JPH09145612A - Method and device for inspecting electric field responsive impurity - Google Patents

Method and device for inspecting electric field responsive impurity

Info

Publication number
JPH09145612A
JPH09145612A JP30595495A JP30595495A JPH09145612A JP H09145612 A JPH09145612 A JP H09145612A JP 30595495 A JP30595495 A JP 30595495A JP 30595495 A JP30595495 A JP 30595495A JP H09145612 A JPH09145612 A JP H09145612A
Authority
JP
Japan
Prior art keywords
electric field
polymer film
inspected
electrode
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30595495A
Other languages
Japanese (ja)
Inventor
Shigeru Machida
茂 町田
Taeko Urano
妙子 浦野
Kenji Sano
健二 佐野
Masayuki Oba
正幸 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP30595495A priority Critical patent/JPH09145612A/en
Publication of JPH09145612A publication Critical patent/JPH09145612A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect electric field responsive impurity mixed in an insulation film and a liquid crystal orientation film formed in the middle of manufacturing of a device, by, after time-analyzing the electric signal converted with a photodetecting means, providing a means taking out the integration signal wherein the electric signal is integrated. SOLUTION: Under the condition that a high polymer film and a polyimide film are made to adhere to each other, the pulse signal generated by a pulse generator 1 such as a synthesizer, etc., is applied between an ITO electrode of a sensor head 10 and that on a to-be-inspected material side. Meanwhile, the high polymer film of the sensor head 10 is irradiated with infrared ray from an infrared source 2 through a polarizer 3, and the infrared ray that the high polymer film transmits is converted into an electric signal with an infrared detecting means (photodetecting means) 4 (distributed infrared spectrophotometer and an MCT detector), for detection. The electric signal is amplified with a preamplifier 5 and a main amplifier 6, and inputted into a digital sampling oscilloscope 7 and time-analyzed, for integration. The whole inspection device is controlled with a computer 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は電子部品を構成する
薄膜などに混入した電場応答性不純物を検査するための
装置および方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and method for inspecting electric field-responsive impurities mixed in a thin film or the like constituting an electronic component.

【0002】[0002]

【従来の技術】半導体装置の絶縁膜、低誘電率膜や液晶
ディスプレイの液晶配向膜に代表される先端デバイス用
薄膜は、要求される電気的特性を満たすために、電場に
対して応答する不純物の混入を嫌う。例えば、TFT駆
動の液晶パネルでは、液晶層に電場応答性の不純物が混
入すると白ズミ不良などの不具合が生じる場合がある。
このようなデバイスの製造工程を管理するには、工程作
業からの不純物の混入を防ぐことはもちろん重要である
が、不純物が混入した不良品を速やかに取り除くことも
要望されている。
2. Description of the Related Art Thin films for advanced devices, represented by insulating films of semiconductor devices, low dielectric constant films, and liquid crystal alignment films of liquid crystal displays, are impurities that respond to an electric field in order to satisfy required electrical characteristics. I hate to mix in. For example, in a TFT-driven liquid crystal panel, when electric field-responsive impurities are mixed in the liquid crystal layer, defects such as white spot defects may occur.
In order to control the manufacturing process of such a device, it is of course important to prevent impurities from being mixed in during the process work, but it is also demanded to quickly remove defective products containing impurities.

【0003】しかし、従来は簡便な検査手段がなく、最
終製品に至る前に不純物が混入した不良品を取り除くこ
とは困難であった。このため、半導体装置では、複雑な
配線を施して製品として完成させた後に、電気的特性を
測定し、不具合のある素子を取り除いている。また、液
晶ディスプレイでは、パネルを完成した後に加速試験を
行ない、電圧保持率の低下度合を調べて良・不良を判定
している。したがって、不良品と判定された製品は多数
の工程を経て製造されたにもかかわらず廃棄しなければ
ならないため無駄が多い。
However, conventionally, there is no simple inspection means, and it is difficult to remove defective products containing impurities before reaching the final product. For this reason, in a semiconductor device, after completing a wiring and completing it as a product, the electrical characteristics are measured and the defective element is removed. For liquid crystal displays, an acceleration test is performed after the panel is completed, and the degree of decrease in the voltage holding ratio is checked to determine whether it is good or bad. Therefore, a product determined to be defective is wasteful because it must be discarded even though it has been manufactured through many steps.

【0004】なお、液晶ディスプレイ中のイオン性不純
物については、電気的測定により検出する検査装置が市
販されている(東陽テクニカ社)。具体的には、低周波
の三角波を液晶セルに印加し、電流・電圧信号のリサー
ジュ波形を解析することにより、液晶セル内のイオン密
度を求めるというものである。しかし、ここでも測定に
当っては液晶パネルが必要となり、しかもこの装置をT
FT駆動方式のパネルの検査に適用しようとすると、T
FTが電気容量を有するため正確な測定ができないとい
う欠点がある。
An inspection device for detecting ionic impurities in the liquid crystal display by electrical measurement is commercially available (Toyo Technica Co., Ltd.). Specifically, a low-frequency triangular wave is applied to the liquid crystal cell, and the Lissajous waveform of the current / voltage signal is analyzed to obtain the ion density in the liquid crystal cell. However, again, a liquid crystal panel is required for the measurement, and this device
When trying to apply to the inspection of the FT drive type panel,
There is a drawback in that accurate measurement cannot be performed because the FT has an electric capacity.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、デバ
イスの製造途中で形成される絶縁膜や液晶配向膜に混入
した電場応答性不純物を検出することができる検査装置
および検査方法を提供し、製品完成前に発生した不良品
を事前に取り除いて製造工程の無駄を省くことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an inspection apparatus and an inspection method capable of detecting electric field responsive impurities mixed in an insulating film or a liquid crystal alignment film formed during the manufacture of a device. The purpose is to eliminate the waste of the manufacturing process by removing defective products generated before the product is completed.

【0006】[0006]

【課題を解決するための手段】本発明の電場応答性不純
物の検査装置は、導電性基板上で被検査物中に存在する
電場応答性不純物を検査する装置であって、前記導電性
基板と対向配置される電極と、一軸配向された電場応答
性を示す側鎖または低分子化合物を含有し前記電極と被
検査物との間に密着される高分子膜と、前記電極と前記
導電性基板との間に極性が経時的に反転する交流パルス
電場を印加する手段と、前記電極と被検査物との間の前
記高分子膜に光を照射する光源と、前記光源から照射さ
れ前記高分子膜を通過した光を分光して電気信号に変換
する光検出手段と、前記光検出手段により変換された電
気信号を時間分解した後、それを積算した積算信号を取
り出す手段とを具備したことを特徴とするものである。
An inspection apparatus for electric field responsive impurities according to the present invention is an apparatus for inspecting electric field responsive impurities present in an object to be inspected on a conductive substrate, and the conductive substrate Electrodes arranged to face each other, a polymer film containing a uniaxially oriented side chain or low molecular weight compound showing electric field responsiveness, which is adhered between the electrode and an object to be inspected, the electrode and the conductive substrate Means for applying an alternating pulse electric field whose polarity reverses with time, a light source for irradiating the polymer film between the electrode and the inspection object, and the polymer irradiated from the light source. A light detecting means for spectrally converting the light passing through the film and converting it into an electric signal; and a means for taking out an integrated signal obtained by integrating the electric signal converted by the light detecting means with time. It is a feature.

【0007】前記積算信号を取り出す手段は、さらに積
算信号の経時変化を示す電場応答曲線の傾きを算出する
信号解析手段を具備していてもよい。また、本発明の検
査装置においては、前記電極を前記被検査物の表面と直
交する方向へ駆動する手段と、前記高分子膜を前記被検
査物の表面と平行に送給する手段とを設け、高分子膜の
交換を容易にしてもよい。
The means for taking out the integrated signal may further include a signal analysis means for calculating the slope of the electric field response curve showing the change with time of the integrated signal. Further, in the inspection apparatus of the present invention, means for driving the electrodes in a direction orthogonal to the surface of the inspection object and means for feeding the polymer film parallel to the surface of the inspection object are provided. The exchange of the polymer membrane may be facilitated.

【0008】本発明の電場応答性不純物の検査方法は、
導電性基板上で被検査物中に存在する電場応答性不純物
を検査するにあたり、前記被検査物に、一軸配向された
電場応答性を示す側鎖または低分子化合物を含有する高
分子膜および電極を押圧し、前記電極と前記導電性基板
との間に極性が交互に反転する交流パルス電場を印加し
ながら光を照射し、前記高分子膜を通過した光を時間分
解して測定することにより光強度の経時変化に相当する
電場応答曲線を求め、印加されるパルス電場のそれぞれ
のパルス幅の時間内での前記電場応答曲線の傾きに基づ
いて、前記被検査物中の電場応答性不純物を検出するこ
とを特徴とするものである。本発明の検査方法において
は、前記高分子膜と前記被検査物との間に、不揮発性か
つ電場非応答性の溶媒を介在させて検査することが望ま
しい。
The inspection method for electric field responsive impurities of the present invention is as follows:
When inspecting electric field responsive impurities existing in an inspection object on a conductive substrate, the inspection object is a polymer film and a electrode containing a uniaxially oriented side chain or low molecular weight compound showing an electric field response. By irradiating light while applying an alternating pulse electric field whose polarity is alternately inverted between the electrode and the conductive substrate by pressing, and measuring the time-resolved light passing through the polymer film. Obtaining an electric field response curve corresponding to the change over time of the light intensity, based on the slope of the electric field response curve within the time of each pulse width of the applied pulse electric field, the electric field responsive impurities in the inspection object. It is characterized by detecting. In the inspection method of the present invention, it is desirable to intervene between the polymer film and the object to be inspected with a non-volatile and electric field non-responsive solvent.

【0009】[0009]

【発明の実施の形態】以下、本発明をさらに詳細に説明
する。本発明における検査対象である被検査物は、一般
には導電性基板、例えば半導体基板や透明電極が形成さ
れた液晶セルの透明基板上に形成された絶縁膜や液晶配
向膜である。これらの膜中には、工程作業中に、電場に
応答する性質を有する不純物(電場応答性不純物)が混
入する可能性がある。電場応答性不純物とは、電場の印
加に伴ってデバイス内を移動、または電荷を移動させる
能力を有する化学種のことであり、プロトン、有機物イ
オン、無機物イオン、水素結合能を有する化合物、電子
移動能を有する化合物、大きな双極子モーメントを有す
る化合物、大きな分極率を有する化合物などが挙げられ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The object to be inspected in the present invention is generally an insulating film or a liquid crystal alignment film formed on a conductive substrate such as a semiconductor substrate or a transparent substrate of a liquid crystal cell on which a transparent electrode is formed. Impurities having a property of responding to an electric field (electric field-responsive impurities) may be mixed into these films during the process operation. An electric field responsive impurity is a chemical species that has the ability to move within the device or move an electric charge with the application of an electric field, such as a proton, an organic ion, an inorganic ion, a compound having a hydrogen bonding ability, and an electron transfer. Examples thereof include compounds having an ability, compounds having a large dipole moment, compounds having a large polarizability, and the like.

【0010】本発明においては、被検査物に対して、側
鎖に電場応答性を示す官能基を導入するかまたは電場応
答性を有する低分子化合物を分散させた高分子膜を一軸
配向処理したものを介して電極を密着させる。
In the present invention, a polymer film in which a functional group having an electric field responsiveness is introduced into a side chain or a low molecular weight compound having an electric field responsiveness is dispersed is uniaxially oriented to an object to be inspected. The electrodes are brought into close contact with each other.

【0011】本発明では、一般には後述するように電極
を通して高分子膜に光を照射して検査を行うので、電極
としては検出光に対して透明なものが用いられる。通常
このような電極は透明基板上に形成される。例えばIT
O電極を蒸着したガラス基板または石英基板を好適に使
用できる。
In the present invention, since the polymer film is generally irradiated with light through an electrode to carry out an inspection as described later, an electrode transparent to the detection light is used as the electrode. Usually, such electrodes are formed on a transparent substrate. IT
A glass substrate or a quartz substrate having an O electrode deposited thereon can be preferably used.

【0012】本発明において、高分子膜の材料として
は、10〜20μm厚のフィルムを形成できるものであ
れば特に限定されない。ただし、高分子の主鎖が検出光
の波長域に吸収を持つと、高分子膜を通過する光の強度
が微弱になり時間分解信号とノイズとのS/N比が悪く
なるので、検出光の波長域で吸収が小さいことが求めら
れる。好ましい高分子材料としては、ポリエーテル、ポ
リ塩化ビニル、ポリエチレン、ポリプロピレン、ポリア
クリル酸エステル、ポリメタクリル酸エステル、ポリカ
ーボネート、ポリイミド、ポリアミド、ポリアミック
酸、ポリエチレンテレフタレートなどが挙げられる。
In the present invention, the material of the polymer film is not particularly limited as long as it can form a film having a thickness of 10 to 20 μm. However, if the main chain of the polymer has absorption in the wavelength range of the detection light, the intensity of the light passing through the polymer film becomes weak and the S / N ratio between the time-resolved signal and noise deteriorates. It is required that the absorption is small in the wavelength range of. Preferred polymer materials include polyether, polyvinyl chloride, polyethylene, polypropylene, polyacrylic acid ester, polymethacrylic acid ester, polycarbonate, polyimide, polyamide, polyamic acid, polyethylene terephthalate and the like.

【0013】高分子膜の側鎖に導入される電場応答性を
有する官能基、または高分子膜中に分散される電場応答
性を有する低分子化合物としては、検出光の波長域に吸
収を有するものであれば特に限定されないが、液晶化合
物のメソゲン骨格に相当する骨格を有するものが好まし
い。メソゲン骨格としては、フェニル、ビフェニル、ア
ントラニル、シクロヘキシルフェニル、スチルベン、ア
ゾベンゼン、芳香族イミンなどが挙げられる。また、本
発明において低分子化合物が用いられる場合は、交流パ
ルス電場が印加された際の低分子化合物を運動を速やか
に誘起させるうえで、その分子量が1000以下である
ことが好ましい。
The functional group having electric field responsiveness introduced into the side chain of the polymer film or the low molecular compound having electric field responsiveness dispersed in the polymer film has absorption in the wavelength range of detection light. It is not particularly limited as long as it is a compound, but a compound having a skeleton corresponding to the mesogenic skeleton of the liquid crystal compound is preferable. Examples of the mesogen skeleton include phenyl, biphenyl, anthranyl, cyclohexylphenyl, stilbene, azobenzene, and aromatic imine. When a low molecular weight compound is used in the present invention, the molecular weight thereof is preferably 1000 or less in order to promptly induce motion of the low molecular weight compound when an AC pulsed electric field is applied.

【0014】高分子側鎖の官能基または高分子膜中に分
散させた低分子化合物を一軸配向させるには、高分子膜
を延伸する方法、高分子膜の作製時に電場を印加する方
法、または高分子膜の作製時に磁場を印加する方法が用
いられる。
In order to uniaxially orient the functional group of the polymer side chain or the low molecular weight compound dispersed in the polymer film, a method of stretching the polymer film, a method of applying an electric field during the production of the polymer film, or A method of applying a magnetic field is used during the production of the polymer film.

【0015】本発明において、電場応答性不純物を検出
するために高分子膜に照射される光は、高分子主鎖に吸
収されにくく、側鎖官能基または低分子化合物に吸収さ
れる波長域であれば特に限定されず、紫外、可視、赤外
のいずれでもよい。例えば、ポリメチルメタクリレート
の側鎖にシアノビフェニル基を導入し、一軸配向性を付
与した高分子膜の場合、シアノ基の特定吸収域の波長を
有する光が用いられる。このような検出光を用いれば、
時間分解信号とノイズとのS/N比を飛躍的に向上させ
ることができる。
In the present invention, the light irradiated to the polymer film for detecting the electric field responsive impurities is not easily absorbed by the polymer main chain, and is in the wavelength range where it is absorbed by the side chain functional group or the low molecular weight compound. There is no particular limitation as long as it is ultraviolet, visible, or infrared. For example, in the case of a polymer film in which a cyanobiphenyl group is introduced into the side chain of polymethylmethacrylate to impart uniaxial orientation, light having a wavelength in the specific absorption region of the cyano group is used. With such detection light,
The S / N ratio between the time-resolved signal and noise can be dramatically improved.

【0016】以下、本発明の原理を簡単に説明する。本
発明では、導電性基板上に形成された被検査物に、一軸
配向された電場応答性を示す側鎖または低分子化合物を
含有する高分子膜および電極を押圧して被検査物と高分
子膜とを密着させた状態で、電極と導電性基板との間に
極性が交互に反転する交流パルス電場を印加する。この
ように高分子膜に交流パルス電場が印加されると、高分
子膜中の電場応答性を示す側鎖官能基または低分子化合
物の運動が誘起される。この状態で、高分子膜に光(例
えば赤外光)を照射して透過光の強度を検出し、その変
化を時間分解して測定する。この結果から、透過光強度
の経時変化に相当する電場応答曲線を、互いに極性が異
なるパルス電場が印加された場合についてそれぞれ求め
る。なお、高分子膜に入射した後、反射される光の強度
を検出してもよい。
The principle of the present invention will be briefly described below. In the present invention, the object to be inspected formed on the conductive substrate, the polymer film containing a side chain or a low molecular weight compound having uniaxially oriented electric field responsiveness and an electrode are pressed to press the object to be inspected and the polymer. An AC pulse electric field whose polarity is alternately inverted is applied between the electrode and the conductive substrate in the state where the film and the conductive substrate are in close contact with each other. When an AC pulsed electric field is applied to the polymer film in this way, the movement of the side chain functional group or the low molecular weight compound exhibiting the electric field response in the polymer film is induced. In this state, the polymer film is irradiated with light (for example, infrared light) to detect the intensity of transmitted light, and the change is time-resolved and measured. From this result, electric field response curves corresponding to changes in transmitted light intensity with time are obtained for pulsed electric fields having polarities different from each other. The intensity of the reflected light may be detected after entering the polymer film.

【0017】このとき被検査物に電場応答性不純物が含
まれているか否かによって、得られる電場応答曲線が変
化する。すなわち、被検査物に電場応答性不純物が混入
している場合、被検査物に交流パルス電場が印加される
と、被検査物中の電場応答性不純物が高分子膜の方向へ
移動し、高分子膜中に取り込まれるか、被検査物と高分
子膜との界面に蓄積して電気二重層を形成する。そし
て、印加電場の一部が電場応答性不純物に作用するた
め、高分子膜中の電場応答性を示す側鎖または低分子化
合物に実効的に印加される電場が低減する。この結果、
高分子膜に印加される交流パルス電場のパルス幅の時間
内で電場応答曲線の傾きが様々に変化する。この電場応
答曲線の傾きの変化の仕方は、不純物の量や種類だけで
なく、不純物量がある程度以上になると印加される電場
の極性によっても異なってくる。したがって、それぞれ
互いに極性が異なるパルス電場を印加したときの電場応
答曲線の傾きを解析することにより、被検査物に混入し
ている不純物の検出、同定、定量が可能になる。
At this time, the obtained electric field response curve changes depending on whether or not the object to be inspected contains electric field responsive impurities. That is, when an electric field responsive impurity is mixed in the inspection object and the AC pulsed electric field is applied to the inspection object, the electric field responsive impurities in the inspection object move toward the polymer film, and It is either taken into the molecular film or accumulated at the interface between the object to be inspected and the polymer film to form an electric double layer. Since a part of the applied electric field acts on the electric field responsive impurities, the electric field effectively applied to the side chain or the low molecular weight compound showing the electric field responsiveness in the polymer film is reduced. As a result,
The gradient of the electric field response curve changes variously within the pulse width of the AC pulse electric field applied to the polymer film. The manner in which the slope of the electric field response curve changes depends not only on the amount and type of impurities, but also on the polarity of the applied electric field when the amount of impurities exceeds a certain level. Therefore, by analyzing the slope of the electric field response curve when pulse electric fields having different polarities are applied, it is possible to detect, identify, and quantify the impurities mixed in the inspection object.

【0018】本発明においては、上記測定の際に、被検
査物から高分子膜への不純物の移動が容易になるよう
に、導電性基板上の被検査物と高分子膜との間に不揮発
性で、かつ電場に応答しない溶媒を介在させてもよい。
ここで用いられる溶媒は、被検査物を溶解したり膨潤さ
せないものであることが好ましく、例えばシクロヘキサ
ノン、ヘキサン、アセトンなどを挙げることができる。
In the present invention, in order to facilitate the migration of impurities from the object to be inspected to the polymer film during the above-mentioned measurement, a non-volatile material is provided between the object to be inspected on the conductive substrate and the polymer film. A solvent that is permeable and does not respond to an electric field may be interposed.
The solvent used here is preferably one that does not dissolve or swell the test object, and examples thereof include cyclohexanone, hexane, and acetone.

【0019】なお、本発明で用いられる光としては、電
場応答曲線を感度よく求めることができる観点から、上
述したような赤外光が特に好ましい。また、本発明にお
いて用いる交流パルス電場の波形は特に限定されず、矩
形波、三角波、正弦波やこれらの合成波などを用いるこ
とができる。ここで本発明におけるパルス幅とは、交流
パルス電場を構成する基本波が矩形波、三角波、正弦波
のいずれの場合でも、この基本波の1/2周期に対応す
る時間T、すなわち交流パルス電場を構成する各基本波
ごとに、被検査物に1つの極性の電場を印加する最少の
時間を意味する。
As the light used in the present invention, infrared light as described above is particularly preferable from the viewpoint of obtaining an electric field response curve with high sensitivity. Further, the waveform of the AC pulse electric field used in the present invention is not particularly limited, and a rectangular wave, a triangular wave, a sine wave, a composite wave thereof, or the like can be used. Here, the pulse width in the present invention means the time T corresponding to 1/2 cycle of the fundamental wave, that is, the AC pulsed electric field, regardless of whether the fundamental wave forming the AC pulsed electric field is a rectangular wave, a triangular wave, or a sine wave. It means the minimum time for which an electric field of one polarity is applied to the object to be inspected for each of the fundamental waves.

【0020】また、上述した電場応答曲線の傾きの変化
の仕方は印加される交流パルス電場のパルス幅によって
も異なり、しかもパルス幅に依存する変化の仕方は個々
の不純物で特有である。この点をより具体的に説明する
と以下のようになる。被検査物に電場を印加すると、被
検査物中の電場応答性不純物は電場に応答して移動す
る。次に、電場の極性が反転すると電場応答性不純物に
作用する力の向きが反転して不純物は上記と逆方向へ移
動する。しかし、パルス幅が小さくなると、電場の極性
が反転しても不純物の運動の反転が追随できなくなり、
電場応答曲線により観測できなくなる。このように不純
物の観測ができなくなるパルス幅は、不純物の実効的な
質量および電気的性質によって異なるため、このパルス
幅と不純物の種類とを対応づけることができる。したが
って、交流パルス電場のパルス幅を変化させて電場応答
曲線を観測することにより、被検査物中に混入した不純
物を特定することができる。
Further, the manner of changing the slope of the electric field response curve described above differs depending on the pulse width of the applied AC pulse electric field, and the manner of changing depending on the pulse width is peculiar to each impurity. This will be described more specifically below. When an electric field is applied to the inspection object, the electric field responsive impurities in the inspection object move in response to the electric field. Next, when the polarity of the electric field is reversed, the direction of the force acting on the electric field responsive impurity is reversed, and the impurity moves in the opposite direction. However, when the pulse width becomes smaller, the reversal of the movement of impurities cannot be followed even if the polarity of the electric field is reversed,
It becomes unobservable due to the electric field response curve. Since the pulse width at which the impurity cannot be observed varies depending on the effective mass and electrical properties of the impurity, the pulse width can be associated with the type of the impurity. Therefore, by changing the pulse width of the AC pulsed electric field and observing the electric field response curve, the impurities mixed in the inspection object can be specified.

【0021】さらに、パルス幅の異なる複数のパルス列
を合成した合成交流パルス電場を印加し、この合成交流
パルス電場を構成する各パルス列に対応する電場応答曲
線を観測すれば、被検査物中に混入した複数の特定不純
物を検出することもできる。
Further, if a synthetic AC pulse electric field obtained by synthesizing a plurality of pulse trains having different pulse widths is applied and an electric field response curve corresponding to each pulse train constituting the synthetic AC pulse electric field is observed, it is mixed in the object to be inspected. It is also possible to detect a plurality of specified impurities.

【0022】本発明の検査装置としては、具体的には、
例えば分光測定および時間分解信号処理が可能な赤外分
光装置などの分光装置に、導電性基板上に形成された被
検査物を保持し、上述した高分子膜を介して電極を密着
させた状態で、電極と導電性基板との間に極性が経時的
に反転する交流パルス電場を印加する手段とを設けたも
のが用いられる。ここで用いられる赤外分光装置は、赤
外光光源と、赤外光光源から照射され被検査物を通過し
た赤外光を分光して電気信号に変換する赤外検出手段
(光検出手段)と、赤外検出手段により変換された電気
信号を時間分解した後、それを積算した積算信号を取り
出す手段とを有するものである。さらにこのとき、得ら
れた積算信号の経時変化を示す電場応答曲線の傾きを算
出する信号解析手段を具備していることが好ましい。
As the inspection device of the present invention, specifically,
For example, a state in which an object to be inspected formed on a conductive substrate is held in a spectroscopic device such as an infrared spectroscopic device capable of spectroscopic measurement and time-resolved signal processing, and electrodes are brought into close contact with each other through the polymer film described above. Then, a means provided with a means for applying an AC pulsed electric field whose polarity reverses with time is used between the electrode and the conductive substrate. The infrared spectroscope used here is an infrared light source and infrared detection means (light detection means) for separating infrared light emitted from the infrared light source and passing through the inspection object into electrical signals. And a means for taking out an integrated signal obtained by integrating the electric signal converted by the infrared detecting means with time. Further, at this time, it is preferable to include signal analysis means for calculating the slope of the electric field response curve showing the change with time of the obtained integrated signal.

【0023】具体的にここでの赤外検出手段としては、
例えば高感度なMCT(水銀−カドミウム−テルル)検
出器などと赤外分光光度計とを組み合わせたものが用い
られる。一方、赤外検出手段により変換された電気信号
を時間分解した後、それを積算した積算信号を取り出す
手段としては、ボックスカー積分器やデジタルオシロス
コープが用いられる。なお、検出される赤外光は微弱で
あるので、一般的には赤外検出手段で変換された電気信
号を増幅器で増幅する。
Specifically, as the infrared detecting means here,
For example, a combination of a highly sensitive MCT (mercury-cadmium-tellurium) detector and the like and an infrared spectrophotometer is used. On the other hand, a boxcar integrator or a digital oscilloscope is used as a means for taking out an integrated signal obtained by integrating the electric signal converted by the infrared detecting means with time. Since the infrared light to be detected is weak, the electric signal converted by the infrared detecting means is generally amplified by an amplifier.

【0024】また本発明ではこのような検査装置を用
い、上述したように被検査物中に混入した複数の不純物
を同定するために、交流パルス電場を印加する手段によ
りパルス幅の異なる複数のパルス列を合成した合成交流
パルス電場を印加するようにし、信号を取り出す手段に
より赤外検出手段により変換された電気信号を合成交流
パルス電場を構成する各パルス列に対応する複数の電気
信号に分解し、各電気信号を時間分解した後、それを積
算した積算信号を取り出すようにしてもよい。
Further, in the present invention, using such an inspection apparatus, in order to identify a plurality of impurities mixed in the object to be inspected as described above, a plurality of pulse trains having different pulse widths are applied by means for applying an AC pulse electric field. Is applied to the composite AC pulse electric field, the electric signal converted by the infrared detecting means by the means for extracting the signal is decomposed into a plurality of electric signals corresponding to each pulse train constituting the composite AC pulse electric field, After the electric signal is time-resolved, an integrated signal obtained by integrating the electric signal may be taken out.

【0025】さらに、本発明の検査装置においては、電
極を被検査物の表面と直交する方向へ駆動する手段と、
高分子膜を被検査物の表面と平行に送給する手段(例え
ば供給ローラーおよび巻き取りローラー)とを設けても
よい。このような手段を設ければ、所定の検査が終了し
た後に、電極を上方へ駆動して被検査物から離し、高分
子膜を巻き取って新たな測定に必要な分量だけ送給し、
再度電極を下方へ駆動して高分子膜を導電性基板上の被
検査物に密着させて固定することにより、高分子膜の交
換を容易にして連続的な検査を行うことができる。同様
に、被検査物が形成された導電性基板を搬送する手段を
設けてもよい。また本発明では被検査物が必ずしも導電
性基板上に形成されたものでなくてもよく、例えばこう
した搬送手段上に導電性基板を付設した装置構成とし
て、被検査物をこの導電性基板上に載置したうえで被検
査物中の電場応答性不純物を検査しても構わない。
Further, in the inspection apparatus of the present invention, means for driving the electrodes in a direction orthogonal to the surface of the object to be inspected,
A means for feeding the polymer film parallel to the surface of the object to be inspected (for example, supply roller and winding roller) may be provided. If such a means is provided, after the predetermined inspection is completed, the electrode is driven upward to separate from the object to be inspected, the polymer film is wound up, and an amount necessary for a new measurement is fed.
By driving the electrode downward again to bring the polymer film into close contact with the object to be inspected on the conductive substrate and fixing the same, the exchange of the polymer film can be facilitated and continuous inspection can be performed. Similarly, a means for transporting the conductive substrate on which the inspection object is formed may be provided. Further, in the present invention, the object to be inspected does not necessarily have to be formed on the conductive substrate. For example, the object to be inspected is formed on the conductive substrate as a device configuration in which the conductive substrate is attached on the conveying means. After mounting, the electric field responsive impurities in the inspection object may be inspected.

【0026】[0026]

【実施例】以下、本発明の実施例を説明する。モノマー
としてメタクリル酸8.8gを乾燥塩化メチレン150
ccに溶解し、DCC(ジシクロヘキシルカルボジイミ
ド)19.4gを加えて0℃で20分間反応させた。こ
の溶液に、側鎖官能基となる4−(4−ヒドロキシブチ
ル)−4’−シアノビフェニル25.1gを乾燥塩化メ
チレン100ccに溶解した溶液をゆっくりと滴下し
た。滴下終了後、溶液の温度をゆっくりと室温まで上昇
させ、そのまま1時間反応させた。その後、反応溶液か
ら塩化メチレンを留去し、生成物をカラムで分離精製し
た。得られたメタクリル酸エステルをトルエン中、ラジ
カル重合開始剤AIBN(2,2’−アゾビスイソブチ
ロニトリル)の存在下、100℃に加熱して1時間重合
させた。徐冷して反応を停止した後、濃縮し、ヘキサン
で再沈精製した。このようにして得られた高分子溶液の
粘度測定から、この高分子の分子量は約15万であるこ
とがわかった。この高分子60mgをTHF(テトラヒ
ドロフラン)4ccに溶解し、ガラス板上にキャスト
し、溶媒を揮散させて成膜した。この高分子膜を剥がし
取り、2cm×3cmに切り出した。マイクロゲージに
よりこの高分子膜の膜厚を測定したところ約12μmで
あった。次に、この高分子膜に500gの重りをつけ、
200kg/cm2 で延伸した。
Embodiments of the present invention will be described below. Methacrylic acid 8.8g as monomer 150m dry methylene chloride
It was dissolved in cc, 19.4 g of DCC (dicyclohexylcarbodiimide) was added, and the mixture was reacted at 0 ° C. for 20 minutes. To this solution, a solution prepared by dissolving 25.1 g of 4- (4-hydroxybutyl) -4'-cyanobiphenyl, which is a side chain functional group, in 100 cc of dry methylene chloride was slowly added dropwise. After completion of the dropping, the temperature of the solution was slowly raised to room temperature and the reaction was continued for 1 hour. Then, methylene chloride was distilled off from the reaction solution, and the product was separated and purified by a column. The obtained methacrylic acid ester was heated to 100 ° C. in toluene in the presence of a radical polymerization initiator AIBN (2,2′-azobisisobutyronitrile) to polymerize for 1 hour. After slowly cooling to stop the reaction, the mixture was concentrated and reprecipitated with hexane for purification. From the viscosity measurement of the polymer solution thus obtained, it was found that the polymer had a molecular weight of about 150,000. 60 mg of this polymer was dissolved in 4 cc of THF (tetrahydrofuran), cast on a glass plate, and the solvent was evaporated to form a film. This polymer film was peeled off and cut into 2 cm × 3 cm. When the film thickness of this polymer film was measured with a micro gauge, it was about 12 μm. Next, attach a weight of 500g to this polymer film,
It was stretched at 200 kg / cm 2 .

【0027】延伸前後で高分子膜中の側鎖官能基である
シアノ基に帰属する2230cm-1の赤外吸収の二色比
を測定し、シアノ基の配向度を求めた。シアノ基の長軸
と短軸との比は、延伸前には1:1であったのに対し、
延伸後には3:1となった。この結果から、延伸後の高
分子膜では側鎖官能基が一軸配向していることがわかっ
た。
Before and after stretching, the dichroic ratio of the infrared absorption at 2230 cm −1 , which belongs to the cyano group which is a side chain functional group in the polymer film, was measured to determine the degree of orientation of the cyano group. The ratio of the long axis to the short axis of the cyano group was 1: 1 before stretching, whereas
It became 3: 1 after stretching. From this result, it was found that the side chain functional groups were uniaxially oriented in the stretched polymer film.

【0028】一方、20mm×30mmのガラス基板1
1の表面にITO電極12を形成したものを用意し、こ
れを蒸留水流で1時間洗浄し、塩化メチレンで5分間超
音波洗浄し、フロンで蒸気洗浄した。
On the other hand, a glass substrate 1 of 20 mm × 30 mm
An ITO electrode 12 formed on the surface of No. 1 was prepared, washed with a stream of distilled water for 1 hour, ultrasonically washed with methylene chloride for 5 minutes, and steam washed with chlorofluorocarbon.

【0029】次に図1に示すように、ITO電極12付
きのガラス基板11を上述した高分子膜の保持部材を兼
ねる端子13の下面に保持し、高分子膜14をITO電
極12に密着させた状態で端子13の側面に止具15で
固定して、センサーヘッド10を作製した。また、ガラ
ス基板21上に形成したITO電極22上に溶媒可溶性
ポリイミドを塗布して、被検査物であるポリイミド膜2
0を成膜した。このポリイミド膜20をエタノール蒸気
に3時間さらして、ポリイミド膜中にイオン性不純物で
あるエタノールを混入した。こうして得られたセンサー
ヘッド10の高分子膜14と被検査物であるポリイミド
膜20とを密着させた状態で、図2に示すような検査装
置で検査を実施した。
Next, as shown in FIG. 1, the glass substrate 11 with the ITO electrode 12 is held on the lower surface of the terminal 13 which also functions as a holding member for the polymer film, and the polymer film 14 is brought into close contact with the ITO electrode 12. In this state, the sensor head 10 was manufactured by fixing it to the side surface of the terminal 13 with a stopper 15. In addition, a solvent-soluble polyimide is applied on the ITO electrode 22 formed on the glass substrate 21 so that the polyimide film 2 to be inspected.
0 was deposited. This polyimide film 20 was exposed to ethanol vapor for 3 hours to mix ethanol, which is an ionic impurity, into the polyimide film. With the polymer film 14 of the sensor head 10 thus obtained and the polyimide film 20 which is the object to be inspected in close contact with each other, an inspection was performed by an inspection device as shown in FIG.

【0030】図2は、電場応答性不純物の検査装置の一
例を示すブロック図である。図2において、高分子膜1
4とポリイミド膜20とを密着させた状態で、シンセサ
イザーなどのパルスジェネレーター1で発生するパルス
信号をセンサーヘッド10のITO電極12と被検査物
側のITO電極22との間に印加する。一方、赤外光光
源2からの赤外光を偏光子3を通してセンサーヘッド1
0の高分子膜14に照射し、高分子膜14を透過した赤
外光を赤外検出手段(光検出手段)4(分散型赤外分光
光度計およびMCT検出器)で電気信号に変換して検出
する。この電気信号をプリアンプ5、メインアンプ6で
増幅し、デジタルサンプリングオシロスコープ7へ入力
して時間分解し積算する。検査装置の全体はコンピュー
タ8で制御する。なお偏光子3は特に設置しなくてもか
まわない。
FIG. 2 is a block diagram showing an example of an apparatus for inspecting electric field responsive impurities. In FIG. 2, the polymer film 1
With the polyimide film 20 in close contact with the polyimide film 20, a pulse signal generated by a pulse generator 1 such as a synthesizer is applied between the ITO electrode 12 of the sensor head 10 and the ITO electrode 22 of the object side. On the other hand, the infrared light from the infrared light source 2 is passed through the polarizer 3 to the sensor head 1
The infrared light transmitted through the polymer film 14 is converted into an electric signal by the infrared detecting means (light detecting means) 4 (dispersive infrared spectrophotometer and MCT detector). To detect. The electric signal is amplified by the preamplifier 5 and the main amplifier 6, and is input to the digital sampling oscilloscope 7 to be time-resolved and integrated. The entire inspection device is controlled by the computer 8. The polarizer 3 does not have to be installed.

【0031】また、パルス幅の異なる複数のパルス列を
合成した合成交流パルス電場を発生させ、赤外検出手段
4により変換された電気信号を合成交流パルス電場を構
成する各パルス列に対応する複数の電気信号に分解する
場合にも、コンピュータ8による制御を行う。
Further, a composite AC pulse electric field is generated by combining a plurality of pulse trains having different pulse widths, and the electric signal converted by the infrared detecting means 4 is converted into a plurality of electric currents corresponding to each pulse train constituting the composite AC pulse electric field. The control by the computer 8 is also performed when the signal is decomposed.

【0032】上記の検査装置を用い、高分子膜14の側
鎖に導入されたシアノ基のCN三重結合に着目し、22
30cm-1における三重結合伸縮振動の赤外吸収に基づ
いて、検査を行った。この際、高分子膜14とポリイミ
ド膜20とを密着させ、90秒経過して両者の界面さら
には高分子膜14の内部へのエタノールの移動が安定し
た後、パルス幅1ms、電圧±7Vの交流パルス電圧を
印加し、電場応答曲線を調べた。ただしここでは、高分
子膜14とポリイミド膜20とを密着させて10秒、3
0秒、45秒、60秒、75秒、90秒経過した後にそ
れぞれ電場応答曲線を測定し、75秒後と90秒後の曲
線が一致していたので90秒経過後にはエタノールの移
動が安定したものとみなした。この結果を図3に示す。
Using the above inspection apparatus, paying attention to the CN triple bond of the cyano group introduced into the side chain of the polymer film 14, 22
The examination was carried out on the basis of the infrared absorption of the triple bond stretching vibration at 30 cm -1 . At this time, the polymer film 14 and the polyimide film 20 are brought into close contact with each other, and after 90 seconds, the movement of ethanol to the interface between them and the inside of the polymer film 14 is stabilized, and then the pulse width is 1 ms and the voltage is ± 7 V. An AC pulse voltage was applied and the electric field response curve was examined. However, here, the polymer film 14 and the polyimide film 20 are brought into close contact with each other for 10 seconds, 3 seconds.
The electric field response curves were measured after 0 seconds, 45 seconds, 60 seconds, 75 seconds, and 90 seconds respectively, and the curves after 75 seconds and 90 seconds were in agreement, so the movement of ethanol was stable after 90 seconds had elapsed. I thought it was done. The result is shown in FIG.

【0033】図3に示されるように、電場の極性が反転
する前後でパルス幅時間内での電場応答曲線の傾きが大
きく変化し、しかも最初に印加されるパルスの極性が正
か負かによって傾きの変化の様子が異なる2つの電場応
答曲線が観測された。すなわち最初に印加されるパルス
の極性が正の場合には、図3中aに示されるように電場
応答曲線の傾きは電場の極性が反転する前には緩やかで
反転後には大きくなっている。逆に最初に印加されるパ
ルスの極性が負の場合には、図3中bに示されるように
電場応答曲線の傾きは電場の極性が反転する前には大き
く反転後には緩やかになっている。
As shown in FIG. 3, the slope of the electric field response curve within the pulse width time largely changes before and after the polarity of the electric field is reversed, and depending on whether the polarity of the pulse applied first is positive or negative. Two electric field response curves with different slope changes were observed. That is, when the polarity of the pulse applied first is positive, the slope of the electric field response curve is gentle before the polarity of the electric field is inverted and becomes large after the polarity is inverted, as indicated by a in FIG. On the contrary, when the polarity of the pulse applied first is negative, the slope of the electric field response curve is large before the polarity of the electric field is inverted and is gentle after the inversion, as indicated by b in FIG. .

【0034】図3に示されるような、印加されるパルス
電場の極性の違いによる電場応答曲線の大幅な変化は、
被検査物であるポリイミド膜中に混入したエタノール
(またはこれに含まれる水分)によって引き起こされた
と考えられる。すなわち、エタノール(またはこれに含
まれる水分)がプロトンを放出し電場応答性不純物とし
て作用すると考えられる。
A large change in the electric field response curve due to the difference in polarity of the applied pulse electric field as shown in FIG.
It is considered that this is caused by ethanol (or water contained in this) mixed in the polyimide film which is the inspection object. That is, it is considered that ethanol (or water contained therein) releases protons and acts as an electric field responsive impurity.

【0035】なお、予め被検査物であるポリイミド膜中
に種々の既知濃度のエタノールを混入したときの電場応
答曲線を測定し、これに基づいて検量線を作成しておく
ことにより、被検査物中に混入したエタノールを定量で
きる。このような手法により図3の電場応答曲線を評価
したところ、被検査物であるポリイミド膜中にエタノー
ルがモル比で1000:3.5の割合で含まれているこ
とがわかった。
It should be noted that the electric field response curve when various known concentrations of ethanol are mixed in the polyimide film to be inspected in advance, and a calibration curve is prepared based on this curve to prepare an inspected object. The amount of ethanol mixed in can be quantified. When the electric field response curve of FIG. 3 was evaluated by such a method, it was found that the polyimide film as the inspection object contained ethanol at a molar ratio of 1000: 3.5.

【0036】次に、高分子膜14とポリイミド膜20と
の間に無極性溶媒であるシクロヘキサノンを介在させた
状態で両者を密着させ、上記と同様に検査を行った。こ
の場合、高分子膜14とポリイミド膜20とを密着させ
た後、ポリイミド膜20から高分子膜14の方向へのエ
タノールの移動が45秒で安定化し、図3と同様の電場
応答曲線が得られることがわかった。
Next, the non-polar solvent, cyclohexanone, was interposed between the polymer film 14 and the polyimide film 20, and the two were brought into close contact with each other, and the same inspection as above was performed. In this case, after the polymer film 14 and the polyimide film 20 are brought into close contact with each other, the movement of ethanol from the polyimide film 20 toward the polymer film 14 is stabilized in 45 seconds, and an electric field response curve similar to that in FIG. 3 is obtained. I found out that

【0037】さらに、センサーヘッドの高分子膜として
上記と別のものを用いて検査を行った。すなわち、分子
量15万のポリメタクリル酸メチル10gを乾燥塩化メ
チレン150ccに溶解し、この溶液に電場応答性の低
分子化合物として4−ペンチル−4’−シアノビフェニ
ル30gをゆっくりと滴下した。そのまま3時間撹拌し
て、均一溶液とした。この溶液を濃縮して、ポリメタク
リル酸メチル組成物を得た。この高分子組成物60mg
をTHF(テトラヒドロフラン)4ccに溶解し、ガラ
ス板上にキャストし、溶媒を揮散させて成膜した。この
高分子膜を剥がし取り、2cm×3cmに切り出した。
マイクロゲージによりこの高分子膜の膜厚を測定したと
ころ約12μmであった。この高分子膜に500gの重
りをつけ、200kg/cm2 で延伸した。延伸前後で
高分子膜に分散された低分子化合物が有するシアノ基に
帰属する2230cm-1の赤外吸収の二色比を測定し、
シアノ基の配向度を求めた。シアノ基の長軸と短軸との
比は、延伸前には1:1であったのに対し、延伸後には
2.8:1となった。この結果から、延伸後の高分子膜
中では低分子化合物が一軸配向していることがわかっ
た。このような高分子膜を用いて上記と同様に検査を行
った場合でも、図3と同様な電場応答曲線が得られるこ
とがわかった。
Further, an inspection was conducted using a polymer film other than the above as the polymer film of the sensor head. That is, 10 g of polymethylmethacrylate having a molecular weight of 150,000 was dissolved in 150 cc of dry methylene chloride, and 30 g of 4-pentyl-4′-cyanobiphenyl as an electric field responsive low molecular weight compound was slowly added dropwise to this solution. The mixture was stirred as it was for 3 hours to obtain a uniform solution. This solution was concentrated to obtain a polymethylmethacrylate composition. 60 mg of this polymer composition
Was dissolved in 4 cc of THF (tetrahydrofuran), cast on a glass plate, and the solvent was evaporated to form a film. This polymer film was peeled off and cut into 2 cm × 3 cm.
When the film thickness of this polymer film was measured with a micro gauge, it was about 12 μm. A weight of 500 g was attached to the polymer film and stretched at 200 kg / cm 2 . Before and after the stretching, the dichroic ratio of infrared absorption at 2230 cm −1 belonging to the cyano group of the low molecular weight compound dispersed in the polymer film was measured,
The orientation degree of the cyano group was determined. The ratio of the major axis to the minor axis of the cyano group was 1: 1 before stretching, while it was 2.8: 1 after stretching. From this result, it was found that the low molecular weight compound was uniaxially oriented in the stretched polymer film. It was found that an electric field response curve similar to that shown in FIG. 3 can be obtained even when the above-mentioned inspection is performed using such a polymer film.

【0038】以上の実施例では、図1に示すように予め
ガラス基板11上のITO電極12に対して高分子膜1
4を固定したセンサーヘッド10を作製したが、本発明
はこのような方法に限定されず、種々の変形例が考えら
れる。例えば、電極を被検査物の表面と直交する方向へ
駆動できるようにするとともに、高分子膜を被検査物の
表面に平行に送給できるようにし、高分子膜の交換を容
易にして多数の被検査物に対して連続的な検査を行える
ようにしてもよい。このような機構を備えた本発明に係
る電場応答性不純物検査装置の変形例について図4およ
び図5を参照して説明する。
In the above embodiment, as shown in FIG. 1, the polymer film 1 was previously formed on the ITO electrode 12 on the glass substrate 11.
Although the sensor head 10 with the fixed No. 4 was manufactured, the present invention is not limited to such a method, and various modifications can be considered. For example, the electrodes can be driven in a direction orthogonal to the surface of the object to be inspected, and the polymer film can be fed parallel to the surface of the object to be inspected to facilitate replacement of the polymer film and You may enable it to perform continuous inspection with respect to a to-be-inspected object. A modified example of the electric field responsive impurity inspection device according to the present invention having such a mechanism will be described with reference to FIGS. 4 and 5.

【0039】図4の検査装置において、ガラス基板21
上にITO電極22および被検査物20が形成された試
料は、ベルトコンベヤー101により搬送され、検出用
光ファイバー102が設置された位置で停止する。ベル
トコンベヤー101の上方には2つのローラーケーシン
グ103、103が設けられ、それぞれのローラーケー
シング103、103内には高分子膜14の送給手段と
して、供給ローラー104および巻き取りローラー10
5が設けられている。高分子膜14は、供給ローラー1
04および巻き取りローラー105に掛け渡され、これ
らの中間において被検査物20の上方に配置される。さ
らに、高分子膜14の上方にはITO電極12が形成さ
れたガラス基板11を上下に駆動する中空アーム106
が設けられている。この中空アーム106の内部には光
源側光ファイバー107が挿入され、その先端がガラス
基板11に当接するように配置されている。
In the inspection apparatus of FIG. 4, the glass substrate 21
The sample on which the ITO electrode 22 and the inspection object 20 are formed is conveyed by the belt conveyor 101 and stopped at the position where the detection optical fiber 102 is installed. Two roller casings 103, 103 are provided above the belt conveyor 101, and a supply roller 104 and a take-up roller 10 are provided in the respective roller casings 103, 103 as means for feeding the polymer film 14.
5 are provided. The polymer film 14 is a supply roller 1.
04 and the take-up roller 105, and is arranged above the object 20 to be inspected in the middle thereof. Further, a hollow arm 106 for vertically driving the glass substrate 11 having the ITO electrode 12 formed above the polymer film 14.
Is provided. A light source side optical fiber 107 is inserted into the inside of the hollow arm 106, and the distal end of the optical fiber 107 is placed in contact with the glass substrate 11.

【0040】図4の装置では、所定の検査が終了するた
びに、電極12が形成された基板11を上方へ駆動して
被検査物20から離し、高分子膜14を巻き取って新た
な測定に必要な分量だけ送給し、一方で被測定物20が
形成された試料を搬送した後、再度電極12が形成され
た基板11を下方へ駆動して新たな高分子膜14を次の
被検査物20に密着させて固定して検査を行う。したが
って、高分子膜14の交換が容易となり、しかも被検査
物20が形成された基板21の搬送も自動的に行なわれ
るので、連続的な検査を行うことができる。
In the apparatus shown in FIG. 4, every time a predetermined inspection is completed, the substrate 11 on which the electrode 12 is formed is driven upward to separate it from the object 20 to be inspected, and the polymer film 14 is wound up for a new measurement. And the sample on which the object to be measured 20 is formed is conveyed, and then the substrate 11 on which the electrode 12 is formed is driven downward again to form a new polymer film 14 on the next object. The inspection is performed by closely contacting and fixing the inspection object 20. Therefore, the exchange of the polymer film 14 is facilitated, and the substrate 21 on which the inspection object 20 is formed is automatically conveyed, so that continuous inspection can be performed.

【0041】図5の検査装置は、上部および下部の1対
の金属ホルダー201、202を有する。これらの金属
ホルダー201、202の間に、ガラス基板21上にI
TO電極22および被検査物20が形成された試料が挿
入され、ネジ203により固定される。上部の金属ホル
ダー201には、図4と同様に、2つのローラーケーシ
ング103、103が設けられ、それぞれのローラーケ
ーシング103、103内には高分子膜14の供給ロー
ラー104および巻き取りローラー105が設けられ、
高分子膜14はこれらの中間において被検査物20の上
方に配置される。高分子膜14の上方にはITO電極1
2が形成されたガラス基板11を上下に駆動する中空ア
ーム106が設けられている。この中空アーム106の
内部には光源側光ファイバー107が挿入され、その先
端がガラス基板11に当接するように配置されている。
また、下部金属ホルダー202の中央部には透明窓20
4が設けられている。そして、検出用光ファイバー10
2の先端がこの透明窓204に面するように配置されて
いる。
The inspection apparatus shown in FIG. 5 has a pair of upper and lower metal holders 201 and 202. Between the metal holders 201 and 202, the I on the glass substrate 21 is
The sample on which the TO electrode 22 and the inspection object 20 are formed is inserted and fixed by the screw 203. Similar to FIG. 4, the upper metal holder 201 is provided with two roller casings 103 and 103, and in each of the roller casings 103 and 103, a supply roller 104 for the polymer film 14 and a winding roller 105 are provided. The
The polymer film 14 is arranged above the object 20 to be inspected in the middle thereof. The ITO electrode 1 is provided above the polymer film 14.
A hollow arm 106 for vertically moving the glass substrate 11 on which 2 is formed is provided. A light source side optical fiber 107 is inserted into the inside of the hollow arm 106, and the distal end of the optical fiber 107 is placed in contact with the glass substrate 11.
In addition, the transparent window 20 is provided at the center of the lower metal holder 202.
4 are provided. And the optical fiber 10 for detection
The tip of 2 is arranged so as to face the transparent window 204.

【0042】この装置では、金属ホルダー201、20
2と、高分子膜14の送給・巻き取り機構と、電極12
が形成された基板11の駆動機構とを一体的にポータブ
ルに取り扱うことができる。
In this device, the metal holders 201, 20
2, the feeding and winding mechanism of the polymer film 14, and the electrode 12
It is possible to handle the drive mechanism of the substrate 11 on which is formed integrally and portable.

【0043】なお、以上の説明では、高分子膜14を透
過する光を検出する場合について説明したが、例えば図
6に示すように電極12が形成された基板11を保持す
る中空アーム106に光源側光ファイバー107および
検出用光ファイバー102を挿入し、高分子膜14に入
射した後、反射される光を検出するようにしてもよい。
In the above description, the case where the light transmitted through the polymer film 14 is detected has been described. For example, as shown in FIG. 6, the hollow arm 106 holding the substrate 11 on which the electrode 12 is formed serves as a light source. The side optical fiber 107 and the detection optical fiber 102 may be inserted so that the reflected light is detected after entering the polymer film 14.

【0044】[0044]

【発明の効果】以上詳述したように本発明によれば、デ
バイスの製造途中で形成される絶縁膜や液晶配向膜に混
入した電場応答性不純物を検出することができる検査装
置および検査方法を提供でき、製品完成前に発生した不
良品を事前に取り除いて製造工程の無駄を省くことがで
きる。
As described in detail above, according to the present invention, there is provided an inspection apparatus and an inspection method capable of detecting electric field responsive impurities mixed in an insulating film or a liquid crystal alignment film formed during the manufacture of a device. It is possible to provide a defective product that has been produced before the completion of the product, thereby eliminating waste of the manufacturing process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に基づいて電場応答性不純物の検査する
際の電極および高分子膜と導電性基板上の被検査物との
配置を示す断面図。
FIG. 1 is a cross-sectional view showing an arrangement of electrodes, a polymer film, and an object to be inspected on a conductive substrate when inspecting an electric field responsive impurity according to the present invention.

【図2】本発明に係る電場応答性不純物の検査装置の一
例を示すブロック図。
FIG. 2 is a block diagram showing an example of an inspection apparatus for an electric field responsive impurity according to the present invention.

【図3】本発明の電場応答性不純物検査装置を用いて測
定された電場応答曲線を示す特性図。
FIG. 3 is a characteristic diagram showing an electric field response curve measured using the electric field responsive impurity inspection device of the present invention.

【図4】本発明の他の実施例における電場応答性不純物
検査装置の一部を示す構成図。
FIG. 4 is a configuration diagram showing a part of an electric field responsive impurity inspection device according to another embodiment of the present invention.

【図5】本発明の他の実施例における電場応答性不純物
検査装置の一部を示す構成図。
FIG. 5 is a configuration diagram showing a part of an electric field responsive impurity inspection device according to another embodiment of the present invention.

【図6】本発明のさらに他の実施例における電場応答性
不純物検査装置の一部を示す構成図。
FIG. 6 is a configuration diagram showing a part of an electric field responsive impurity inspection device according to still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…パルスジェネレーター、2…赤外光光源、3…偏光
子、4…赤外検出手段(分散型赤外分光光度計およびM
CT検出器)、5…プリアンプ、6…メインアンプ、7
…デジタルサンプリングオシロスコープ、8…コンピュ
ータ、10…センサーヘッド、11…ガラス基板、12
…ITO電極、13…端子、14…高分子膜、15…止
具、20…ポリイミド膜(被検査物)、21…ガラス基
板、22…ITO電極、101…ベルトコンベヤー、1
02…検出用光ファイバー、103…ローラーケーシン
グ、104…供給ローラー、105…巻き取りローラ
ー、106…中空アーム、107…光源側光ファイバ
ー、201、202…金属ホルダー、203…ネジ、2
04…透明窓。
DESCRIPTION OF SYMBOLS 1 ... Pulse generator, 2 ... Infrared light source, 3 ... Polarizer, 4 ... Infrared detecting means (dispersive infrared spectrophotometer and M
CT detector), 5 ... preamplifier, 6 ... main amplifier, 7
… Digital sampling oscilloscope, 8… Computer, 10… Sensor head, 11… Glass substrate, 12
... ITO electrode, 13 ... Terminal, 14 ... Polymer film, 15 ... Stopper, 20 ... Polyimide film (inspection object), 21 ... Glass substrate, 22 ... ITO electrode, 101 ... Belt conveyor, 1
02 ... Detection optical fiber, 103 ... Roller casing, 104 ... Supply roller, 105 ... Winding roller, 106 ... Hollow arm, 107 ... Light source side optical fiber, 201, 202 ... Metal holder, 203 ... Screw, 2
04 ... Transparent window.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大場 正幸 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masayuki Oba 1 Komukai Toshiba-cho, Kouki-ku, Kawasaki-shi, Kanagawa Incorporated Toshiba Research and Development Center

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 導電性基板上で被検査物中に存在する電
場応答性不純物を検査する装置であって、前記導電性基
板と対向配置される電極と、一軸配向された電場応答性
を示す側鎖または低分子化合物を含有し前記電極と被検
査物との間に密着される高分子膜と、前記電極と前記導
電性基板との間に極性が経時的に反転する交流パルス電
場を印加する手段と、前記電極と被検査物との間の前記
高分子膜に光を照射する光源と、前記光源から照射され
前記高分子膜を通過した光を分光して電気信号に変換す
る光検出手段と、前記光検出手段により変換された電気
信号を時間分解した後、それを積算した積算信号を取り
出す手段とを具備したことを特徴とする電場応答性不純
物の検査装置。
1. An apparatus for inspecting an electric field responsive impurity existing in an object to be inspected on a conductive substrate, wherein an electrode arranged to face the conductive substrate and uniaxially oriented electric field responsiveness. A polymer film containing a side chain or a low molecular weight compound, which is adhered between the electrode and the object to be inspected, and an alternating pulse electric field whose polarity reverses with time is applied between the electrode and the conductive substrate. Means, a light source for irradiating the polymer film between the electrode and the object to be inspected with light, and a photodetector for spectrally converting the light emitted from the light source and passing through the polymer film into an electric signal. An electric field responsive impurity inspecting device comprising: a means and a means for time-resolving the electric signal converted by the light detecting means and then taking out an integrated signal obtained by integrating the electric signal.
【請求項2】 前記積算信号を取り出す手段が、積算信
号の経時変化を示す電場応答曲線の傾きを算出する信号
解析手段をさらに具備したことを特徴とする請求項1記
載の電場応答性不純物の検査装置。
2. The electric field responsive impurity according to claim 1, wherein the means for extracting the integrated signal further comprises signal analysis means for calculating a slope of an electric field response curve showing a change with time of the integrated signal. Inspection device.
【請求項3】 前記電極を前記被検査物の表面と直交す
る方向へ駆動する手段と、前記高分子膜を前記被検査物
の表面と平行に送給する手段とを具備したことを特徴と
する請求項1または2記載の電場応答性不純物の検査装
置。
3. A means for driving the electrode in a direction perpendicular to the surface of the object to be inspected, and a means for feeding the polymer film parallel to the surface of the object to be inspected. The inspection apparatus for an electric field responsive impurity according to claim 1 or 2.
【請求項4】 導電性基板上で被検査物中に存在する電
場応答性不純物を検査するにあたり、前記被検査物に、
一軸配向された電場応答性を示す側鎖または低分子化合
物を含有する高分子膜および電極を押圧し、前記電極と
前記導電性基板との間に極性が交互に反転する交流パル
ス電場を印加しながら光を照射し、前記高分子膜を通過
した光を時間分解して測定することにより光強度の経時
変化に相当する電場応答曲線を求め、印加されるパルス
電場のそれぞれのパルス幅の時間内での前記電場応答曲
線の傾きに基づいて、前記被検査物中の電場応答性不純
物を検出することを特徴とする電場応答性不純物の検査
方法。
4. When inspecting an electric field responsive impurity present in an object to be inspected on a conductive substrate, the object to be inspected is
A uniaxially oriented polymer film containing side chains or low molecular weight compounds exhibiting electric field response and an electrode are pressed, and an alternating pulse electric field whose polarity is alternately inverted is applied between the electrode and the conductive substrate. While irradiating light, obtain the electric field response curve corresponding to the temporal change of the light intensity by measuring the light passing through the polymer film by time resolution, and within the time of each pulse width of the applied pulsed electric field. The method for inspecting an electric field responsive impurity in the object to be inspected according to the inclination of the electric field responsive curve according to 1.
【請求項5】 前記高分子膜と前記被検査物との間に、
不揮発性かつ電場非応答性の溶媒を介在させることを特
徴とする請求項3記載の電場応答性不純物の検査方法。
5. Between the polymer film and the inspection object,
The method for inspecting electric field-responsive impurities according to claim 3, characterized in that a non-volatile solvent having no electric field response is interposed.
JP30595495A 1995-11-24 1995-11-24 Method and device for inspecting electric field responsive impurity Pending JPH09145612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30595495A JPH09145612A (en) 1995-11-24 1995-11-24 Method and device for inspecting electric field responsive impurity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30595495A JPH09145612A (en) 1995-11-24 1995-11-24 Method and device for inspecting electric field responsive impurity

Publications (1)

Publication Number Publication Date
JPH09145612A true JPH09145612A (en) 1997-06-06

Family

ID=17951300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30595495A Pending JPH09145612A (en) 1995-11-24 1995-11-24 Method and device for inspecting electric field responsive impurity

Country Status (1)

Country Link
JP (1) JPH09145612A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030006808A (en) * 2001-07-16 2003-01-23 삼성전자 주식회사 Refining method of liquid crystal and fabricating method of liquid crystal display using the refining method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030006808A (en) * 2001-07-16 2003-01-23 삼성전자 주식회사 Refining method of liquid crystal and fabricating method of liquid crystal display using the refining method

Similar Documents

Publication Publication Date Title
US5017007A (en) Apparatus and microbase for surface-enhanced raman spectroscopy system and method for producing same
Çapan et al. Characterization of Langmuir–Blodgett films of a calix [8] arene and sensing properties towards volatile organic vapors
JPS5824861A (en) Method of measuring organism active substance
JPH06167443A (en) Measuring apparatus utilizing surface plasmon resonance
US20110122410A1 (en) Optical Reflectometry Setup
KR20090088916A (en) Method for detecting surface plasmon resonance
US4115699A (en) Apparatus for sensitive detection and quantitative analysis of biological and biochemical substances
CN106546727B (en) A kind of preparation method of Graphene glass chip
Ogawa et al. Giant electrooptic response of excitons in porphyrin J-aggregates
Dickert et al. Supramolecular structures and chemical sensing
JP2685425B2 (en) Liquid crystal element evaluation method
CN108169428A (en) A kind of formaldehyde gas, humidity and temperature integrated monitor equipment
JPH09145612A (en) Method and device for inspecting electric field responsive impurity
JP2744221B2 (en) Liquid crystal element evaluation method and evaluation apparatus
JP3243937B2 (en) Biomimetic sensor
JP2883593B2 (en) Liquid crystal device evaluation device
CN108918353A (en) A kind of method of particle matter qualitative detection in atmospheric environment
Marowsky et al. Second-harmonic generation in quinquethienyl monolayers
JP2703524B2 (en) Liquid crystal element evaluation method and evaluation apparatus
JPH0843307A (en) Inspection device and inspection method for oriented film
CN110849846A (en) Method and system for detecting concentration of gaseous compound based on polymer dispersed liquid crystal
McGraw Study of molecular orientation in poly (ethylene terephthalate) fibers by fluorescence polarization
JP3249236B2 (en) Odor detection device
JP2850856B2 (en) Interface analysis method
CN112881312B (en) Detection device for simultaneously monitoring solution change and sensor solid/liquid interface change