最大経路誤差が許容経路誤差
以上にならないように連続化および補正連続化できる。
また、請求項5に係わる本発明は、連続化開示時点と連
続化終了時点とを設定したのち連続化時間変化波形およ
び補正連続化時間波形を求める演算処理の前に連続化時
間を再設定するようにした請求項4に係わるロボットの
軌道生成方法である。
[0013] With this, it is possible to make continuity and correction continuity so that the maximum path error does not exceed the allowable path error.
In the present invention according to claim 5, the continuation time is reset before the arithmetic processing for determining the continuation time change waveform and the corrected continuation time waveform after setting the continuation disclosure time point and the continuation end time point. The robot trajectory generation method according to claim 4 is as described above.

【0014】これにより、無駄な連続化処理および補正
連続化処理を回避することができる。また、請求項6に
係わる本発明は、ロボットの先端部が移動する軌道の基
準を与える教示点と、その教示点に基づく軌道形状を指
定する移動命令と、前記軌道上を前記先端部が移動する
速度を指定する移動速度と、前記教示点と前記軌道との
間の誤差の最大値を指定する許容経路誤差とを備えた教
示点データにより指定される教示軌道上の連続した第1
教示点、第2教示点、および第3教示点について、前記
教示点データで指定された軌道形状と移動速度とに従う
補間演算により、前記第1教示点から前記第3教示点ま
での移動に対応するロボット各軸の角度の時間変化波形
を演算する補間演算手段と、前記第1教示点から前記第
3教示点までの移動時間に基づいて前記第2教示点の前
に連続化開始時点、後に連続化終了時点と称す通過時点
をそれぞれ前記第2教示点から等時間離れた時点に設定
する連続化時間設定手段と、前記第1教示点から前記第
2教示点への移動に対応する前記ロボット各軸の第1時
間変化波形に第2教示点で接して前記連続化終了時点ま
で線形に変化する線分で与えられる第1延長時間変化波
形と、前記第2教示点から前記第3教示点への移動に対
応する前記ロボット各軸の第2時間変化波形に第2教示
点で接して前記連続化開始時点まで線形に変化する線分
で与えられる第2延長時間変化波形とを求め、前記第1
時間変化波形と前記第2延長時間変化波形との内分点
と、前記第2時間変化波形と前記第1延長時間変化波形
との内分点とを所定の連続化関数による内分比により求
めてロボット各軸の角度の連続化時間変化波形とする時
間変化波形連続化手段とを備え、前記連続化関数は前記
連続化開始時点で内分比を0、前記連続化終了時点で内
分比を1として与えるS字状の滑らかな関数とすること
により、前記連続化開始時点から前記連続化終了時点ま
で前記内分点が与えるロボット各軸の角度による前記ロ
ボットの移動軌道を、前記第2教示点を滑らかに通過す
るとともに前記教示軌道に滑らかに接続される連続化軌
道とするロボットの軌道生成装置である。
Thus, it is possible to avoid useless continuous processing and correction continuous processing. According to a sixth aspect of the present invention, a teaching point that gives a reference of a trajectory along which the tip of the robot moves, a movement command that specifies a trajectory shape based on the teaching point, and the tip moves on the trajectory. The first continuous trajectory on the teaching trajectory designated by the teaching point data having a moving velocity designating the velocity to be controlled and an allowable path error designating the maximum value of the error between the teaching point and the trajectory.
For the teaching point, the second teaching point, and the third teaching point, the movement from the first teaching point to the third teaching point is supported by interpolation calculation according to the trajectory shape and the moving speed designated by the teaching point data. Interpolation calculation means for calculating a time-varying waveform of the angle of each axis of the robot, and a start point of continuation before and after the second teaching point, based on a moving time from the first teaching point to the third teaching point, Continuing time setting means for setting a passing time called a continuation ending time at a time point equidistant from the second teaching point, and the robot corresponding to the movement from the first teaching point to the second teaching point. A first extension time change waveform given by a line segment that is in contact with the first time change waveform of each axis at the second teaching point and changes linearly until the continuation end time point, and the second teaching point to the third teaching point The robot corresponding to the movement to Obtains a second extended time-varying waveform given by a line segment that varies linearly to the continuous reduction start time in contact with the second teaching point to the second time change waveform of each axis, the first
An internal division point between the time-varying waveform and the second extension time-varying waveform and an internal division point between the second time-varying waveform and the first extension time-varying waveform are obtained by an internal division ratio by a predetermined continuation function. And a time-varying waveform continuation means for providing a continuous time-varying waveform of the angle of each axis of the robot, wherein the continuation function has an internal division ratio of 0 at the start of the continuation and an internal division ratio at the end of the continuation. Is a smooth S-shaped function, the movement trajectory of the robot according to the angle of each axis of the robot given by the internal division point from the continuation start time to the continuation end time is defined as A trajectory generating apparatus for a robot, which is a continuous trajectory that smoothly passes through a teaching point and is smoothly connected to the teaching trajectory.

【0015】これにより、第2教示点を滑らかに通過す
る曲線軌道を生成するロボットの軌道生成装置を実現で
きる。また、請求項7に係わる本発明は、第2教示点に
おける第1時間変化波形と第2時間変化との変化率と、
所定の連続化補正関数とによって定まる連続化補正量を
求める連続化補正手段と、教示データ中の許容経路誤差
値により補正するか否かを選択する補正選択手段とを備
え、前記補正選択手段は、許容経路誤差値が0である場
合にはロボット各軸の連続化時間変化波形を外部に出力
し、0でない場合には前記連続化補正量を連続化時間変
化波形に加算した補正連続化時間変化波形を外部に出力
するようにした請求項6に係わるロボットの軌道生成装
置である。
Thus, it is possible to realize a trajectory generating device for a robot which generates a curved trajectory smoothly passing through the second teaching point. The present invention according to claim 7 provides a rate of change between the first temporal change waveform and the second temporal change at the second teaching point,
The correction selecting means is provided with a continuation correcting means for obtaining a continuation correction amount determined by a predetermined continuation correction function, and a correction selecting means for selecting whether or not to correct the allowable path error value in the teaching data. If the allowable path error value is 0, the continuous time change waveform of each axis of the robot is output to the outside, and if it is not 0, the correction continuous time obtained by adding the continuous correction amount to the continuous time change waveform. The trajectory generating apparatus for a robot according to claim 6, wherein the changed waveform is output to the outside.

【0016】これにより、第2教示点の内側を滑らかに
通過する曲線軌道を生成するロボットの軌道生成装置を
実現できる。また、請求項8に係わる本発明は、第2教
示点における第1時間変化波形と第2時間変化との変化
率と、所定の連続化補正関数とによって定まる連続化補
正量を第2教示点近傍について求め、補正連続化時間変
化波形によるロボットの手先先端の動作軌道と第2教示
点との最大経路誤差を算出する経路誤差算出手段と、前
記最大経路誤差が教示点データの許容経路誤差以上であ
るときに連続化開始時点と連続化終了時点とを再設定す
る連続化時間再設定手段とを備え、連続化時間再設定手
段で再設定した連続化時間により最大経路誤差が許容経
路誤差以上にならないようにした請求項6ないし請求項
7のいずれかに係わるロボットの軌道生成装置である。
With this, it is possible to realize a robot trajectory generation device which generates a curved trajectory that smoothly passes inside the second teaching point. Further, in the present invention according to claim 8, the continuation correction amount determined by the rate of change between the first time change waveform and the second time change at the second teaching point and a predetermined continuation correction function is used as the second teaching point. Path error calculating means for calculating the maximum path error between the second trajectory and the motion trajectory of the tip of the robot by the corrected continuous time change waveform, and the maximum path error is not less than the allowable path error of the teaching point data. And a continuous time resetting means for resetting the continuous start time and the continuous end time, and the maximum path error exceeds the allowable path error due to the continuous time reset by the continuous time resetting means. The trajectory generating apparatus for a robot according to any one of claims 6 to 7, wherein the trajectory generating apparatus does not satisfy the requirement.

【0017】これにより、最大経路誤差が許容経路誤差
以上にならないように連続化時間を再設定できるロボッ
トの軌道生成装置を実現することができる。また、請求
項9に係わる本発明は、連続化時間再設定手段は、連続
化開始時点および連続化終了時点を設定したのち連続化
時間変化波形および補正連続化時間変化波形を求める演
算処理に先だって連続化時間を再設定するようにした請
求項8に係わるロボットの軌道生成装置である。
Thus, it is possible to realize a robot trajectory generation device capable of resetting the continuation time so that the maximum path error does not exceed the allowable path error. Further, in the present invention according to claim 9, the continuation time resetting means sets the continuation start time point and the continuation end time point and then performs the arithmetic processing for obtaining the continuation time change waveform and the corrected continuation time change waveform. The robot trajectory generation device according to claim 8, wherein the continuation time is reset.

【0018】これにより、無駄な処理を回避しながら連
続化時間を再設定できるロボットの軌道生成装置を実現
できる。
With this, it is possible to realize a robot trajectory generation device capable of resetting the continuation time while avoiding unnecessary processing.

【0019】[0019]

【発明の実施の形態】請求項1に記載の本発明は、ロボ
ットの先端部が移動する軌道の基準を与える教示点と、
その教示点に基づく軌道形状を指定する移動命令と、前
記軌道上を前記先端部が移動する速度を指定する移動速
度と、前記教示点と前記軌道との間の誤差の最大値を指
定する許容経路誤差とを備えた教示点データにより指定
される教示軌道上の連続した第1教示点、第2教示点、
および第3教示点について、前記教示点データで指定さ
れた軌道形状と移動速度とに従う補間演算により、前記
第1教示点から前記第3教示点までの移動に対応するロ
ボット各軸の角度の時間変化波形と移動時間とを求める
とともに、前記移動時間に基づいて前記第2教示点の前
に連続化開始時点、後に連続化終了時点と称す通過時点
をそれぞれ前記第2教示点から等時間離れた時点に設定
し、前記第1教示点から前記第2教示点への移動に対応
する前記ロボット各軸の第1時間変化波形に第2教示点
で接して前記連続化終了時点まで線形に変化する線分で
与えられる第1延長時間変化波形と、前記第2教示点か
ら前記第3教示点への移動に対応する前記ロボット各軸
の第2時間変化波形に第2教示点で接して前記連続化開
始時点まで線形に変化する線分で与えられる第2延長時
間変化波形とを求め、前記第1時間変化波形と前記第2
延長時間変化波形との内分点と、前記第2時間変化波形
と前記第1延長時間変化波形との内分点とを所定の連続
化関数による内分比により求め、前記連続化関数は前記
連続化開始時点で内分比を0、前記連続化終了時点で内
分比を1として与えるS字状の滑らかな関数とすること
により、前記連続化開始時点から前記連続化終了時点ま
で前記内分点が与えるロボット各軸の角度による前記ロ
ボットの移動軌道を、前記第2教示点を滑らかに通過す
るとともに前記教示軌道に滑らかに接続される連続化軌
道とするロボットの軌道生成方法であり、また、請求項
2に記載の本発明は、第2教示点における第1時間変化
波形と第2時間変化波形との勾配変化率と所定の連続化
補正関数とに基づく連続化補正量を内分点に加算してロ
ボット各軸の補正連続化時間変化波形の値とし、前記各
軸の補正連続化時間変化波形に対応するロボット軌道
が、第2教示点を内周りするとともに、教示軌道に滑ら
かに接続される補正連続化軌道とする請求項1記載のロ
ボットの軌道生成方法であり、また、請求項3に記載の
本発明は、連続化開始時点と連続化終了時点とで0、第
2教示点通過時点で最大値をとる滑らかな関数を連続化
補正関数とし、第2教示点における第1時間変化波形と
第2時間変化波形との勾配変化率で重み付けした値を連
続化補正量とする請求項2記載のロボットの軌道生成方
法であり、また、請求項4に記載の本発明は、設定した
連続化開示時点と連続化終了時点とに対応するロボット
各軸の角度における連続化補正量を第2教示点近傍につ
いて求め、前記連続化補正量を基に教示軌道と補正連続
化軌道との最大経路誤差を算出し、前記最大経路誤差が
教示点データの与える許容経路誤差以上であるとき、連
続化開始時点と連続化終了時点とを再設定して、前記最
大経路誤差を前記許容経路誤差以上とならないようにし
た請求項2ないし請求項3のいずれかに記載のロボット
の軌道生成方法であり、また、請求項5に記載の本発明
は、連続化開示時点と連続化終了時点とを設定したのち
連続化時間変化波形および補正連続化時間波形を求める
演算処理の前に連続化時間を再設定するようにした請求
項4記載のロボットの軌道生成方法であり、また、請求
項6に記載の本発明は、ロボットの先端部が移動する軌
道の基準を与える教示点と、その教示点に基づく軌道形
状を指定する移動命令と、前記軌道上を前記先端部が移
動する速度を指定する移動速度と、前記教示点と前記軌
道との間の誤差の最大値を指定する許容経路誤差とを備
えた教示点データにより指定される教示軌道上の連続し
た第1教示点、第2教示点、および第3教示点につい
て、前記教示点データで指定された軌道形状と移動速度
とに従う補間演算により、前記第1教示点から前記第3
教示点までの移動に対応するロボット各軸の角度の時間
変化波形を演算する補間演算手段と、前記第1教示点か
ら前記第3教示点までの移動時間に基づいて前記第2教
示点の前に連続化開始時点、後に連続化終了時点と称す
通過時点をそれぞれ前記第2教示点から等時間離れた時
点に設定する連続化時間設定手段と、前記第1教示点か
ら前記第2教示点への移動に対応する前記ロボット各軸
の第1時間変化波形に第2教示点で接して前記連続化終
了時点まで線形に変化する線分で与えられる第1延長時
間変化波形と、前記第2教示点から前記第3教示点への
移動に対応する前記ロボット各軸の第2時間変化波形に
第2教示点で接して前記連続化開始時点まで線形に変化
する線分で与えられる第2延長時間変化波形とを求め、
前記第1時間変化波形と前記第2延長時間変化波形との
内分点と、前記第2時間変化波形と前記第1延長時間変
化波形との内分点とを所定の連続化関数による内分比に
より求めてロボット各軸の角度の連続化時間変化波形と
する時間変化波形連続化手段とを備え、前記連続化関数
は前記連続化開始時点で内分比を0、前記連続化終了時
点で内分比を1として与えるS字状の滑らかな関数とす
ることにより、前記連続化開始時点から前記連続化終了
時点まで前記内分点が与えるロボット各軸の角度による
前記ロボットの移動軌道を、前記第2教示点を滑らかに
通過するとともに前記教示軌道に滑らかに接続される連
続化軌道とするロボットの軌道生成装置であり、また、
請求項7に記載の本発明は、第2教示点における第1時
間変化波形と第2時間変化との変化率と、所定の連続化
補正関数とによって定まる連続化補正量を求める連続化
補正手段と、教示データ中の許容経路誤差値により補正
するか否かを選択する補正選択手段とを備え、前記補正
選択手段は、許容経路誤差値が0である場合にはロボッ
ト各軸の連続化時間変化波形を外部に出力し、0でない
場合には前記連続化補正量を連続化時間変化波形に加算
した補正連続化時間変化波形を外部に出力するようにし
た請求項6記載のロボットの軌道生成装置であり、ま
た、請求項8に係わる本発明は、第2教示点における第
1時間変化波形と第2時間変化との変化率と、所定の連
続化補正関数とによって定まる連続化補正量を第2教示
点近傍について求め、補正連続化時間変化波形によるロ
ボットの手先先端の動作軌道と第2教示点との最大経路
誤差を算出する経路誤差算出手段と、前記最大経路誤差
が教示点データの許容経路誤差以上であるときに連続化
開始時点と連続化終了時点とを再設定する連続化時間再
設定手段とを備え、連続化時間再設定手段で再設定した
連続化時間により最大経路誤差が許容経路誤差以上にな
らないようにした請求項6ないし請求項7のいずれかに
記載のロボットの軌道生成装置であり、また、請求項9
に記載の本発明は、連続化時間再設定手段は、連続化開
始時点および連続化終了時点を設定したのち連続化時間
変化波形および補正連続化時間変化波形を求める演算処
理に先だって連続化時間を再設定するようにした請求項
8記載のロボットの軌道生成装置である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention according to claim 1 is a teaching point for providing a reference of a trajectory along which a tip of a robot moves,
A movement command that specifies a trajectory shape based on the teaching point, a movement speed that specifies the speed at which the tip moves on the trajectory, and an allowance that specifies the maximum value of the error between the teaching point and the trajectory. A continuous first teaching point, a second teaching point on a teaching trajectory designated by teaching point data including a path error,
And for the third teaching point, the time of the angle of each axis of the robot corresponding to the movement from the first teaching point to the third teaching point is calculated by the interpolation calculation according to the trajectory shape and the moving speed designated by the teaching point data. The change waveform and the moving time are obtained, and based on the moving time, the passing points called the continuation start time point before the second teaching point and the continuation end time point after the second teaching point are separated from the second teaching point by the same time. The time point is set, and the first time change waveform of each axis of the robot corresponding to the movement from the first teaching point to the second teaching point is touched at the second teaching point and linearly changes until the end point of the continuation. The first extension time change waveform given by a line segment and the second time change waveform of each axis of the robot corresponding to the movement from the second teaching point to the third teaching point are in contact with the second teaching point at the second teaching point. Linearize until the start of conversion Obtains a second extended time change waveform given by line segments of, wherein the first period changing waveform second
An internal division point of the extension time change waveform and an internal division point of the second time change waveform and the first extension time change waveform are obtained by an internal division ratio by a predetermined continuation function, and the continuation function is the By using an S-shaped smooth function that gives an internal division ratio of 0 at the start of the continuation and an internal division ratio of 1 at the end of the continuation, the internal ratio is changed from the start of the continuation to the end of the continuation. A trajectory generation method for a robot, wherein a movement trajectory of the robot according to an angle of each robot axis given by an equidistant point is a continuous trajectory that smoothly passes through the second teaching point and is smoothly connected to the teaching trajectory. Further, the present invention according to claim 2 internally divides the continuation correction amount based on the slope change rate of the first time-varying waveform and the second time-varying waveform at the second teaching point and a predetermined continuation correction function. Correction to each axis of the robot by adding points The value of the continuous time change waveform is used, and the robot trajectory corresponding to the corrected continuous time change waveform of each axis is a corrected continuous trajectory that goes around the second teaching point and is smoothly connected to the taught trajectory. The robot trajectory generation method according to claim 1, and the present invention according to claim 3 is such that the continuation start time point and the continuation end time point are 0, and the maximum value is obtained when the second teaching point is passed. The trajectory generation of the robot according to claim 2, wherein the continuous correction function is defined as a continuous correction function, and a value weighted with a gradient change rate of the first time-varying waveform and the second time-varying waveform at the second teaching point is used as the continuous correction amount. The present invention according to claim 4 obtains a continuation correction amount at an angle of each robot axis corresponding to a set continuation disclosure time point and a continuation end time point set near a second teaching point, Based on the continuation correction amount The maximum path error between the trajectory and the corrected continuous trajectory is calculated, and when the maximum path error is equal to or more than the allowable route error given by the teaching point data, the continuation start time point and the continuation end time point are reset, The robot trajectory generation method according to any one of claims 2 to 3, wherein the maximum path error is not more than the allowable path error, and the present invention according to claim 5 is a continuous disclosure. The trajectory generation method for a robot according to claim 4, wherein after setting the time point and the continuation end time point, the continuation time is reset before the arithmetic processing for obtaining the continuation time change waveform and the corrected continuation time waveform. The present invention according to claim 6 provides a teaching point that gives a reference of a trajectory along which the tip of the robot moves, a movement command that specifies a trajectory shape based on the teaching point, and the tip on the trajectory. Department moved A continuous first teaching point on the teaching trajectory designated by the teaching point data having a moving velocity designating a velocity to be controlled and an allowable path error designating the maximum value of the error between the teaching point and the trajectory. , The second teaching point and the third teaching point are interpolated according to the trajectory shape and the moving speed designated by the teaching point data, and the third teaching point to the third teaching point are calculated.
Interpolation calculating means for calculating a time change waveform of the angle of each axis of the robot corresponding to the movement to the teaching point, and the second teaching point before the second teaching point based on the movement time from the first teaching point to the third teaching point. Continuation time setting means for setting a continuation start time point and a passing time point, which will be referred to as a continuation end time point later, at the time points equidistant from the second teaching point, and from the first teaching point to the second teaching point. A first extension time change waveform given by a line segment that is in contact with the first time change waveform of each axis of the robot corresponding to the movement of the robot at a second teaching point and linearly changes until the end of the continuation, and the second teaching The second extension time given by a line segment that touches the second time change waveform of each axis of the robot corresponding to the movement from the point to the third teaching point at the second teaching point and linearly changes until the continuation start time point Find the change waveform and
An internal division point of the first time variation waveform and the second extension time variation waveform and an internal division point of the second time variation waveform and the first extension time variation waveform are internally divided by a predetermined continuation function. A time-varying waveform continuation means for obtaining a continuous time-varying waveform of the angle of each axis of the robot obtained by the ratio, the continuation function having an internal division ratio of 0 at the start of the continuation and at the end of the continuation. By using an S-shaped smooth function that gives the internal division ratio as 1, the movement trajectory of the robot according to the angle of each axis of the robot given by the internal division point from the continuation start time to the continuation end time, A trajectory generating device for a robot, which is a continuous trajectory that smoothly passes through the second teaching point and is smoothly connected to the teaching trajectory, and
The present invention according to claim 7 is a continuation correction means for obtaining a continuation correction amount determined by a change rate of a first time change waveform and a second time change at a second teaching point and a predetermined continuation correction function. And a correction selecting means for selecting whether or not to correct the allowable path error value in the teaching data. The correction selecting means, when the allowable path error value is 0, the continuation time of each axis of the robot. 7. The trajectory generation of the robot according to claim 6, wherein the change waveform is output to the outside, and if it is not 0, the corrected continuous time change waveform obtained by adding the continuation correction amount to the continuous time change waveform is output to the outside. The present invention according to claim 8 provides a continuation correction amount determined by a change rate of a first time change waveform and a second time change waveform at a second teaching point and a predetermined continuation correction function. Obtained around the second teaching point Path error calculating means for calculating the maximum path error between the motion trajectory of the tip of the robot hand and the second teaching point by the corrected continuous time change waveform, and when the maximum path error is equal to or larger than the allowable path error of the teaching point data. Equipped with a continuation time resetting means for resetting the continuation start time and the continuation end time so that the maximum path error does not exceed the allowable path error due to the continuation time reset by the continuation time resetting means. The robot trajectory generation device according to any one of claims 6 to 7, and
In the present invention described in (1), the continuation time resetting means sets the continuation time before setting the continuation start time point and the continuation end time point and then calculating the continuation time change waveform and the corrected continuation time change waveform. The robot trajectory generation device according to claim 8, wherein the trajectory is reset.

【0020】以下、本発明の実施形態について説明す
る。 (実施形態1)以下、請求項1ないし請求項5に係わる
本発明のロボットの軌道生成方法の一実施形態について
図面を参照しながら説明する。図1(a)は3つの教示
点間を本発明の軌道生成方法により移動したときのロボ
ットの先端の移動軌道を示す平面図、図1(b)はロボ
ットの関節軸J1の位置の時間変化を示す特性図であ
る。なお、図1(a)では、教示軌道xの軌道形状を直
線で示しているが、他の軌道形状としても本発明の軌道
生成方法は有効に作用する。
Embodiments of the present invention will be described below. (Embodiment 1) An embodiment of a robot trajectory generation method according to the present invention will be described below with reference to the drawings. FIG. 1 (a) is a plan view showing the movement trajectory of the tip of the robot when moving between three teaching points by the trajectory generation method of the present invention, and FIG. 1 (b) is a time change of the position of the joint axis J1 of the robot. FIG. Note that, in FIG. 1A, the trajectory shape of the teaching trajectory x is shown by a straight line, but the trajectory generation method of the present invention also works effectively with other trajectory shapes.

【0021】図1(b)において、横軸tはロボットの
手先先端が教示点P1を通過してからの経過時間を与
え、縦軸θはその時間tにおける関節軸J1の位置を示
し、以下の説明では角度とするが、他の表現方法であっ
てもよい。ロボットの手先先端部が図1(a)の教示点
P1を通過するとき、関節軸J1の角度はθ1となり、以
下、教示点P2とθ2、P3とθ3とが対応している。い
ま、教示点P1から教示点P2まで移動するときの関節軸
の時間変化波形をq1とし、P2からP3までの移動する
ときの時間変化波形をq2とする。なお、図1(b)で
は時間変化波形を簡単のために直線で描いているが、一
般的に曲線である。Tsは連続化開始時点、Tpは連続
化終了時点であり、この設定については後述する。qn1
は時間変化波形q1のθ2における傾きa1と同じ傾きを
もち、教示点通過時点Tpから連続化終了時点Teまで
線形に変化する線分、すなわち時間変化波形q1と教示
点通過時点Tpで接する線分であり、qn2は時間変化波
形q2のθ2における傾きa2と同じ傾きをもち、連続化
開始時点Tsから教示点通過時点Tpまで線形に変化す
る線分、すなわち波形q2と教示点通過時点Tpで接す
る線分であり、以下、延長時間変化波形と称す。
In FIG. 1B, the horizontal axis t represents the elapsed time after the tip of the hand of the robot passes the teaching point P1, and the vertical axis θ represents the position of the joint axis J1 at the time t. In the description, the angle is used, but another expression method may be used. When the tip of the hand of the robot passes through the teaching point P1 in FIG. 1A, the angle of the joint axis J1 becomes θ1, and the teaching points P2 and θ2 and P3 and θ3 correspond to each other. Now, let us say that the time-varying waveform of the joint axis when moving from the teaching point P1 to the teaching point P2 is q1, and the time-varying waveform when moving from P2 to P3 is q2. Although the time-varying waveform is drawn as a straight line in FIG. 1B for simplicity, it is generally a curved line. Ts is the start point of continuation and Tp is the end point of continuation, and this setting will be described later. qn1
Is a line segment that has the same slope as the slope a1 of θ2 of the time change waveform q1 and that changes linearly from the teaching point passage time point Tp to the continuation end time point Te, that is, the line segment that is tangent to the time change waveform q1 at the teaching point passage time point Tp. Qn2 has the same slope as the slope a2 of θ2 of the time-varying waveform q2, and is a line segment that linearly changes from the continuation start time Ts to the teaching point passing time Tp, that is, the waveform q2 and the teaching point passing time Tp are in contact with each other. It is a line segment and is hereinafter referred to as an extended time change waveform.

【0022】以下、軌道生成処理について図面を参照し
ながら具体的に説明する。いま、教示点P1から教示点
p2までの移動時間をT1とし、教示点P2から教示点P3
までの移動時間をT2とするとき、連続化開始時点Ts
と連続化終了時点Teとを下記の(1)式、(2)式に
より決定する。
The trajectory generation process will be described in detail below with reference to the drawings. Now, the moving time from the teaching point P1 to the teaching point p2 is set to T1, and the teaching point P2 to the teaching point P3.
When the moving time to is T2, the continuation start time Ts
And the continuation end time Te are determined by the following equations (1) and (2).

【0023】 Ts=Tp−min(T1/2,T2/2) ・・・・・(1) Te=Tp+min(T1/2,T2/2) ・・・・・(2) ただし、min(x,y)はxとyの小さい方の値を選択
する関数である。上記の(1)式と(2)式によりTs
とTeを決定することは、教示点P2の前後の区間を移
動するときの移動時間の短い方の移動時間の半分を超え
て連続化処理を行わないことを意味している。
Ts = Tp-min (T1 / 2, T2 / 2) (1) Te = Tp + min (T1 / 2, T2 / 2) (2) where min (x , Y) is a function that selects the smaller value of x and y. From the above equations (1) and (2), Ts
And Te means that the continuation process is not performed for more than half of the shorter moving time when moving in the section before and after the teaching point P2.

【0024】つぎに、図1(b)に示したように、連続
化開始時点Tsから教示点通過時点Tpまでは時間変化
波形q1と延長時間変化波形qn2との間で、また、教示
点通過時点Tpから連続化終了時点Teまでは時間変化
波形q2と延長時間変化波形qn1との間で、それぞれ下
記の(3)式、(4)式による内分点を求め、その内分
点の軌跡を新たな時間変化波形、すなわち連続化時間変
化波形qとする。内分点は、連続化開始時点Tsから連
続化終了時点Teまでの連続化時間Tcの間で、図2
(a)に示したように、値が0から1までs字状に連続
的に変化する滑らかな連続化関数α(t)を用い、経過
時間tが連続化開始時点Tsから教示点通過時点Tpま
では(3)式で、また、経過時間tが教示点通過時点T
pから連続化終了時点までは(4)式で上記q求める。
なお、連続化時間変化波形qは時間関数であるので、q
(t)とすると、 q(t)=α(t)・qn2(t)+(1−α(t))・q1(t) ・・(3) q(t)=α(t)・q2(t)+(1−α(t))・qn1(t) ・・(4) である。なお、上記滑らかなる意味は、連続化関数の勾
配の変化率、すなわち2次微分関数に不連続点がないこ
とを意味する。
Next, as shown in FIG. 1 (b), from the continuation start time Ts to the teaching point passage time Tp, there is a transition between the time variation waveform q1 and the extension time variation waveform qn2, and also the passage of the teaching point. From the time point Tp to the end time point Te of continuation, the internal division point is calculated by the following equations (3) and (4) between the time change waveform q2 and the extended time change waveform qn1, and the locus of the internal division point Is a new time-varying waveform, that is, a continuous time-varying waveform q. The internal division point is the continuation time Tc from the continuation start time Ts to the continuation end time Te, as shown in FIG.
As shown in (a), a smooth continuation function α (t) whose value continuously changes in an s-shape from 0 to 1 is used, and the elapsed time t is from the continuation start time Ts to the teaching point passage time. Equation (3) is used up to Tp, and the elapsed time t is the teaching point passing time T
From p to the end of the continuation, the above q is calculated by the equation (4).
Since the continuous time change waveform q is a time function, q
If (t), then q (t) = α (t) · qn2 (t) + (1-α (t)) · q1 (t) ·· (3) q (t) = α (t) · q2 (t) + (1−α (t)) · qn1 (t) ·· (4). The smoothness means that there is no discontinuity in the rate of change of the gradient of the continuation function, that is, the second derivative function.

【0025】以上の処理を連続化処理と称す。この連続
化処理を各軸独立に行うことにより、ロボットの手先先
端の軌道は図1(a)に示したx0のように、教示点P2
を通過する連続的な曲線となり、折れ線が連続的な曲線
に連続化されることを意味する。
The above processing is called continuous processing. By performing this continuous processing independently for each axis, the trajectory of the tip of the hand of the robot is the teaching point P2 as shown by x0 shown in FIG. 1 (a).
Is a continuous curve, which means that the polygonal line is continuous into a continuous curve.

【0026】つぎに、図1(a)に示したように、連続
化した軌道x0を内周りの軌道xiに補正して変換するた
めに、各関節軸について補正する連続化補正量dqを求
める。連続化補正量dqは、θ2における時間変化波形
q1の傾きa1と、時間変化波形q2の傾きa2とから
(5)式により決定する内周り定数kと、図2(b)に
示した関数、すなわち、連続化時間Tc間で値が教示点
通過時点Tpで最大となる連続化補正関数β(t)とに
より(6)式のように決定する。
Next, as shown in FIG. 1A, in order to correct and convert the continuous trajectory x0 into the inner trajectory xi, the continuation correction amount dq to be corrected for each joint axis is obtained. . The continuation correction amount dq is the inner constant k determined by the equation (5) from the slope a1 of the time-varying waveform q1 at θ2 and the slope a2 of the time-varying waveform q2, and the function shown in FIG. That is, the value is determined by the continuation correction function β (t), which has the maximum value at the teaching point passage time Tp during the continuation time Tc, as in the equation (6).

【0027】 k=2(a2−a1) ・・・・(5) dq=k・β(t) ・・・・(6) この連続化補正量dqを(3)式、(4)式で求めた連
続化時間変化波形qに加えることにより、図1(c)に
示したように、補正後の連続化時間変化波形、すなわち
補正連続化時間変化波形qiが求められる。なお、内周
り定数kは、時間変化波形q1の傾斜と時間変化波形q2
との差に比例した値としており、傾斜の変化率を示して
いると言える。したがって、ロボット各軸の時間変化波
形q1と時間変化波形q2の傾斜の変化が大きいほど連続
化補正量を大きくすることにより、ロボット先端の教示
軌道xが教示点P2で鋭角に変化するほど内周り量を大
きくするように補正していることになる。以上の処理を
連続化補正処理と称す。この連続化補正処理を各軸独立
に行うことにより、ロボットの手先先端の軌道は、図1
(a)のxiで示したように、教示点P2の内側を通過す
る連続的な曲線となる。
K = 2 (a2-a1) ... (5) dq = k.beta. (T) ... (6) This continuous correction amount dq is expressed by the equations (3) and (4). By adding to the obtained continuous time change waveform q, the corrected continuous time change waveform, that is, the corrected continuous time change waveform qi is obtained as shown in FIG. The inner circumference constant k is determined by the slope of the time-varying waveform q1 and the time-varying waveform q2.
The value is proportional to the difference between and, and can be said to indicate the rate of change of the slope. Therefore, the larger the change in the slope of the time-varying waveform q1 and the time-varying waveform q2 of each axis of the robot is, the larger the continuation correction amount is. It means that the amount is corrected to be large. The above process is referred to as a continuous correction process. By performing this continuous correction processing independently for each axis, the trajectory of the tip of the hand of the robot is
As indicated by xi in (a), the curve is a continuous curve passing inside the teaching point P2.

【0028】つぎに、上記の連続化補正処理により得た
内周り軌道の教示点P2からの最大経路誤差Drを求め
る。いま、教示点P2の位置を表すベクトルをx2とす
る。教示点通過時点Tpにおける各軸の連続化補正量d
qの値を、各軸の連続化処理の前にあらかじめ計算し
(これは上記(5)式、(6)式からわかるように、連続化
処理とは独立して可能である)、連続化補正処理後のロ
ボットの各軸の角度をqqi(対象とするロボットが6
軸を有するものであれば、qqiは6次元のベクトルと
なる)とすると、連続化補正処理が行われた場合のロボ
ットの手先先端の通過ベクトル位置xi2は(7)式で求
められる。
Next, the maximum path error Dr from the teaching point P2 of the inner circumference trajectory obtained by the above-mentioned continuation correction processing is obtained. Now, let us say that the vector representing the position of the teaching point P2 is x2. Continuation correction amount d of each axis at the time point Tp of passing the teaching point
The value of q is calculated in advance before the continuation process of each axis (this can be done independently of the continuation process as can be seen from the above formulas (5) and (6)) The angle of each axis of the robot after the correction processing is qqi (the target robot is 6
If it has an axis, qqi is a six-dimensional vector), and the passing vector position xi2 of the tip of the hand of the robot when the continuation correction process is performed is obtained by the equation (7).

【0029】 xi2=F(qqi) ・・・・(7) ここで、関数F(v)はロボットの関節角ベクトルvか
ら先端位置を求めるロボット固有の関数である。この補
正後のベクトル位置xi2と教示点P2のベクトル位置x2
とから最大経路誤差Drは(8)式により算出できる。
Xi2 = F (qqi) (7) Here, the function F (v) is a function peculiar to the robot that obtains the tip position from the joint angle vector v of the robot. This corrected vector position xi2 and the teaching point P2 vector position x2
From the above, the maximum path error Dr can be calculated by the equation (8).

【0030】 Dr=‖xi2−x2‖ ・・・・(8) ここで、‖z‖はベクトルzのノルムを算出する関数を
表す。
Dr = ‖xi2−x2‖ (8) Here, ‖z‖ represents a function for calculating the norm of the vector z.

【0031】つぎに、最大経路誤差Drが許容経路誤差
Da以上になった場合、連続化の範囲を狭くするように
連続化時間Tcを再設定する。すなわち、最大経路誤差
Drが教示点データの許容経路誤差Da以上の値になれ
ば、連続化時間Tcを(9)式のように再設定する。
Next, when the maximum path error Dr becomes equal to or larger than the allowable path error Da, the continuation time Tc is reset so as to narrow the continuation range. That is, when the maximum path error Dr becomes a value equal to or larger than the allowable path error Da of the teaching point data, the continuation time Tc is reset according to the equation (9).

【0032】 Tc=[Tc・Dr/Da] ・・・・(9) ここで、[x]は実数xが1以上であれば小数点以下を
切捨て、1未満であれば1となる関数である。再設定さ
れた連続化時間Tcから、新しい連続化開始時点Tsと
連続化終了時点Teとを、それぞれ(10)式と(1
1)と式により決定する。
Tc = [Tc · Dr / Da] (9) where [x] is a function that rounds down the decimal point if the real number x is 1 or more and is 1 if it is less than 1. . From the reset continuation time Tc, a new continuation start time Ts and a new continuation end time Te are calculated by using equations (10) and (1), respectively.
1) and the formula.

【0033】 Ts=Tp−Tc/2 ・・・・(10) Te=Tp+Tc/2 ・・・・(11) ここで、再設定した連続化開始時点Tsと連続化終了時
点Teとを用いて、連続化処理と連続化補正処理とを行
う。この連続化時間再設定処理を、連続化開始時点Ts
と連続化終了時点Teとを設定した直後に、第2教示点
近傍の連続化補正量のみ用いて実行することにより、経
路誤差が大きい場合の無駄な連続化処理および連続化補
正処理を回避することができる。なお、上記のようにロ
ボット先端位置がロボット各軸の角度のベクトル位置で
演算できる場合には、連続化補正量は第2教示点近傍に
ついてのみ演算すればよく、演算処理量を低減できるこ
とは言うまでもない。
Ts = Tp−Tc / 2 (10) Te = Tp + Tc / 2 (11) Here, the reset continuation start time Ts and continuation end time Te are used. , Continuous processing and continuous correction processing are performed. This continuation time resetting process is performed at the continuation start time Ts.
Immediately after setting and the continuation end time point Te, by executing using only the continuation correction amount near the second teaching point, useless continuation processing and continuation correction processing when the path error is large are avoided. be able to. When the robot tip position can be calculated by the vector position of the angle of each axis of the robot as described above, it is needless to say that the continuation correction amount can be calculated only in the vicinity of the second teaching point, and the calculation processing amount can be reduced. Yes.

【0034】以上のように、本実施形態によれば、連続
化処理を各軸独立に行うことで、ロボットの手先先端の
軌道を教示点は通過する連続的な曲線に変換し、また、
連続化補正処理を各軸独立に行うことで、ロボットの手
先先端の軌道を教示点の内側を通過する連続的な曲線に
変換することができ、教示点における加減速処理を不要
とし、タクトタイムの短縮を図ることができる。また、
これらの連続化処理および連続化補正処理を行う前に許
容経路誤差から連続化開始時点と連続化終了時点を再設
定することで、ロボットの手先先端の軌道と教示点の位
置との最大経路誤差を許容経路誤差以下の値とすること
ができる。
As described above, according to the present embodiment, by performing the continuation processing independently for each axis, the trajectory of the tip of the hand of the robot is converted into a continuous curve through which the teaching point passes, and
By performing the continuity correction processing independently for each axis, the trajectory of the tip of the robot's hand can be converted into a continuous curve that passes inside the teaching point, eliminating the need for acceleration / deceleration processing at the teaching point and takt time. Can be shortened. Also,
By resetting the continuation start time point and continuation end time point from the allowable path error before performing these continuation processing and continuation correction processing, the maximum path error between the trajectory of the tip of the robot hand and the position of the teaching point Can be a value equal to or less than the allowable path error.

【0035】(実施形態2)以下、請求項6ないし請求
項9に係わる本発明のロボットの軌道生成装置の一実施
形態について図面を参照しながら説明する。図3は本発
明のロボット軌道生成方法を実行する軌道生成装置の構
成を示すブロック図である。本実施形態の軌道生成装置
は、実施形態1に示した軌道生成方法に従って軌道の連
続化処理、連続化補正処理を実行する。図において、1
は補間演算手段、2は連続化時間設定手段、3は経路誤
差算出手段、4は連続化時間再設定手段、5は時間変化
波形連続化手段、6は連続化補正手段、7は補正選択手
段である。
(Embodiment 2) An embodiment of a robot trajectory generation apparatus according to the present invention will be described below with reference to the drawings. FIG. 3 is a block diagram showing the configuration of a trajectory generation device that executes the robot trajectory generation method of the present invention. The trajectory generation device of the present embodiment executes the trajectory continuation processing and the continuity correction processing according to the trajectory generation method described in the first embodiment. In the figure, 1
Is an interpolation calculation means, 2 is a continuation time setting means, 3 is a path error calculation means, 4 is a continuation time resetting means, 5 is a time-varying waveform continuation means, 6 is a continuation correction means, and 7 is a correction selection means. Is.

【0036】上記構成要素の相互関係と動作について説
明する。補間演算手段1は教示点データを入力し、指定
された軌道形状と移動速度とに従って補間演算し、ロボ
ットの各軸の角度の時間変化波形q1、q2を連続化時間
設定手段2と時間変化波形連続化手段5とに出力する。
連続化時間設定手段2は、補間演算手段1からロボット
各軸の角度の時間変化波形q1、q2を入力し、それらに
基づいて連続化開始時点Tsと連続化終了時点Teを前
記の(1)式、(2)式により決定し、ロボット各軸の
角度の時間変化波形とともに、経路誤差算出手段3に出
力する。経路誤差算出手段3は、教示点データとロボッ
ト各軸の角度の時間変化波形q1、q2と、連続化開始時
点Tsと、連続化終了時点Teとを入力し、連続化補正
処理が行われた場合のロボットの手先先端の通過位置x
i2を(7)式により求め、教示点P2との最大経路誤差
Drを(8)式により算出し、連続化開始時点Tsと連
続化終了時点Teとともに連続化時間再設定手段4に出
力する。
The mutual relationship and operation of the above-mentioned components will be described. Interpolation calculation means 1 inputs teaching point data, performs interpolation calculation according to a designated trajectory shape and moving speed, and changes time-varying waveforms q1 and q2 of angles of each axis of the robot with continuation time setting means 2 and time-varying waveform. It is output to the serializing means 5.
The continuation time setting means 2 inputs the time-varying waveforms q1 and q2 of the angles of the robot axes from the interpolation calculation means 1, and based on them, the continuation start time point Ts and the continuation end time point Te described in (1) above. Equation (2) and the waveform of the angle of each axis of the robot with time are output to the path error calculating means 3. The path error calculation means 3 inputs the teaching point data, the time change waveforms q1 and q2 of the angles of the robot axes, the continuation start time Ts, and the continuation end time Te, and the continuation correction process is performed. Position x of the robot's hand tip
i2 is obtained by the equation (7), the maximum path error Dr with respect to the teaching point P2 is calculated by the equation (8), and is output to the continuation time resetting means 4 together with the continuation start time Ts and the continuation end time Te.

【0037】連続化時間再設定手段4は、最大経路誤差
Drが教示点データの許容経路誤差Da以上であれば、
連続化開始時点Tsと連続化終了時点Teを(9)式、
(10)式、(11)式により再設定し、時間変化波形
連続化手段5に出力する。時間変化波形連続化手段5
は、補間演算手段1からロボット各軸の角度の時間変化
波形q1、q2、連続化開始時点Ts、および連続化終了
時点Teを入力し、ロボット各軸の角度の連続化時間変
化波形qを算出して連続化補正手段6と補正選択手段7
とに出力するとともに、連続化開始時点Tsおよび連続
化終了時点Teを連続化補正手段6に出力する。連続化
補正手段6は、ロボット各軸の角度の連続化時間変化波
形qに対する連続化補正量dqを求め、補正選択手段7
に出力する。なお、最大経路誤差Drを算出するための
連続化補正量は第2教示点近傍のみで算出すればよく、
それにより演算処理量を低減することができる。
If the maximum path error Dr is equal to or larger than the allowable path error Da of the teaching point data, the continuation time resetting means 4
The continuation start time point Ts and the continuation end time point Te are expressed by equation (9),
It is reset by the equations (10) and (11) and output to the time-varying waveform continuation means 5. Time-varying waveform continuation means 5
Is the time-varying waveform q1, q2 of the angle of each robot axis, the continuation start time point Ts, and the continuation end time point Te from the interpolation calculation means 1, and calculates the continuous time-varying waveform q of the angle of each robot axis. Then, the continuous correction means 6 and the correction selection means 7
And the continuation start time Ts and the continuation end time Te are output to the continuation correction means 6. The continuation correction means 6 obtains the continuation correction amount dq for the continuous time change waveform q of the angle of each axis of the robot, and the correction selection means 7
Output to The continuous correction amount for calculating the maximum path error Dr may be calculated only in the vicinity of the second teaching point,
As a result, the amount of calculation processing can be reduced.

【0038】補正選択手段7は、教示点データとロボッ
ト各軸の角度の連続化時間変化波形qと連続化補正量d
qとを入力し、教示点データの許容経路誤差値Daが0
ならば時間変化波形連続化手段5で求めたロボット各軸
の角度の連続化時間変化波形qをそのまま外部に出力
し、また、教示点データの許容経路誤差値Daが0でな
ければ、連続化補正手段6で求めた連続化補正量dqを
連続化時間変化波形qに加算補正したqiを補正連続化
時間変化波形として外部に出力する。外部に出力された
ロボット各軸の角度の時間変化波形に従ってロボットを
動作せることにより、実施形態1に説明したロボットの
軌道生成方法と同様に、ロボット先端部の動作が滑らか
になるとともに、教示点における加減速処理を不要にで
きる。
The correction selecting means 7 is a teaching point data, a continuous time change waveform q of the angle of each axis of the robot, and a continuous correction amount d.
Input q and the allowable path error value Da of the teaching point data is 0
Then, the continuous time-varying waveform q of the angle of each axis of the robot obtained by the time-varying waveform continuous means 5 is output to the outside as it is, and if the allowable path error value Da of the teaching point data is not 0, it is continuous. The continuation correction amount dq obtained by the correction means 6 is added to the continuation time change waveform q and corrected to output qi as a corrected continuation time change waveform. By operating the robot according to the time-varying waveform of the angle of each axis of the robot that is output to the outside, the operation of the robot tip portion is smooth and the teaching point is the same as in the method of generating the trajectory of the robot described in the first embodiment. Therefore, the acceleration / deceleration processing in can be eliminated.

【0039】なお、本実施形態の各構成要素とその動作
はマイクロコンピュータのプログラム動作により実現で
きることは言うまでもない。
Needless to say, each constituent element of this embodiment and its operation can be realized by a program operation of a microcomputer.

【0040】[0040]

【発明の効果】以上の説明から明らかなように、本発明
は、ロボットの各軸のそれぞれに独立して連続化処理を
行うことにより、ロボットの手先先端の軌道を教示点を
滑らかに通過する連続的な曲線にすることができる。ま
た、連続化補正処理を各軸独立に行うことにより、ロボ
ットの手先先端の軌道が教示点の内側を通過する滑らか
な連続的な曲線にすることができる。また、これら連続
化処理および連続化補正処理によって、教示点における
加減速処理を不要とし、タクトタイムの短縮を図ること
ができる。また、これら連続化処理および連続化補正処
理を行う前に許容経路誤差に基づいて連続化開始時点と
連続化終了時点を再設定することで、ロボットの手先先
端の軌道と教示点の位置との最大経路誤差を許容経路誤
差より小さくする処理を無駄な処理を回避しながらでき
る。
As is apparent from the above description, according to the present invention, the teaching point is smoothly passed through the trajectory of the tip of the hand of the robot by independently performing the continuation process on each axis of the robot. It can be a continuous curve. Further, by performing the continuation correction processing independently for each axis, it is possible to form a smooth continuous curve in which the trajectory of the tip of the hand of the robot passes inside the teaching point. Further, by the continuation process and the continuation correction process, the acceleration / deceleration process at the teaching point is unnecessary, and the tact time can be shortened. In addition, by resetting the continuation start time and continuation end time based on the allowable path error before performing the continuation process and the continuation correction process, the trajectory of the tip of the robot hand and the position of the teaching point The process of making the maximum path error smaller than the allowable path error can be performed while avoiding unnecessary processing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のロボットの軌道生成方法おける、ロボ
ット手先先端の軌道を示す平面図と、ロボットの各関節
軸の角度位置の時間変化を示す特性図
FIG. 1 is a plan view showing a trajectory of a tip of a robot hand and a characteristic diagram showing a temporal change of an angular position of each joint axis of a robot in a method for generating a trajectory of a robot of the present invention.

【図2】本発明における連続化関数および連続化補正関
数を示す特性図
FIG. 2 is a characteristic diagram showing a continuation function and a continuation correction function according to the present invention.

【図3】本発明のロボットの軌道生成装置の構成を示す
ブロック図
FIG. 3 is a block diagram showing the configuration of a robot trajectory generation device of the present invention.

【符号の説明】[Explanation of symbols]

1 補間演算手段 2 連続化時間設定手段 3 経路誤差算出手段 4 連続化時間再設定手段 5 時間変化波形連続化手段 6 連続化補正手段 7 補正選択手段 P1 教示点(第1教示点) P2 教示点(第2教示点) P3 教示点(第3教示点) θ1,θ2,θ3 教示点における関節角度 q1 時間変化波形(第1時間変化波形) q2 時間変化波形(第2時間変化波形) q 連続化時間変化波形 qi 補正連続化時間変化波形 qn1 延長時間変化波形(第1延長時間変化波形) qn2 延長時間変化波形(第2延長時間変化波形) x 教示軌道 x0 連続化軌道 xi 補正連続化軌道 Dr 最大経路誤差 1 interpolation calculation means 2 continuation time setting means 3 path error calculation means 4 continuation time resetting means 5 time-varying waveform continuation means 6 continuation correction means 7 correction selection means P1 teaching point (first teaching point) P2 teaching point (Second teaching point) P3 Teaching point (Third teaching point) θ1, θ2, θ3 Joint angle at teaching point q1 Time change waveform (First time change waveform) q2 Time change waveform (Second time change waveform) q Continuous Time change waveform qi Corrected continuous time change waveform qn1 Extension time change waveform (first extension time change waveform) qn2 Extension time change waveform (second extension time change waveform) x Teaching trajectory x0 Continuous trajectory xi Corrected continuous trajectory Dr Max Route error

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年2月7日[Submission date] February 7, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0021】図1(b)において、横軸tはロボットの
手先先端が教示点P1を通過してからの経過時間を与
え、縦軸θはその時間tにおける関節軸J1の位置を示
し、以下の説明では角度とするが、他の表現方法であっ
てもよい。ロボットの手先先端部が図1(a)の教示点
P1を通過するとき、関節軸J1の角度はθ1となり、以
下、教示点P2とθ2、P3とθ3とが対応している。い
ま、教示点P1から教示点P2まで移動するときの関節軸
の時間変化波形をq1とし、P2からP3までの移動する
ときの時間変化波形をq2とする。なお、図1(b)で
は時間変化波形を簡単のために直線で描いているが、一
般的に曲線である。Tsは連続化開始時点、Teは連続
化終了時点であり、この設定については後述する。qn1
は時間変化波形q1のθ2における傾きa1と同じ傾きを
もち、教示点通過時点Tpから連続化終了時点Teまで
線形に変化する線分、すなわち時間変化波形q1と教示
点通過時点Tpで接する線分であり、qn2は時間変化波
形q2のθ2における傾きa2と同じ傾きをもち、連続化
開始時点Tsから教示点通過時点Tpまで線形に変化す
る線分、すなわち波形q2と教示点通過時点Tpで接す
る線分であり、以下、延長時間変化波形と称す。
In FIG. 1B, the horizontal axis t represents the elapsed time after the tip of the hand of the robot passes the teaching point P1, and the vertical axis θ represents the position of the joint axis J1 at the time t. In the description, the angle is used, but another expression method may be used. When the tip of the hand of the robot passes through the teaching point P1 in FIG. 1A, the angle of the joint axis J1 becomes θ1, and the teaching points P2 and θ2 and P3 and θ3 correspond to each other. Now, let us say that the time-varying waveform of the joint axis when moving from the teaching point P1 to the teaching point P2 is q1, and the time-varying waveform when moving from P2 to P3 is q2. Although the time-varying waveform is drawn as a straight line in FIG. 1B for simplicity, it is generally a curved line. Ts is the start point of continuation and Te is the end point of continuation, and this setting will be described later. qn1
Is a line segment that has the same slope as the slope a1 of θ2 of the time change waveform q1 and that changes linearly from the teaching point passage time point Tp to the continuation end time point Te, that is, the line segment that is tangent to the time change waveform q1 at the teaching point passage time point Tp. Qn2 has the same slope as the slope a2 of θ2 of the time-varying waveform q2, and is a line segment that linearly changes from the continuation start time Ts to the teaching point passing time Tp, that is, the waveform q2 and the teaching point passing time Tp are in contact with each other. It is a line segment and is hereinafter referred to as an extended time change waveform.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0022[Correction target item name] 0022

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0022】以下、軌道生成処理について図面を参照し
ながら具体的に説明する。いま、教示点P1から教示点
P2までの移動時間をT1とし、教示点P2から教示点P3
までの移動時間をT2とするとき、連続化開始時点Ts
と連続化終了時点Teとを下記の(1)式、(2)式に
より決定する。
The trajectory generation process will be described in detail below with reference to the drawings. Now, from teaching point P1 to teaching point
The movement time to P2 is T1, and the teaching point P2 to teaching point P3
When the moving time to is T2, the continuation start time Ts
And the continuation end time Te are determined by the following equations (1) and (2).

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0025[Name of item to be corrected] 0025

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0025】以上の処理を連続化処理と称す。この連続
化処理を各軸独立に行うことにより、ロボットの手先先
端の軌道は図1(a)に示した0 のように、教示点P2
を通過する連続的な曲線となり、折れ線が連続的な曲線
に連続化されることを意味する。
The above processing is called continuous processing. By performing the continuous process in each axis independently, as X 0 trajectory of the hand tip of the robot illustrated in FIG. 1 (a), the teaching point P2
Is a continuous curve, which means that the polygonal line is continuous into a continuous curve.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0026】つぎに、図1(a)で示したように、連続
化した軌道0 を内周りの軌道xiに補正して変換するた
めに、各関節軸について補正する連続化補正量dqを求
める。連続化補正量dqは、θ2における時間変化波形
q1の傾きa1と、時間変化波形q2の傾きa2とから
(5)式により決定する内周り定数kと、図2(b)に
示した関数、すなわち、連続化時間Tc間で値が教示点
通過時点Tpで最大となる連続化補正関数β(t)とに
より(6)式のように決定する。
Next, as shown in FIG. 1A, in order to correct and convert the continuous trajectory X 0 into the inner trajectory xi, the continuation correction amount dq to be corrected for each joint axis is calculated. Ask. The continuation correction amount dq is the inner constant k determined by the equation (5) from the slope a1 of the time-varying waveform q1 at θ2 and the slope a2 of the time-varying waveform q2, and the function shown in FIG. That is, the value is determined by the continuation correction function β (t), which has the maximum value at the teaching point passage time Tp during the continuation time Tc, as in the equation (6).

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0032[Correction target item name] 0032

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0032】 Tc=Tc・Da/Dr ・・・・(9) ここで、[x]は実数xが1以上であれば小数点以下を
切捨て、1未満であれば1となる関数である。再設定さ
れた連続化時間Tcから、新しい連続化開始時点Tsと
連続化終了時点Teとを、それぞれ(10)式と(1
1)式により決定する。
Tc = Tc · Da / Dr ... (9) Here, [x] is a function that rounds down the decimal point when the real number x is 1 or more and is 1 when it is less than 1. From the reset continuation time Tc, a new continuation start time Ts and a new continuation end time Te are calculated by using equations (10) and (1 ), respectively.
It is determined by the formula 1) .

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 ロボットの先端部が移動する軌道の基準
を与える教示点と、その教示点に基づく軌道形状を指定
する移動命令と、前記軌道上を前記先端部が移動する速
度を指定する移動速度と、前記教示点と前記軌道との間
の誤差の最大値を指定する許容経路誤差とを備えた教示
点データにより指定される教示軌道上の連続した第1教
示点、第2教示点、および第3教示点について、前記教
示点データで指定された軌道形状と移動速度とに従う補
間演算により、前記第1教示点から前記第3教示点まで
の移動に対応するロボット各軸の角度の時間変化波形と
移動時間とを求めるとともに、前記移動時間に基づいて
前記第2教示点の前に連続化開始時点、後に連続化終了
時点と称す通過時点をそれぞれ前記第2教示点から等時
間離れた時点に設定し、前記第1教示点から前記第2教
示点への移動に対応する前記ロボット各軸の第1時間変
化波形に第2教示点で接して前記連続化終了時点まで線
形に変化する線分で与えられる第1延長時間変化波形
と、前記第2教示点から前記第3教示点への移動に対応
する前記ロボット各軸の第2時間変化波形に第2教示点
で接して前記連続化開始時点まで線形に変化する線分で
与えられる第2延長時間変化波形とを求め、前記第1時
間変化波形と前記第2延長時間変化波形との内分点と、
前記第2時間変化波形と前記第1延長時間変化波形との
内分点とを所定の連続化関数による内分比により求め、
前記連続化関数は前記連続化開始時点で内分比を0、前
記連続化終了時点で内分比を1として与えるS字状の滑
らかな関数とすることにより、前記連続化開始時点から
前記連続化終了時点まで前記内分点が与えるロボット各
軸の角度による前記ロボットの移動軌道を、前記第2教
示点を滑らかに通過するとともに前記教示軌道に滑らか
に接続される連続化軌道とするロボットの軌道生成方
法。
1. A teaching point that gives a reference of a trajectory along which a tip of a robot moves, a movement command that specifies a trajectory shape based on the teaching point, and a movement that specifies a speed at which the tip moves on the trajectory. A continuous first teaching point and a second teaching point on the teaching trajectory designated by the teaching point data having a velocity and an allowable path error designating the maximum value of the error between the teaching point and the trajectory; And for the third teaching point, the time of the angle of each axis of the robot corresponding to the movement from the first teaching point to the third teaching point is calculated by the interpolation calculation according to the trajectory shape and the moving speed designated by the teaching point data. The change waveform and the moving time are obtained, and based on the moving time, the passing points called the continuation start time point before the second teaching point and the continuation end time point after the second teaching point are separated from the second teaching point by the same time. Set to time Then, with a line segment that touches the first time-varying waveform of each axis of the robot corresponding to the movement from the first teaching point to the second teaching point at the second teaching point and linearly changes until the end of the continuation. The given first extension time change waveform and the second time change waveform of each axis of the robot corresponding to the movement from the second teach point to the third teach point are contacted at the second teach point at the continuation start time point. A second extension time change waveform given by a line segment that linearly changes up to, and an internal division point between the first time change waveform and the second extension time change waveform,
An internal division point of the second time-varying waveform and the first extension time-varying waveform is obtained by an internal division ratio by a predetermined continuation function,
The continuation function is an S-shaped smooth function that gives an internal division ratio of 0 at the start of the continuation and an internal division ratio of 1 at the end of the continuation, so that the continuation function starts from the continuation start time. The robot's movement trajectory according to the angle of each axis of the robot given by the internal division point until the end of conversion is a continuous trajectory that smoothly passes through the second teaching point and is smoothly connected to the teaching trajectory. Orbit generation method.
【請求項2】 第2教示点における第1時間変化波形と
第2時間変化波形との勾配変化率と所定の連続化補正関
数とに基づく連続化補正量を内分点に加算してロボット
各軸の補正連続化時間変化波形の値とし、前記各軸の補
正連続化時間変化波形に対応するロボット軌道が、第2
教示点を内周りするとともに、教示軌道に滑らかに接続
される補正連続化軌道とする請求項1記載のロボットの
軌道生成方法。
2. A robot each by adding a continuation correction amount based on a slope change rate of the first time-varying waveform and the second time-varying waveform at a second teaching point and a predetermined continuation correction function to the internally dividing point. The value of the corrected continuous time change waveform of the axis is set, and the robot trajectory corresponding to the corrected continuous time change waveform of each axis is
The trajectory generation method for a robot according to claim 1, wherein a corrected continuous trajectory is provided that goes inside the taught point and is smoothly connected to the taught trajectory.
【請求項3】 連続化開始時点と連続化終了時点とで
0、第2教示点通過時点で最大値をとる滑らかな関数を
連続化補正関数とし、第2教示点における第1時間変化
波形と第2時間変化波形との勾配変化率で重み付けした
値を連続化補正量とする請求項2記載のロボットの軌道
生成方法。
3. A smoothing function having 0 at the continuation start time point and the continuation end time point and having a maximum value at the time point when the second teaching point has passed is defined as a continuation correction function, and a first time change waveform at the second teaching point is set. The robot trajectory generation method according to claim 2, wherein a value weighted by a gradient change rate with respect to the second temporal change waveform is used as the continuation correction amount.
【請求項4】 設定した連続化開示時点と連続化終了時
点とに対応するロボット各軸の角度における連続化補正
量を第2教示点近傍について求め、前記連続化補正量を
基に教示軌道と補正連続化軌道との最大経路誤差を算出
し、前記最大経路誤差が教示点データの与える許容経路
誤差以上であるとき、連続化開始時点と連続化終了時点
とを再設定して、前記最大経路誤差を前記許容経路誤差
以上とならないようにした請求項2または請求項3のい
ずれかに記載のロボットの軌道生成方法。
4. A continuation correction amount at an angle of each axis of the robot corresponding to a set continuation disclosure time point and a continuation end time point is determined near a second teaching point, and a teaching trajectory is obtained based on the continuation correction amount. The maximum path error with the corrected continuous trajectory is calculated, and when the maximum path error is equal to or more than the allowable path error given by the teaching point data, the continuation start time point and the continuation end time point are reset to set the maximum path error. The robot trajectory generation method according to claim 2 or 3, wherein an error is set not to exceed the allowable path error.
【請求項5】 連続化開示時点と連続化終了時点とを設
定したのち連続化時間変化波形および補正連続化時間波
形を求める演算処理の前に連続化時間を再設定するよう
にした請求項4記載のロボットの軌道生成方法。
5. The continuation time is reset before the arithmetic processing for obtaining the continuation time change waveform and the corrected continuation time waveform after setting the continuation disclosure time point and the continuation end time point. The trajectory generation method of the described robot.
【請求項6】 ロボットの先端部が移動する軌道の基準
を与える教示点と、その教示点に基づく軌道形状を指定
する移動命令と、前記軌道上を前記先端部が移動する速
度を指定する移動速度と、前記教示点と前記軌道との間
の誤差の最大値を指定する許容経路誤差とを備えた教示
点データにより指定される教示軌道上の連続した第1教
示点、第2教示点、および第3教示点について、前記教
示点データで指定された軌道形状と移動速度とに従う補
間演算により、前記第1教示点から前記第3教示点まで
の移動に対応するロボット各軸の角度の時間変化波形を
演算する補間演算手段と、前記第1教示点から前記第3
教示点までの移動時間に基づいて前記第2教示点の前に
連続化開始時点、後に連続化終了時点と称す通過時点を
それぞれ前記第2教示点から等時間離れた時点に設定す
る連続化時間設定手段と、前記第1教示点から前記第2
教示点への移動に対応する前記ロボット各軸の第1時間
変化波形に第2教示点で接して前記連続化終了時点まで
線形に変化する線分で与えられる第1延長時間変化波形
と、前記第2教示点から前記第3教示点への移動に対応
する前記ロボット各軸の第2時間変化波形に第2教示点
で接して前記連続化開始時点まで線形に変化する線分で
与えられる第2延長時間変化波形とを求め、前記第1時
間変化波形と前記第2延長時間変化波形との内分点と、
前記第2時間変化波形と前記第1延長時間変化波形との
内分点とを所定の連続化関数による内分比により求めて
ロボット各軸の角度の連続化時間変化波形とする時間変
化波形連続化手段とを備え、前記連続化関数は前記連続
化開始時点で内分比を0、前記連続化終了時点で内分比
を1として与えるS字状の滑らかな関数とすることによ
り、前記連続化開始時点から前記連続化終了時点まで前
記内分点が与えるロボット各軸の角度による前記ロボッ
トの移動軌道を、前記第2教示点を滑らかに通過すると
ともに前記教示軌道に滑らかに接続される連続化軌道と
するロボットの軌道生成装置。
6. A teaching point which gives a reference of a trajectory along which the tip of the robot moves, a movement command which designates a trajectory shape based on the teaching point, and a movement which designates a speed at which the tip moves on the trajectory. A continuous first teaching point and a second teaching point on the teaching trajectory designated by the teaching point data having a velocity and an allowable path error designating the maximum value of the error between the teaching point and the trajectory; And for the third teaching point, the time of the angle of each axis of the robot corresponding to the movement from the first teaching point to the third teaching point is calculated by the interpolation calculation according to the trajectory shape and the moving speed designated by the teaching point data. Interpolation calculation means for calculating a change waveform, and the third teaching point from the first teaching point
Based on the moving time to the teaching point, a continuation time for setting a passing point called a continuation starting time point before the second teaching point and a continuation ending time point later after the second teaching point, respectively at a time point that is equidistant from the second teaching point. Setting means and the second teaching point from the first teaching point
A first extension time change waveform given by a line segment that contacts the first time change waveform of each axis of the robot corresponding to the movement to the teach point at a second teach point and linearly changes until the end point of the continuation; A line segment that is in contact with the second time-varying waveform of each axis of the robot corresponding to the movement from the second teaching point to the third teaching point at the second teaching point and linearly changes until the continuation start time is given. 2 extension time change waveform is obtained, and an internal division point between the first time change waveform and the second extension time change waveform,
A time-varying waveform sequence in which an internal division point of the second time-varying waveform and the first extension time-varying waveform is obtained by an internal division ratio by a predetermined continuation function to be a continuous time-varying waveform of the angle of each axis of the robot. And a continuation function, and the continuation function is an S-shaped smooth function that gives an internal division ratio of 0 at the start of the continuation and an internal division ratio of 1 at the end of the continuation. From the start point of conversion to the end point of continuation, the movement trajectory of the robot according to the angle of each axis of the robot given by the internal division point smoothly passes through the second teaching point and is smoothly connected to the teaching trajectory. A trajectory generation device for a robot that uses a modified trajectory.
【請求項7】 第2教示点における第1時間変化波形と
第2時間変化との変化率と、所定の連続化補正関数とに
よって定まる連続化補正量を求める連続化補正手段と、
教示データ中の許容経路誤差値により補正するか否かを
選択する補正選択手段とを備え、前記補正選択手段は、
許容経路誤差値が0である場合にはロボット各軸の連続
化時間変化波形を外部に出力し、0でない場合には前記
連続化補正量を連続化時間変化波形に加算した補正連続
化時間変化波形を外部に出力するようにした請求項6記
載のロボットの軌道生成装置。
7. A continuation correction means for obtaining a continuation correction amount determined by a rate of change between a first time change waveform and a second time change at a second teaching point and a predetermined continuation correction function,
Correction selection means for selecting whether or not to correct the allowable path error value in the teaching data, wherein the correction selection means
When the allowable path error value is 0, the continuous time change waveform of each axis of the robot is output to the outside, and when it is not 0, the corrected continuous time change obtained by adding the continuous correction amount to the continuous time change waveform. The robot trajectory generation device according to claim 6, wherein the waveform is output to the outside.
【請求項8】 第2教示点における第1時間変化波形と
第2時間変化との変化率と、所定の連続化補正関数とに
よって定まる連続化補正量を第2教示点近傍について求
め、補正連続化時間変化波形によるロボットの手先先端
の動作軌道と第2教示点との最大経路誤差を算出する経
路誤差算出手段と、前記最大経路誤差が教示点データの
許容経路誤差以上であるときに連続化開始時点と連続化
終了時点とを再設定する連続化時間再設定手段とを備
え、連続化時間再設定手段で再設定した連続化時間によ
り最大経路誤差が許容経路誤差以上にならないようにし
た請求項6または請求項7のいずれかに記載のロボット
の軌道生成装置。
8. A continuation correction amount determined near the second teaching point by obtaining a continuation correction amount determined by a change rate of the first time change waveform and the second time change at the second teaching point and a predetermined continuation correction function. Path error calculating means for calculating the maximum path error between the second trajectory and the motion trajectory of the tip of the robot by the time-varying waveform, and continuous when the maximum path error is equal to or larger than the allowable path error of the teaching point data. A request for resetting a start time point and a continuation end time point, and a continuous time resetting means for preventing the maximum path error from exceeding the allowable path error due to the continuous time reset by the continuous time resetting means. The trajectory generation device for a robot according to claim 6 or 7.
【請求項9】 連続化時間再設定手段は、連続化開始時
点および連続化終了時点を設定したのち連続化時間変化
波形および補正連続化時間変化波形を求める演算処理に
先だって連続化時間を再設定するようにした請求項8記
載のロボットの軌道生成装置。
9. The continuation time resetting means resets the continuation time before setting the continuation start time point and the continuation end time point and then calculating the continuation time change waveform and the corrected continuation time change waveform. The robot trajectory generation device according to claim 8.
JP32220195A 1995-11-16 1995-11-16 Method and device for generating track of robot Pending JPH09146622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32220195A JPH09146622A (en) 1995-11-16 1995-11-16 Method and device for generating track of robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32220195A JPH09146622A (en) 1995-11-16 1995-11-16 Method and device for generating track of robot

Publications (1)

Publication Number Publication Date
JPH09146622A true JPH09146622A (en) 1997-06-06

Family

ID=18141088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32220195A Pending JPH09146622A (en) 1995-11-16 1995-11-16 Method and device for generating track of robot

Country Status (1)

Country Link
JP (1) JPH09146622A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011230212A (en) * 2010-04-26 2011-11-17 Honda Motor Co Ltd Robot, control system, and control program
JP2016055404A (en) * 2014-09-12 2016-04-21 キヤノン株式会社 Locus generation method, locus generation device, robot device, program, and recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011230212A (en) * 2010-04-26 2011-11-17 Honda Motor Co Ltd Robot, control system, and control program
JP2016055404A (en) * 2014-09-12 2016-04-21 キヤノン株式会社 Locus generation method, locus generation device, robot device, program, and recording medium

Similar Documents

Publication Publication Date Title
Fleisig et al. A constant feed and reduced angular acceleration interpolation algorithm for multi-axis machining
JP3485639B2 (en) Path planning method and system in rectangular coordinate space
US4590577A (en) Welding robot controlling method
US4698777A (en) Industrial robot circular arc control method for controlling the angle of a tool
EP0076498B1 (en) A method controlling an arc welding torch of a welding robot
CN112975992B (en) Error-controllable robot track synchronous optimization method
JPS591180A (en) Manipulator executing motion of path controlled
JP6501470B2 (en) Track generation method, track generation apparatus, robot apparatus, program and recording medium
US5988850A (en) Curve interpolation method for performing velocity control during connecting motion of a robot
JPH09146622A (en) Method and device for generating track of robot
JP2790643B2 (en) Numerical control unit
JP4146549B2 (en) Trajectory control method and recording medium having recorded trajectory control method
JP3204042B2 (en) Robot trajectory generator
JPS5858609A (en) Locus interpolating method of industrial robot
JPH02218569A (en) Interpolation of singular point passing for ptp teaching of articulated robot
JP2737725B2 (en) Robot control device and method
JPH07210233A (en) Interpolating method for robot tracking and device therefor
Aspragathos Cartesian trajectory generation under bounded position deviation
JPH07141010A (en) Control method for robot for welding
JP3512651B2 (en) Robot control device and control method
JPH09244725A (en) Method and device for track interpolation, and controller
JPS58101303A (en) Track interpolating system of automatic position controller
JPS5823186B2 (en) You'll see a lot of robots.
JP2803403B2 (en) Control method of articulated robot
JPS6197704A (en) Command value producing method of linear motion of multi-joint robot