JPH0914627A - Mixed fuel burning ratio estimating and combustion control method for fluidized bed incinerating furnace - Google Patents

Mixed fuel burning ratio estimating and combustion control method for fluidized bed incinerating furnace

Info

Publication number
JPH0914627A
JPH0914627A JP7187793A JP18779395A JPH0914627A JP H0914627 A JPH0914627 A JP H0914627A JP 7187793 A JP7187793 A JP 7187793A JP 18779395 A JP18779395 A JP 18779395A JP H0914627 A JPH0914627 A JP H0914627A
Authority
JP
Japan
Prior art keywords
air flow
flow rate
incinerated
temperature
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7187793A
Other languages
Japanese (ja)
Other versions
JP2769995B2 (en
Inventor
Kenichi Yokoyama
賢一 横山
Eiichiro Nanbu
栄一郎 南部
Yuichi Miyamoto
裕一 宮本
Hidetaka Miyazaki
英隆 宮崎
Masato Hayashi
正人 林
Kaoru Koyano
薫 小谷野
Genichiro Nakanishi
源一郎 中西
Tsutomu Koshida
力 越田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP7187793A priority Critical patent/JP2769995B2/en
Publication of JPH0914627A publication Critical patent/JPH0914627A/en
Application granted granted Critical
Publication of JP2769995B2 publication Critical patent/JP2769995B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To contrive the restriction of generation of CO and NOx by a method wherein the mixed fuel burning ratio of matters to be incinerated, which are different in the properties thereof, is estimated at real time while the set values of furnace outlet gas temperature, fluidizing air flow rate and secondary air flow rate are lead out employing the estimated value of the mixed fuel burning ratio to effect effective combustion control in accordance with the supplying amount of matters to be incinerated. CONSTITUTION: Upon burning matters to be incinerated in a fluidized bed incinerator, the mixed fuel burning ratio of the matters to be incinerated, which are different in the properties thereof, is estimated at real time employing a measuring signal in the fluidized bed incinerator and signal processing by a neural network 28 whereby a furnace outlet gas temperature, a fluidizing air flow rate and a secondary air flow rate are lead out in accordance with the supplying amount of matters to be incinerated to determine an operating amount from these values and control the combustion. The fluidizing air flow rate GA1 , a fluidizing air temperature TA1 , the secondary air flow rate GA2 , a secondary air temperature TA2 , a water pouring amount GSP in layer, the furnace outlet gas temperature TC, a layer temperature TB and a furnace outlet oxygen concentration O2 are employed as the measuring signals.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、流動層を備えた産業廃
棄物焼却炉において、被焼却物の混焼率をニューラルネ
ットワークを用いてリアルタイムに推定し、燃焼制御す
る方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating a co-firing rate of an incinerated material in real time using a neural network in an industrial waste incinerator provided with a fluidized bed and controlling combustion.

【0002】[0002]

【従来の技術】流動床産業廃棄物焼却炉においては、被
焼却物の供給量により混焼率が変化するので、混焼率に
応じて燃焼制御する必要がある。しかし、従来は、焼却
炉の設計値から導出された一定の混焼率が使用されてい
る。
2. Description of the Related Art In a fluidized bed industrial waste incinerator, the co-firing rate varies depending on the supply amount of the incineration material, so that it is necessary to control the combustion in accordance with the co-firing rate. However, heretofore, a constant co-firing rate derived from the design value of the incinerator has been used.

【0003】[0003]

【発明が解決しようとする課題】従来のように、混焼率
として一定の値を設定しておく場合、被焼却物の供給量
の変化に伴って実際の混焼率が変化しても、流動用空気
流量、2次空気流量や炉出口ガス温度の設定値が変化し
ないため、制御性能に限界がある。本発明は上記の点に
鑑みなされたもので、本発明の目的は、温度、空気流量
等の計測信号とニューラルネットワークによる信号処理
を用いて、混焼率をリアルタイムに推定し、制御性能を
向上させる方法を提供することにある。
When a constant value is set as the co-combustion rate as in the prior art, even if the actual co-combustion rate changes with a change in the supply amount of the incineration material, the flow rate is not reduced. Since the set values of the air flow rate, the secondary air flow rate, and the furnace outlet gas temperature do not change, the control performance is limited. The present invention has been made in view of the above points, and an object of the present invention is to improve a control performance by estimating a co-firing rate in real time by using a measurement signal such as a temperature and an air flow rate and a signal processing by a neural network. It is to provide a method.

【0004】[0004]

【課題を解決するための手段及び作用】上記の目的を達
成するために、本発明の流動床焼却炉の混焼率推定・燃
焼制御方法は、流動床焼却炉で被焼却物を燃焼させるに
際し、流動床焼却炉における計測信号とニューラルネッ
トワークによる信号処理を用いて、性状の異なる被焼却
物の混焼率をリアルタイムに推定することにより、被焼
却物の供給量に応じた炉出口ガス温度、流動用空気流量
及び2次空気流量を導出し、これらの値から操作量を決
定し、燃焼制御するように構成されている。計測信号と
しては、流動用空気流量、流動用空気温度、2次空気流
量、2次空気温度、層内注水量、炉出口ガス温度、層温
度及び炉出口酸素濃度が用いられる。
Means and Actions for Solving the Problems In order to achieve the above-mentioned object, the method for estimating the combustion rate and controlling combustion in a fluidized bed incinerator of the present invention, when burning an incinerator in a fluidized bed incinerator, By using the measurement signals of the fluidized bed incinerator and the signal processing by the neural network to estimate the co-firing rate of the incinerated substances with different properties in real time, the furnace outlet gas temperature according to the supply amount of the incinerated substance, The air flow rate and the secondary air flow rate are derived, the manipulated variable is determined from these values, and combustion control is performed. As the measurement signal, a flow air flow, a flow air temperature, a secondary air flow, a secondary air temperature, a water injection amount in a bed, a furnace outlet gas temperature, a bed temperature, and a furnace outlet oxygen concentration are used.

【0005】ニューラルネットワークとは、脳などにお
ける神経細胞とその結合様式を工学的にまねた神経回路
網モデル(Neural Network Mode
l)のことであり、最適化問題の解法に用いることがで
きる。温度、空気流量等の計測信号とニューラルネット
ワークによる信号処理を用いて、性状の異なる被焼却物
の混焼率をリアルタイムに推定し、この混焼率推定値を
用いて、被焼却物の供給量に応じた炉出口ガス温度、流
動用空気流量及び2次空気流量の設定値を導出し、被焼
却物の供給量に応じた燃焼制御が効果的に行なわれる。
A neural network is a neural network model (Neural Network Model) that mimics the neural cells and their connection mode in the brain and the like.
1), which can be used for solving an optimization problem. Using measurement signals such as temperature and air flow rate and signal processing by a neural network, the co-firing rate of incinerated materials with different properties is estimated in real time. The set values of the furnace outlet gas temperature, the flow air flow rate, and the secondary air flow rate are derived, and the combustion control according to the supply amount of the incineration material is effectively performed.

【0006】[0006]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、適宜変更して実施することが可能なもので
ある。図1は流動床産業廃棄物焼却炉(以下、流動床炉
という)10の概略構成を示している。この流動床炉1
0においては、1次空気送風機により1次空気(流動用
空気)12を風箱14に供給して流動層16の流動媒体
を流動させ、この流動層16に性状の異なる被焼却物を
投入して被焼却物をガス化・燃焼させ、これにより生じ
た未燃ガスをフリーボード部18に、2次空気送風機に
より2次空気20を供給して完全燃焼させるように構成
されている。また、流動床炉10には、流動層16の温
度を一定範囲に制御するために冷却用水22を供給して
いる。24は空気分散板である。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples, and can be implemented with appropriate modifications. FIG. 1 shows a schematic configuration of a fluidized bed industrial waste incinerator (hereinafter, referred to as a fluidized bed furnace) 10. This fluidized bed furnace 1
At 0, the primary air (fluidizing air) 12 is supplied to the wind box 14 by the primary air blower to cause the fluidized medium of the fluidized bed 16 to flow, and the incinerated materials having different properties are introduced into the fluidized bed 16. The incineration material is gasified and burned, and the unburned gas generated by this is supplied to the freeboard section 18 by the secondary air blower to supply the secondary air 20 to complete combustion. Further, cooling water 22 is supplied to the fluidized bed furnace 10 in order to control the temperature of the fluidized bed 16 within a certain range. 24 is an air distribution plate.

【0007】図1に示す流動床炉10において、流動層
部のエネルギーバランス及びフリーボード部のエネルギ
ーバランス、空気比の数式は式(1)〜(3)で表わさ
れる。 CB B dTB /dt=HU11 R1+HU22 R2+HU33 R3 +CPAA1A1+QBI−QBO−CPGB {GA1 +(22.4/18)GSP}−600GSP (1) CPGG {GA1+GA2+(22.4/18)GSP}=HU1(1−K1 )GR1 +HU2(1−K2 )GR2+HU3(1−K3 )GR3 +CPGB {GA1+(22.4/18)GSP} +CPAA2A2 (2) (GA1+GA2)/(A01R1+A02R2+A03R3)=21/(21−O2 ) (3) なお、上記の式(1)〜(3)における記号の説明はつ
ぎの通りである。 GR12 3 :被焼却物供給量〔kg/h 〕 HU12 3 :低位発熱量〔kcal/kg〕 K1 2 3 :層内燃焼率 A012 3 :理論空気量〔Nm3 /kg〕 CB :層物質比熱〔kcal/kg℃〕 WB :層物質重量〔kg〕 CPG :排ガス比熱〔kcal/Nm3 ℃〕 CPA :空気比熱〔kcal/Nm3 ℃〕 GA1 :流動用空気流量〔Nm3 /h 〕 TA1 :流動用空気温度〔℃〕 GA2 :2次空気流量〔Nm3 /h 〕 TA2 :2次空気温度〔℃〕 GSP :層内注水量〔kg/h 〕 QBI :層物質入熱〔kcal/h 〕 QBO :層物質・不燃物出熱〔kcal/h 〕 TG :炉出口ガス温度〔℃〕 TB :層温度〔℃〕 O2 :炉出口酸素濃度〔%〕
In the fluidized-bed furnace 10 shown in FIG. 1, the equations for the energy balance of the fluidized bed portion, the energy balance of the freeboard portion, and the air ratio are represented by equations (1) to (3). C B W B dT B / dt = H U1 K 1 G R1 + H U2 K 2 G R2 + H U3 K 3 G R3 + C PA T A1 G A1 + Q BI -Q BO -C PG T B {G A1 + (22. 4/18) G SP} -600G SP ( 1) C PG T G {G A1 + G A2 + (22.4 / 18) G SP} = H U1 (1-K 1) G R1 + H U2 (1-K 2) G R2 + H U3 ( 1-K 3) G R3 + C PG T B {G A1 + (22.4 / 18) G SP} + C PA T A2 G A2 (2) (G A1 + G A2) / (A 01 G R1 + a 02 G R2 + a 03 G R3) = 21 / (21-O 2) (3) in addition, the description of the symbols in the above equation (1) to (3) are as follows. G R1, 2, 3: the incinerated supply amount [kg / h] H U1, 2, 3: lower heating value [kcal / kg] K 1, 2, 3: the layer in the combustion rate A 01, 2, 3: complexity theory air [Nm 3 / kg] C B: layer material specific heat [kcal / kg ° C.] W B: layer material weight (kg) C PG: exhaust gas specific heat [kcal / Nm 3 ° C.] C PA: air specific heat [kcal / Nm 3 ° C] G A1 : Flowing air flow rate [Nm 3 / h] T A1 : Flowing air temperature [° C] G A2 : Secondary air flow rate [Nm 3 / h] T A2 : Secondary air temperature [° C] G SP : Water injection amount in bed [kg / h] Q BI : Heat input of bed material [kcal / h] Q BO : Heat output of bed material and incombustible material [kcal / h] TG : Furnace outlet gas temperature [° C] T B : Bed temperature [° C] O 2 : Furnace outlet oxygen concentration [%]

【0008】式(1)の層温度TB は、一定になるよう
に制御されていることと、層物質の熱容量が大きいこと
から、その時間変化は緩やかであり、短時間での変化は
無視することができる。したがって、本発明の方法を適
用する場合は、dTB /dt=0と考えてよいので、式
(1)〜(3)は被焼却物供給量GR1、GR2、GR3を未
知数とする連立代数方程式となり、図2に示すニューラ
ルネットワーク28を用いてリアルタイムに解くことが
できる。式(1)〜(3)において、計測値は、流動用
空気流量GA1、流動用空気温度TA1、2次空気温度
A2、2次空気温度TA2、層内注水量GSP、炉出口ガス
温度TG 、層温度TB 、炉出口酸素濃度O2 であり、そ
の他は略一定値であるので係数として扱うことができ
る。
Bed temperature T B of [0008] Formula (1) are that are controlled to be constant, since a large heat capacity of the layer material, the time change is gradual, the change in a short time is negligible can do. Therefore, when applying the method of the present invention, since it may be considered that dT B / dt = 0, equation (1) to (3) is an unknown to be incinerated supply amount G R1, G R2, G R3 It becomes a simultaneous algebraic equation and can be solved in real time using the neural network 28 shown in FIG. In the equations (1) to (3), the measured values are the flow air flow rate G A1 , the flow air temperature T A1 , the secondary air temperature G A2 , the secondary air temperature T A2 , the water injection amount G SP in the bed, the furnace The outlet gas temperature T G , the bed temperature T B , and the oxygen concentration O 2 at the furnace outlet. Since the other values are substantially constant, they can be treated as coefficients.

【0009】図2に示すニューラルネットワーク28に
ついてさらに詳細に説明する。式(1)〜(3)は、被
焼却物供給量をx1 、x2 、x3 とした式(4)、
(5)、(6)の形の連立代数方程式に変形できる。 a111 +a122 +a133 =b1 (4) a211 +a222 +a233 =b2 (5) a311 +a322 +a333 =b3 (6) 式(1)〜(3)の変形であるので、式(4)、
(5)、(6)の各要素の意味は次の通りである。 a11=HU11 、a12=HU22 、a13=HU3321=HU1(1−K1 )、a22=HU2(1−K2 )、a
23=HU3(1−K3 ) a31=A01、a32=A02、a33=A031 =−CPAA1A1−QBI+QBO+CPGB {GA1
(22.4/18)GSP}+600GSP2 =CPGG {GA1+GA2+(22.4/18)
SP}−CPGB {GA1+(22.4/18)GSP}−
PAA2A23 =(GA1+GA2)(21−O2 )/21 x1 =GR1、x2 =GR2、x3 =GR3 計測値がGA1、TA1、GA2、TA2、GSP、TG 、TB
2 であることから、b1 、b2 、b3 は時変データと
なる。この3つがニューラルネットワークへの入力とな
る。a11、a12、a13、a21、a22、a23、a31
32、a33は時不変データであり、ニューラルネットワ
ーク内部の係数として設定する。x1 、x2 、x3 がニ
ューラルネットワークの出力であり、連立代数方程式の
解となる。μ11、μ12、μ13、μ21、μ22、μ23
μ31、μ32、μ33はニューラルネットワークの収束性と
安定性とのトレードオフを考慮して選ぶゲインである。
ゲインを大きくすれば、出力の収束は速くなるが出力が
不安定になる可能性があり、ゲインを小さくすれば、出
力は安定であるが収束に時間がかかる。
The neural network 28 shown in FIG. 2 will be described in more detail. Formulas (1) to (3) are formulas (4) and (4) in which the incineration material supply amounts are x 1 , x 2 , and x 3 .
It can be transformed into simultaneous algebraic equations of the forms (5) and (6). a 11 x 1 + a 12 x 2 + a 13 x 3 = b 1 (4) a 21 x 1 + a 22 x 2 + a 23 x 3 = b 2 (5) a 31 x 1 + a 32 x 2 + a 33 x 3 = b 3 (6) Since this is a modification of equations (1) to (3), equation (4)
The meaning of each element of (5) and (6) is as follows. a 11 = H U1 K 1, a 12 = H U2 K 2, a 13 = H U3 K 3 a 21 = H U1 (1-K 1), a 22 = H U2 (1-K 2), a
23 = H U3 (1-K 3) a 31 = A 01, a 32 = A 02, a 33 = A 03 b 1 = -C PA G A1 T A1 -Q BI + Q BO + C PG T B {G A1 +
(22.4 / 18) G SP } +600 G SP b 2 = C PG T G {G A1 + G A2 + (22.4 / 18)
G SP} -C PG T B { G A1 + (22.4 / 18) G SP} -
C PA T A2 G A2 b 3 = (G A1 + G A2 ) (21−O 2 ) / 21 x 1 = G R1 , x 2 = G R2 , x 3 = G R3 Measured values are G A1 , T A1 , G A2, T A2, G SP, T G, T B,
Since it is O 2 , b 1 , b 2 , and b 3 are time-varying data. These three are inputs to the neural network. a 11 , a 12 , a 13 , a 21 , a 22 , a 23 , a 31 ,
a 32 and a 33 are time-invariant data and are set as coefficients inside the neural network. x 1 , x 2 , and x 3 are the outputs of the neural network and are the solutions of the simultaneous algebraic equations. μ 11, μ 12, μ 13 , μ 21, μ 22, μ 23,
μ 31 , μ 32 , and μ 33 are gains selected in consideration of a trade-off between convergence and stability of the neural network.
When the gain is increased, the output converges faster but the output may become unstable. When the gain is decreased, the output is stable but it takes time to converge.

【0010】図2において、番号30、32、34、3
6のように描かれている記号は、左からの入力信号を定
数倍して右へ出力する演算機能である。例えば、 Y→a23→Zならば、Z=a23Y Y→μ22→Zならば、Z=μ22Y Y→−1→Zならば、Z=−Y である。また、図2において、番号38のように描かれ
ている記号は、左からの入力信号を積分して右へ出力す
る演算機能である。例えば、 Y→∫→Zならば、Z=∫Ydt+C である。なおtは時間、Cは初期値である。ニューラル
ネットワークは、x1 、x2 、x3 を出力し、同時にx
1 、x2 、x3 をフィードバックして計算に用いてい
る。これを繰り返すことで、出力x1、x2 、x3 が収
束し、それが式(4)、(5)、(6)の解となる。混
焼率は、各被焼却物の供給量の比であるので、導出した
1 、x2 、x3 を用いて求めることができる。例え
ば、 x1 の混焼率 :x1 /(x1 +x2 +x3 ) x1 とx2 の合計の混焼率:(x1 +x2 )/(x1 +x2 +x3
In FIG. 2, numerals 30, 32, 34, 3
The symbol drawn as 6 is an arithmetic function for multiplying an input signal from the left by a constant and outputting it to the right. For example, if Y → a 23 → Z, then Z = a 23 Y Y → μ 22 → Z, then Z = μ 22 Y Y → −1 → Z, then Z = −Y. Further, in FIG. 2, a symbol drawn like numeral 38 is an arithmetic function for integrating an input signal from the left and outputting it to the right. For example, if Y → ∫ → Z, then Z = ∫Ydt + C. Note that t is time and C is an initial value. The neural network outputs x 1 , x 2 , x 3 and simultaneously x
1 , x 2 and x 3 are used for the calculation by feedback. By repeating this, the outputs x 1 , x 2 , and x 3 converge and become the solutions of the equations (4), (5), and (6). Since the co-firing rate is a ratio of the supply amount of each incineration material, it can be obtained by using the derived x 1 , x 2 , and x 3 . For example, co-firing rate of x 1: x 1 / (x 1 + x 2 + x 3) x 1 and the sum of the mixed combustion ratio of x 2: (x 1 + x 2) / (x 1 + x 2 + x 3)

【0011】図3は、ニューラルネットワーク28を含
む制御系の全体図である。流動床焼却炉10(例えば流
動床産廃焼却炉)の制御系は図3よりも複雑であり、図
3はニューラルネットワーク28による混焼率推定に関
係のある信号の流れだけが示されている。演算器40で
は、混焼率推定値を用いて、炉出口ガス温度TG 、流動
用空気流量GA1、2次空気流量GA2の設定値を計算して
いる。PID(proportional integ
ral and derivative)制御器42、
44、46、48は、設定値と計測信号の差を打ち消す
ように働く制御装置で、比例動作、積分動作、微分動作
を行う。流動床産廃焼却炉10では、図3で示すよりも
多くの入出力信号があるが、ここでは本発明の方法に関
係のある操作量と計測信号だけを示している。TB (層
温度)設定値は一定の値であり、層温度はこの値になる
ように制御される。
FIG. 3 is an overall view of a control system including the neural network 28. The control system of the fluidized-bed incinerator 10 (for example, a fluidized-bed industrial incinerator) is more complicated than that of FIG. 3, and FIG. 3 shows only the signal flow related to the estimation of the co-combustion rate by the neural network 28. The computing unit 40 calculates the set values of the furnace outlet gas temperature T G , the flow air flow rate G A1 , and the secondary air flow rate G A2 by using the estimated value of the co-firing rate. PID (proportional integ
ral and derivative) controller 42,
Reference numerals 44, 46, and 48 denote control devices for canceling the difference between the set value and the measurement signal, and perform a proportional operation, an integral operation, and a differential operation. In the fluidized bed waste incinerator 10, there are more input / output signals than shown in FIG. 3, but here only the manipulated variables and measurement signals relevant to the method of the present invention are shown. The T B (layer temperature) set value is a constant value, and the layer temperature is controlled to be this value.

【0012】図4〜図7は、本発明の方法を適用した実
炉(流動床産廃焼却炉)でのデータの一例である。4つ
のグラフとも、横軸は時間であり、8時から16時まで
の8時間のデータである。図4〜図7の順に、各グラフ
を説明する。図4は2種類の被焼却物1+2の供給量推
定値〔t /H 〕の経時変化を示しており、ニューラルネ
ットワークの出力x1 とx2 の合計(x1 +x2 )に関
するものである。つまり、被焼却物の供給量GR1〔t /
H 〕の推定値と、被焼却物の供給量GR2〔t /H 〕の推
定値との合計である。なおGR1を被焼却物1の供給量、
R2を被焼却物2の供給量、GR3を被焼却物3の供給量
とする。図5は被焼却物1+2の投入実績〔t 〕の経時
変化を示しており、被焼却物1と被焼却物2との焼却実
績の合計を、1時間ごとに表したものである。図6は被
焼却物3の供給量推定値〔t /H 〕の経時変化を示して
おり、ニューラルネットワークの出力x3 に関するもの
である。つまり、被焼却物3の供給量GR3〔t /H 〕の
推定値である。図7は被焼却物3のコンベア速度〔%〕
の経時変化、つまり、焼却物3を炉内へ搬送するコンベ
アの速度を示している。図4と図5のグラフ、図6と図
7のグラフをそれぞれ比較すると、それらの傾向は一致
していることがわかる。
FIGS. 4 to 7 show examples of data in a real furnace (fluidized bed industrial waste incinerator) to which the method of the present invention is applied. In each of the four graphs, the horizontal axis represents time, which is data for 8 hours from 8:00 to 16:00. Each graph will be described in the order of FIGS. 4 to 7. FIG. 4 shows the change over time of the estimated supply amount [t / H] of the two types of incinerated materials 1 + 2, and relates to the sum (x 1 + x 2 ) of the outputs x 1 and x 2 of the neural network. That is, the supply amount G R1 [t /
H] and the estimated value of the supply amount G R2 [t / H] of the incinerated material. G R1 is the supply amount of incineration material 1,
Supply amount of the G R2 be incinerated 2, the supply amount of the incinerated 3 G R3. FIG. 5 shows a time-dependent change in the actual results [t] of the incinerated materials 1 + 2, and shows the total incineration results of the incinerated materials 1 and 2 every hour. Figure 6 shows the time course of the supply amount estimation value of the incinerated 3 [t / H], the present invention relates to an output x 3 of the neural network. That is, it is an estimated value of the supply amount G R3 [t / H] of the incineration material 3. Fig. 7 shows the conveyor speed [%] of the incinerated material 3
Of time, that is, the speed of the conveyer that conveys the incinerated material 3 into the furnace. Comparing the graphs of FIG. 4 and FIG. 5 and the graphs of FIG. 6 and FIG.

【0013】[0013]

【発明の効果】本発明は上記のように構成されているの
で、つぎのような効果を奏する。 (1) 温度、空気流量等の計測信号とニューラルネッ
トワークによる信号処理を用いて、性状の異なる被焼却
物の混焼率をリアルタイムに推定し、この混焼率推定値
を用いて、炉出口ガス温度、流動用空気流量及び2次空
気流量の設定値が導出されるので、被焼却物の供給量に
応じた有効な燃焼制御を行うことができ、CO、NOx
の発生抑制を図ることができる。
As described above, the present invention has the following effects. (1) Using the measurement signals such as temperature and air flow rate and the signal processing by the neural network, the real-time estimation of the co-firing rate of the incinerators with different properties is performed, and the estimated value of the co-firing rate is used to measure the furnace outlet gas temperature, Since the setting values of the flow air flow rate and the secondary air flow rate are derived, effective combustion control can be performed according to the supply amount of the incineration object, and CO, NOx
Can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法を実施するのに用いられる流動床
炉の概略構成図である。
FIG. 1 is a schematic structural view of a fluidized bed furnace used to carry out the method of the present invention.

【図2】本発明の方法を実施するのに用いられるニュー
ラルネットワークの説明図である。
FIG. 2 is an illustration of a neural network used to implement the method of the present invention.

【図3】本発明の方法を実施する混焼率推定・燃焼制御
系を示す系統図である。
FIG. 3 is a system diagram showing a co-firing rate estimation / combustion control system for implementing the method of the present invention.

【図4】本発明の方法を適用した実炉でのデータで、被
焼却物1+2の供給量推定値の経時変化を示すグラフで
ある。
FIG. 4 is a graph showing a change with time of an estimated supply amount of the incinerated material 1 + 2 in data of an actual furnace to which the method of the present invention is applied.

【図5】被焼却物1+2の投入実績の経時変化を示すグ
ラフである。
FIG. 5 is a graph showing the change over time in the actual performance of the incinerated material 1 + 2.

【図6】被焼却物3の供給量推定値の経時変化を示すグ
ラフである。
FIG. 6 is a graph showing a change with time of an estimated supply amount of the incineration material 3;

【図7】被焼却物3のコンベア速度の経時変化を示すグ
ラフである。
FIG. 7 is a graph showing a change over time in a conveyor speed of an incinerated material 3;

【符号の説明】[Explanation of symbols]

10 流動床炉(流動床産廃焼却炉) 12 1次空気 16 流動層 18 フリーボード部 20 2次空気 22 冷却用水 28 ニューラルネットワーク 40 演算器 42 PID制御器 44 PID制御器 46 PID制御器 48 PID制御器 Reference Signs List 10 fluidized bed furnace (fluidized bed waste incinerator) 12 primary air 16 fluidized bed 18 freeboard unit 20 secondary air 22 cooling water 28 neural network 40 arithmetic unit 42 PID controller 44 PID controller 46 PID controller 48 PID control vessel

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F23G 5/50 ZAB F23G 5/50 ZABM ZABN (72)発明者 宮本 裕一 兵庫県明石市川崎町1番1号 川崎重工業 株式会社明石工場内 (72)発明者 宮崎 英隆 兵庫県明石市川崎町1番1号 川崎重工業 株式会社明石工場内 (72)発明者 林 正人 兵庫県明石市川崎町1番1号 川崎重工業 株式会社明石工場内 (72)発明者 小谷野 薫 兵庫県明石市川崎町1番1号 川崎重工業 株式会社明石工場内 (72)発明者 中西 源一郎 神戸市中央区東川崎町1丁目1番3号 川 崎重工業株式会社神戸本社内 (72)発明者 越田 力 神戸市中央区東川崎町1丁目1番3号 川 崎重工業株式会社神戸本社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location F23G 5/50 ZAB F23G 5/50 ZABM ZABN (72) Inventor Yuichi Miyamoto 1 Kawasaki-cho, Akashi-shi, Hyogo No. 1 Kawasaki Heavy Industries Ltd., Akashi Plant (72) Inventor Hidetaka Miyazaki 1-1 Kawasaki-cho, Akashi-shi, Hyogo Prefecture Kawasaki Heavy Industries Ltd., Akashi Plant (72) Inventor Masato Hayashi 1-1, Kawasaki-cho, Akashi-shi, Hyogo Prefecture Issue Kawasaki Heavy Industries, Ltd. Akashi Plant (72) Inventor Kaoru Oyano 1-1 Kawasaki-cho, Akashi-shi, Hyogo Prefecture Kawasaki Heavy Industries Ltd. Akashi Plant (72) Inventor Genichiro Nakanishi 1-3-1, Higashikawasaki-cho, Chuo-ku, Kobe No. Kawasaki Heavy Industries, Ltd. Kobe Head Office (72) Inventor Riki Koshida 1-3 1-3 Higashikawasaki-cho, Chuo-ku, Kobe-shi Kawasaki Heavy Industries Formula company Kobe in the head office

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 流動床焼却炉で被焼却物を燃焼させるに
際し、流動床焼却炉における計測信号とニューラルネッ
トワークによる信号処理を用いて、性状の異なる被焼却
物の混焼率をリアルタイムに推定することにより、被焼
却物の供給量に応じた炉出口ガス温度、流動用空気流量
及び2次空気流量を導出し、これらの値から操作量を決
定し、燃焼制御することを特徴とする流動床焼却炉の混
焼率推定・燃焼制御方法。
1. When burning an incineration object in a fluidized bed incinerator, it is possible to estimate the co-firing rate of incineration objects having different properties in real time by using a signal processed by a fluidized bed incinerator and a signal processing by a neural network. By deriving the furnace outlet gas temperature, the flow air flow rate and the secondary air flow rate according to the supply amount of the incineration object, determining the manipulated value from these values, and performing combustion control. Method for estimating mixed combustion rate and controlling combustion in a furnace.
【請求項2】 計測信号が、流動用空気流量、流動用空
気温度、2次空気流量、2次空気温度、層内注水量、炉
出口ガス温度、層温度及び炉出口酸素濃度である請求項
1記載の流動床焼却炉の混焼率推定・燃焼制御方法。
2. The measurement signal is a flow air flow, a flow air temperature, a secondary air flow, a secondary air temperature, a water injection amount in a bed, a furnace outlet gas temperature, a bed temperature, and a furnace outlet oxygen concentration. 2. The method for estimating and controlling the co-firing rate of a fluidized-bed incinerator according to 1.
JP7187793A 1995-06-30 1995-06-30 Estimation of co-firing rate and combustion control method of fluidized bed incinerator Expired - Fee Related JP2769995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7187793A JP2769995B2 (en) 1995-06-30 1995-06-30 Estimation of co-firing rate and combustion control method of fluidized bed incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7187793A JP2769995B2 (en) 1995-06-30 1995-06-30 Estimation of co-firing rate and combustion control method of fluidized bed incinerator

Publications (2)

Publication Number Publication Date
JPH0914627A true JPH0914627A (en) 1997-01-17
JP2769995B2 JP2769995B2 (en) 1998-06-25

Family

ID=16212333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7187793A Expired - Fee Related JP2769995B2 (en) 1995-06-30 1995-06-30 Estimation of co-firing rate and combustion control method of fluidized bed incinerator

Country Status (1)

Country Link
JP (1) JP2769995B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104197324A (en) * 2014-09-24 2014-12-10 北京中科润东节能技术有限公司 Combustion optimization regulating and controlling method and device of fluidized bed boiler
CN113532137A (en) * 2021-07-23 2021-10-22 中国恩菲工程技术有限公司 Operation control method and device for reaction furnace, medium and electronic equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04161710A (en) * 1990-10-24 1992-06-05 Kubota Corp Device for diagnosing combustion condition in incinerator
JPH05279980A (en) * 1992-03-31 1993-10-26 Toshiba Corp Apparatus for controlling recovery boiler
JPH0634118A (en) * 1992-07-17 1994-02-08 Kubota Corp Combustion controller of incinerator
JPH06332501A (en) * 1993-05-24 1994-12-02 Ishikawajima Harima Heavy Ind Co Ltd Feedback controller and incinerator using the feedback controller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04161710A (en) * 1990-10-24 1992-06-05 Kubota Corp Device for diagnosing combustion condition in incinerator
JPH05279980A (en) * 1992-03-31 1993-10-26 Toshiba Corp Apparatus for controlling recovery boiler
JPH0634118A (en) * 1992-07-17 1994-02-08 Kubota Corp Combustion controller of incinerator
JPH06332501A (en) * 1993-05-24 1994-12-02 Ishikawajima Harima Heavy Ind Co Ltd Feedback controller and incinerator using the feedback controller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104197324A (en) * 2014-09-24 2014-12-10 北京中科润东节能技术有限公司 Combustion optimization regulating and controlling method and device of fluidized bed boiler
CN104197324B (en) * 2014-09-24 2015-11-04 北京中科润东节能技术有限公司 Fluidized-bed combustion boiler burning optimization adjustment control method and device
CN113532137A (en) * 2021-07-23 2021-10-22 中国恩菲工程技术有限公司 Operation control method and device for reaction furnace, medium and electronic equipment

Also Published As

Publication number Publication date
JP2769995B2 (en) 1998-06-25

Similar Documents

Publication Publication Date Title
EP1832809B1 (en) Controlling a waste combustion process
KR100422962B1 (en) Process and device for regulating the combustion in a steam generation facility
EP1832810B1 (en) Controlling a waste combustion process
JP2769995B2 (en) Estimation of co-firing rate and combustion control method of fluidized bed incinerator
EP3696462B1 (en) Method for controlling a boiler of a refuse incineration plant by means of a trained neural network and method for training a neural network for controlling a boiler of a refuse incineration plant
Awais Application of internal model control methods to industrial combustion
JPS6116889B2 (en)
JP2762054B2 (en) Combustion control method for fluidized bed incinerator
CN101713533B (en) Control device and method of thermal power generation plant
Oppenheim et al. Model and control of heat release in engines
JP3115964B2 (en) Incinerator control method
Slanvetpan et al. Process control of a laboratory combustor using artificial neural networks
KR970002100A (en) Combustion control method and apparatus for waste incinerator
JPS58195707A (en) Combustion control method for refuse incinerator
JPH02101313A (en) Air feed rate control method for fluidized bed incinerator with boiler
JP2000257824A (en) Method and device for controlling combustion facility
JP2000028123A (en) Secondary combustion controller for refuse incinerator
Dimirovski et al. Learning control of thermal systems
JP7075021B1 (en) Combustion control device and combustion control method for waste incineration facilities
Liu et al. Design and implementation of an adaptive predictive controller for combustor NOx emissions
Pfannstiel et al. SELFTUNING COMBUSTION CONTROL FOR A FURNACE WITH LOW POWER
Dadiala et al. Model predictive control for an industrial coal pulveriser
Pfannstiel et al. SELFTUNING COMBUSTION CONTROL FOR A FURNACE
JPS6155007B2 (en)
JPH0152653B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees