JPH0843307A - Inspection device and inspection method for oriented film - Google Patents

Inspection device and inspection method for oriented film

Info

Publication number
JPH0843307A
JPH0843307A JP17639294A JP17639294A JPH0843307A JP H0843307 A JPH0843307 A JP H0843307A JP 17639294 A JP17639294 A JP 17639294A JP 17639294 A JP17639294 A JP 17639294A JP H0843307 A JPH0843307 A JP H0843307A
Authority
JP
Japan
Prior art keywords
fluorescence
alignment film
excitation light
film
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17639294A
Other languages
Japanese (ja)
Other versions
JP2677199B2 (en
Inventor
Ken Sumiyoshi
研 住吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP17639294A priority Critical patent/JP2677199B2/en
Publication of JPH0843307A publication Critical patent/JPH0843307A/en
Application granted granted Critical
Publication of JP2677199B2 publication Critical patent/JP2677199B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To carry out a condition inspection of a rubbed oriented film by projecting polarized excitation light to the oriented film, and analyzing excited fluorescence. CONSTITUTION:A liquid crystal display base board 2, being an examinee, is irradiated with linearly polarized or circularly polarized excitation light 1. An oriented film 3 on the base board 2 is excited by the light 1 to emit fluorescence. Since this fluorescence is deflected in a polarizing state due to an arranged molecular chain, the fluorescence is once passed through a polarizing plate 4 to be detected by using a detector 5. In order to analyze the polarizing state of the fluorescence, the plate 4 is rotated so as to measure fluorescent intensity in each polarizing direction, or the film 3 being a sample to be tested is rotated relative to incident linearly polarized light so as to analyze the polarizing state of the fluorescence. Accordingly, when a molecular chain in the film 3 is in arrangement, the fluorescent intensity is remarkably changed according to an azimuth of the plate 4. When the molecular chain in the film 3 is not arranged, the fluorescent intensity is not changed according to the azimuth of the plate 4. A molecular chain arranging state is thus analyzed and consequently, an orientated film inspection on the base board 2 can be carried out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液晶表示装置の製造時
に必要とされる配向膜の検査装置および検査方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alignment film inspection apparatus and inspection method required for manufacturing a liquid crystal display device.

【0002】[0002]

【従来の技術】液晶表示装置においては、棒状の液晶分
子を配列させるために、配向処理が行われている。広く
用いられている配向処理は以下に述べるようなものであ
る。初めに、基板上に有機高分子からなる配向膜を形成
する。この後、レーヨンなどのバフ布で配向膜を擦る。
この擦る処理は、ラビング処理と呼ばれている。この結
果、液晶分子は擦った基板面内の方向(以下では、ラビ
ング方向と呼ぶ。)に配向するようになる。
2. Description of the Related Art In a liquid crystal display device, an alignment treatment is performed in order to align rod-shaped liquid crystal molecules. A widely used alignment treatment is as described below. First, an alignment film made of an organic polymer is formed on a substrate. After that, the alignment film is rubbed with a buff cloth such as rayon.
This rubbing process is called a rubbing process. As a result, the liquid crystal molecules are aligned in the in-plane direction of the rubbed substrate (hereinafter referred to as the rubbing direction).

【0003】以上の現象は、以下のように説明されてい
る。配向膜中の高分子鎖はラビング処理以前には乱雑な
配置をしており、ラビング処理を行うことにより配向膜
表面の高分子鎖が整列するようになる。この整列は、高
分子の一軸延伸と同様な過程で生じると考えられてい
る。以上のような配向膜表面の高分子鎖の整列は、赤外
吸収測定や複屈折測定によって確認されている(赤外吸
収測定の例としては、“ジ エフクト オブ ラブド
ポリマー フィルムズ オン ザ リキッド クリスタ
ル アライメント”、イシハラ等、リキッド クリスタ
ル 4巻 669ページ 1989年に見ることができ
る。また、複屈折測定の例は、“ザ メカニズム オブ
ポリマー アライメント オブ リキッド クリスタ
ル マテリアルズ、ギアリー等、ジャーナル オブ ア
プライド フィジックス 62巻4100ページ 19
87年に見ることができる)。
The above phenomenon is explained as follows. The polymer chains in the alignment film are randomly arranged before the rubbing treatment, and the rubbing treatment aligns the polymer chains on the surface of the alignment film. This alignment is believed to occur in a process similar to uniaxial stretching of polymers. The alignment of polymer chains on the surface of the alignment film as described above has been confirmed by infrared absorption measurement or birefringence measurement.
Polymer Films on the Liquid Crystal Alignment ", Ishihara et al., Liquid Crystal Vol. Journal of Applied Physics Volume 62 4100 Page 19
It can be seen in 1987).

【0004】[0004]

【発明が解決しようとする課題】ところが、実際の液晶
表示基板上の配向膜を検査するには以下のような課題が
ある。液晶表示装置は、赤外域において不透明なガラス
基板を用いて作成される。このため、実際の液晶表示基
板上の配向膜を検査することは困難である。
However, the inspection of the actual alignment film on the liquid crystal display substrate has the following problems. A liquid crystal display device is manufactured using a glass substrate that is opaque in the infrared region. Therefore, it is difficult to inspect the actual alignment film on the liquid crystal display substrate.

【0005】複屈折量が微少なため、複屈折測定におい
ては配向膜の種類によっては測定できない場合がある。
また、ガラス基板自身が残留歪みを持っている場合もあ
り、配向膜自身の複屈折量のみを測定することが困難で
ある。
Since the amount of birefringence is very small, the birefringence measurement may not be possible depending on the type of the alignment film.
In addition, the glass substrate itself may have residual strain, and it is difficult to measure only the amount of birefringence of the alignment film itself.

【0006】[0006]

【課題を解決するための手段】第1の本発明は、一定の
偏光状態を有する励起光を照射する機構と、被験物であ
る配向膜を有する基板を設置する試料台と、被験物から
の蛍光が入射する偏光板と、検出器を備えていることか
ら構成される配向膜検査装置である。
A first aspect of the present invention provides a mechanism for irradiating an excitation light having a certain polarization state, a sample stage on which a substrate having an alignment film, which is a test object, is installed, and It is an alignment film inspection device including a polarizing plate on which fluorescence enters and a detector.

【0007】第2の本発明は、一定の偏光状態を有する
励起光を被験物である配向膜を有する基板に照射する機
構と、被験物からの蛍光を入射する偏光分離素子と、偏
光分離素子からの2つの偏光を検出する検出器を備えて
いることから構成される配向膜検査装置である。
A second aspect of the present invention is a mechanism for irradiating a substrate having an alignment film, which is a test object, with excitation light having a certain polarization state, a polarization separation element for injecting fluorescence from the test object, and a polarization separation element. The alignment film inspection apparatus is provided with a detector for detecting the two polarized lights from the.

【0008】本発明の配向膜検査方法は、一定の偏光状
態を有する励起光を、被験試料である配向膜を有する基
板に照射し、被験試料から発せられた蛍光を偏光板に入
射させ検出器で検出し、前記偏光板を回転させて検出器
の出力を測定することを特徴とする。なお、偏光板を回
転する代りに、被験試料を回転させてもよいし、励起光
である直線偏光の偏光方位を回転させてもよい。
The alignment film inspection method of the present invention irradiates a substrate having an alignment film, which is a test sample, with excitation light having a certain polarization state, and causes the fluorescence emitted from the test sample to enter a polarizing plate. And the output of the detector is measured by rotating the polarizing plate. The test sample may be rotated instead of rotating the polarizing plate, or the polarization direction of the linearly polarized light as the excitation light may be rotated.

【0009】また、本発明の他の配向膜検査方法は、一
定の偏光状態を有する励起光を被験試料である配向膜を
有する基板に照射し、被験試料から発した蛍光を偏光方
向によって分離し、分離した蛍光を各々の検出器で検出
し、両検出器の信号を比較することを特徴とする。
Another method of inspecting an alignment film of the present invention is to irradiate a substrate having an alignment film, which is a test sample, with excitation light having a certain polarization state, and separate the fluorescence emitted from the test sample according to the polarization direction. The separated fluorescence is detected by each detector, and the signals of both detectors are compared.

【0010】[0010]

【作用】本発明の第1の配向膜検査装置および配向膜検
査方法の原理および作用を図1を用いて説明する。図1
では透過型の測定形態になっているが、反射型の測定形
態でも可能である。本発明においては、励起光が被験物
である液晶表示用基板に照射される。この励起光は、直
線偏光かあるいは円偏光を用いる。液晶表示装置用基板
上の配向膜は、励起光によって励起され蛍光を発する。
発せられる蛍光は、整列した分子鎖のために偏光状態が
偏っている。そこで、蛍光を一度偏光板を通過させ検出
器を用いて検出する。この蛍光の偏光状態を解析するた
めに、偏光板を回転させて、各偏光方位に対する蛍光強
度を測定する。あるいは、被験試料である配向膜を入射
直線偏光に対して回転させて、蛍光の偏光状態を解析す
る。これにより、配向膜中の分子鎖が配列していれば偏
光板の方位角によって蛍光強度が大きく変化する。も
し、配向膜中の分子鎖が配列していなければ、偏光板の
方位角で蛍光強度は変化しない。以上のように本発明を
用いることにより、配向膜中の分子鎖配列状態を解析す
ることができる。この結果、液晶表示装置用基板上の配
向膜の検査を行うことができる。
The principle and operation of the first alignment film inspection apparatus and alignment film inspection method of the present invention will be described with reference to FIG. FIG.
In the above, a transmission type measurement form is used, but a reflection type measurement form is also possible. In the present invention, the excitation light is applied to the liquid crystal display substrate which is the test object. This excitation light uses linearly polarized light or circularly polarized light. The alignment film on the liquid crystal display device substrate emits fluorescence when excited by excitation light.
The fluorescence emitted is polarized due to the aligned chains. Therefore, the fluorescence is once passed through the polarizing plate and detected using a detector. In order to analyze the polarization state of this fluorescence, the polarizing plate is rotated and the fluorescence intensity for each polarization direction is measured. Alternatively, the alignment film as the test sample is rotated with respect to the incident linearly polarized light, and the polarization state of fluorescence is analyzed. As a result, if the molecular chains in the alignment film are aligned, the fluorescence intensity changes greatly depending on the azimuth angle of the polarizing plate. If the molecular chains in the alignment film are not aligned, the fluorescence intensity does not change with the azimuth angle of the polarizing plate. As described above, by using the present invention, it is possible to analyze the molecular chain arrangement state in the alignment film. As a result, the alignment film on the liquid crystal display device substrate can be inspected.

【0011】次に本発明の第2の配向膜検査装置および
検査方法の原理および作用について図2を用いて説明す
る。ラビング処理を施した配向膜は、膜全体の分子鎖が
配列するのではなく、配向膜の極表面の分子鎖のみが配
列する。このように、配向膜はラビング処理によって、
分子鎖が整列している極表面の異方層とラビング処理に
よって影響を受けない分子鎖が整列していない等方層か
ら構成されると考えられることができる。このため、入
射直線偏光によって発する蛍光は、異方層からの蛍光と
等方層からの蛍光から構成される。異方層からの蛍光は
分子鎖の整列に関する情報を含んでいるが、等方層から
の蛍光の方が大きい。そこで本発明では、図1の偏光板
に代わり偏光分離素子を用いる。発生した蛍光を偏光分
離素子によって偏光方向で分離し、2つの検出器で同時
に受光する。そして、2つの検出器の信号の差を検出す
る。配向膜の等方層からの蛍光は、偏光方向が偏ってい
ないため、2つの検出器の信号が等しくなり、信号差を
検出する段階で相殺される。一方、異方層からの蛍光
は、整列した分子鎖のため偏光方向が偏っているため、
2つの検出器の信号間に差が現れる。これから、偏光分
離した蛍光信号の差が小さければ、極表面の分子整列が
大きく、液晶を十分に配列させることができると判断で
きる。一方、偏光分離した蛍光信号の差が小さければ、
液晶を配列させることができないと判断できる。
Next, the principle and operation of the second alignment film inspection apparatus and inspection method of the present invention will be described with reference to FIG. In the alignment film subjected to the rubbing treatment, the molecular chains of the entire film are not aligned, but only the molecular chains on the extreme surface of the alignment film are aligned. In this way, the alignment film is rubbed,
It can be considered to be composed of an anisotropic layer on the polar surface where the molecular chains are aligned and an isotropic layer where the molecular chains that are not affected by the rubbing treatment are not aligned. Therefore, the fluorescence emitted by the incident linearly polarized light is composed of the fluorescence from the anisotropic layer and the fluorescence from the isotropic layer. The fluorescence from the anisotropic layer contains information on the molecular chain alignment, but the fluorescence from the isotropic layer is larger. Therefore, in the present invention, a polarization separating element is used instead of the polarizing plate of FIG. The generated fluorescence is separated in the polarization direction by the polarization separation element and is received by the two detectors at the same time. Then, the difference between the signals of the two detectors is detected. The fluorescence from the isotropic layer of the alignment film is not biased in the polarization direction, so that the signals of the two detectors become equal to each other and are canceled at the stage of detecting the signal difference. On the other hand, the fluorescence from the anisotropic layer is polarized due to the aligned molecular chains,
Differences appear between the signals of the two detectors. From this, it can be judged that if the difference between the polarized and separated fluorescence signals is small, the molecular alignment on the pole surface is large and the liquid crystals can be sufficiently aligned. On the other hand, if the difference between the fluorescence signals separated by polarization is small,
It can be judged that the liquid crystal cannot be aligned.

【0012】以上のように、本発明を用いれば、配向膜
の極表面の整列した分子鎖のみの情報を引き出すことが
可能である。この結果、液晶表示装置用基板上の配向膜
のラビング状態を確認することができる。
As described above, according to the present invention, it is possible to extract information only on aligned molecular chains on the extreme surface of the alignment film. As a result, the rubbing state of the alignment film on the liquid crystal display substrate can be confirmed.

【0013】[0013]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。図3は本発明の第1の実施例を示す図であ
る。本実施例においては、顕微鏡の反射照射部分に水銀
ランプ8を用いた。また、水銀ランプ8からの光が単色
化されるように450nmの干渉フィルター9を配置し
た。単色化された励起光は偏光板10を経てダイクロイ
ックプリズム11に入射し、対物レンズ13を通過して
被験物である試料に入射する。試料の配向膜は励起され
て蛍光を発するが、発せられた蛍光がダイクロイックプ
リズム11に入射し干渉フィルター500nmを通過後
偏光板に入射するように設置した。また、偏光板はステ
ッピングモーターによって偏光透過方位が回転するよう
に設計している。また、用いたダイクロイックプリズム
は、450nmの光を反射し、500nmの光は透過す
るように設計したものを用いた。ダイクロイックプリズ
ムは、試料表面で反射した励起光を反射するため、光電
子倍増管12に励起光は入射しない。光電子倍増管12
の光電流は電圧に変換され電圧計17に送られる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 3 is a diagram showing a first embodiment of the present invention. In this example, the mercury lamp 8 was used in the reflection irradiation portion of the microscope. Further, the interference filter 9 of 450 nm is arranged so that the light from the mercury lamp 8 is monochromatic. The monochromatic excitation light enters the dichroic prism 11 through the polarizing plate 10, passes through the objective lens 13, and enters the sample as the test object. The orientation film of the sample was excited to emit fluorescence, and the emitted fluorescence was placed on the dichroic prism 11, passed through the interference filter 500 nm, and then incident on the polarizing plate. The polarizing plate is designed so that the polarization transmission direction is rotated by a stepping motor. The dichroic prism used was designed to reflect light of 450 nm and transmit light of 500 nm. Since the dichroic prism reflects the excitation light reflected on the sample surface, the excitation light does not enter the photomultiplier tube 12. Photomultiplier tube 12
Is converted into a voltage and sent to the voltmeter 17.

【0014】試料として、ガラス基板上にポリイミド配
向膜(日本合成ゴム製 AL1051)をスピン塗布し
200℃で焼成したものを2枚用意した。この内1枚の
試料をレーヨン製のバブ布でラビングした。この後、図
3の試料回転ステージ14上に試料を置き、ステージ1
4を回転させて電圧を記録した。結果を図4に示す。ラ
ビング処理を施さない試料は偏光板を回転させても電圧
に変化は生じなかったが、ラビング処理を施した試料で
はステージを回転させると電圧変化を生じた。
Two samples were prepared by spin-coating a polyimide alignment film (AL1051 made by Japan Synthetic Rubber) on a glass substrate and baking it at 200 ° C. One of the samples was rubbed with a rayon bubbling cloth. After this, the sample is placed on the sample rotation stage 14 of FIG.
4 was rotated and the voltage recorded. FIG. 4 shows the results. In the sample without rubbing treatment, the voltage did not change even if the polarizing plate was rotated, but in the sample with rubbing treatment, the voltage changed when the stage was rotated.

【0015】試料回転ステージを回転させる代わりに、
偏光板を回転させても図4と同様の信号を得ることがで
きた。また、励起光用偏光板、すなわち直線偏光の偏光
面を回転させても図4と同様の信号を得ることができ
た。
Instead of rotating the sample rotation stage,
Even if the polarizing plate was rotated, the same signal as in FIG. 4 could be obtained. Moreover, even if the polarization plate for excitation light, that is, the plane of polarization of linearly polarized light was rotated, the same signal as in FIG. 4 could be obtained.

【0016】以上のように、本発明の測定方法を用いる
ことによりラビングによる配向膜中の分子鎖の配列を検
出することができる。これにより、ラビング処理後の配
向膜の状態を検査することが可能となる。
As described above, the arrangement of the molecular chains in the alignment film by rubbing can be detected by using the measuring method of the present invention. This makes it possible to inspect the state of the alignment film after the rubbing treatment.

【0017】図5は本発明の第2の実施例を示す図であ
る。本実施例においては、顕微鏡の反射照明部分に水銀
ランプ8を用いた。また、水銀ランプからの光が単色化
されるように450nmの干渉フィルター9を配置し
た。単色化された励起光は偏光板10を経てダイクロイ
ックプリズマ11に入射し、対物レンズ13を通過して
被験物である試料に入射する。試料の配向膜3は励起さ
れて蛍光を発するが、発せられた蛍光がダイクロイック
プリズムに入射し干渉フィルター500nmを通過後ウ
オラストンプリズムに入射するように配置した。用いた
ダイクロイックプリズム11は、450nmの光を反射
するように設計したものを用いた。ダイクロイックプリ
ズム11は、試料表面で反射した励起光を反射するた
め、光電子倍増管に励起光は入射しない。ウオラストン
プリズムは、蛍光を2つの偏光方向の異なる光線に分離
する。それぞれ分離された光線を独立に検出するため
に、2つの光電子倍増管12,15を配置した。2つの
光電子倍増管12,15の光電流は電圧に変換し、両電
圧を差動入力増幅器16に入力するようにした。
FIG. 5 is a diagram showing a second embodiment of the present invention. In this embodiment, the mercury lamp 8 is used in the reflection illumination part of the microscope. Further, the interference filter 9 of 450 nm is arranged so that the light from the mercury lamp is monochromatic. The monochromatic excitation light enters the dichroic prism 11 through the polarizing plate 10, passes through the objective lens 13, and enters the sample as a test object. The orientation film 3 of the sample is excited so that it emits fluorescence, but the emitted fluorescence enters the dichroic prism, passes through the interference filter 500 nm, and then enters the Wollaston prism. The dichroic prism 11 used was designed to reflect light of 450 nm. Since the dichroic prism 11 reflects the excitation light reflected on the surface of the sample, the excitation light does not enter the photomultiplier tube. The Wollaston prism separates fluorescent light into two light beams with different polarization directions. Two photomultiplier tubes 12 and 15 are arranged in order to independently detect the separated light beams. The photocurrents of the two photomultiplier tubes 12 and 15 are converted into voltages, and both voltages are input to the differential input amplifier 16.

【0018】試料として、ガラス基板上にポリイミド配
向膜(日本合成ゴム製 AL1051)をスピン塗布し
200℃で焼成したものを2枚用意した。この内1枚の
試料をレーヨン製のバフ布でラビングした。この後、試
料を図5の試料回転ステージ14上に置き、試料回転ス
テージを回転させながら、差動入力増幅器16の出力を
記録した。結果を、図6に示す。図6から分かるように
ラビング処理を施さない試料については大きな信号を観
測できず、信号の大きさも試料回転ステージの角度に依
存しない。一方、ラビング処理を施した試料では、試料
回転ステージの角度に依存した大きさの信号を得ること
ができた。
Two samples were prepared by spin-coating a polyimide alignment film (AL1051 made by Japan Synthetic Rubber) on a glass substrate and baking it at 200 ° C. One of the samples was rubbed with a rayon buff cloth. After this, the sample was placed on the sample rotation stage 14 of FIG. 5, and the output of the differential input amplifier 16 was recorded while rotating the sample rotation stage. The results are shown in Fig. 6. As can be seen from FIG. 6, a large signal cannot be observed for the sample not subjected to the rubbing process, and the magnitude of the signal does not depend on the angle of the sample rotation stage. On the other hand, in the case of the rubbing-treated sample, a signal having a magnitude depending on the angle of the sample rotation stage could be obtained.

【0019】本発明の第3の実施例として、図5の試料
回転ステージの代わりXYステージを取り付けたものを
用いた。また、被験試料として、200mm角のガラス
基板にポリイミド配向膜(日本合成ゴム製 AL105
1)をスピン塗布後200℃で焼成しラビングしたもの
を用意した。XYステージに被験試料を置き、差動入力
増幅器の出力が最大になるように被験試料の設置方向を
調整した。この後、XYステージをX軸方向に送りなが
ら、差動入力増幅器の出力を記録した。結果を、図7に
示す。これにより、図7の左側の信号が右側の信号より
大きくなる傾向があることが分かる。これは、面内のラ
ビング強度が不均一なためと判断される。
As the third embodiment of the present invention, an XY stage is used instead of the sample rotation stage of FIG. In addition, as a test sample, a polyimide alignment film (AL105 made by Japan Synthetic Rubber) on a glass substrate of 200 mm square was used.
1) was spin-coated, baked at 200 ° C., and rubbed to prepare. The test sample was placed on the XY stage, and the installation direction of the test sample was adjusted so that the output of the differential input amplifier was maximized. After that, the output of the differential input amplifier was recorded while the XY stage was moved in the X-axis direction. The results are shown in Fig. 7. From this, it can be seen that the signal on the left side of FIG. 7 tends to be larger than the signal on the right side. This is because the in-plane rubbing strength is non-uniform.

【0020】[0020]

【発明の効果】以上のように、本発明によれば、容易に
しかも確実にラビングした配向膜の状態を検査する装置
と検査方法をうることができる。
As described above, according to the present invention, it is possible to provide an apparatus and an inspection method for inspecting the state of the alignment film which is easily and surely rubbed.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の本発明の原理と作用を説明する図であ
る。
FIG. 1 is a diagram for explaining the principle and operation of the first present invention.

【図2】第2の本発明の原理と作用を説明する図であ
る。
FIG. 2 is a diagram for explaining the principle and operation of the second invention.

【図3】本発明の第1の実施例を示す図である。FIG. 3 is a diagram showing a first embodiment of the present invention.

【図4】本発明の第1の実施例における測定結果を示す
図である。
FIG. 4 is a diagram showing a measurement result in the first example of the present invention.

【図5】本発明の第2の実施例を示す図である。FIG. 5 is a diagram showing a second embodiment of the present invention.

【図6】本発明の第2の実施例における測定結果を示す
図である。
FIG. 6 is a diagram showing a measurement result in the second embodiment of the present invention.

【図7】本発明の第3の実施例の測定結果を示す図であ
る。
FIG. 7 is a diagram showing measurement results of the third example of the present invention.

【符号の説明】[Explanation of symbols]

1 励起光 2 基板 3 配向膜 4,10 偏光板 5,7 検出器 6 偏光分離素子 8 水銀ランプ 9 干渉フィルター 11 ダイクロイックプリズム 12,15 光電子倍増管 13 対物レンズ 14 試料回転ステージ 16 差動入力増幅器 17 電圧計 1 Excitation Light 2 Substrate 3 Alignment Film 4, 10 Polarizer 5, 7 Detector 6 Polarization Separation Element 8 Mercury Lamp 9 Interference Filter 11 Dichroic Prism 12, 15 Photomultiplier Tube 13 Objective Lens 14 Sample Rotation Stage 16 Differential Input Amplifier 17 voltmeter

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 一定の偏光状態を有する励起光を照射す
る機構と、被験物である配向膜を有する基板を設置する
試料台と、被験物からの蛍光が入射する偏光板と、検出
器とを備えていることを特徴とする配向膜検査装置。
1. A mechanism for irradiating excitation light having a certain polarization state, a sample stage on which a substrate having an alignment film as a test object is installed, a polarizing plate on which fluorescence from the test object enters, and a detector. An alignment film inspection apparatus comprising:
【請求項2】 一定の偏光状態を有する励起光を被験物
である配向膜を有する基板に照射する機構と、被験物か
らの蛍光を入射する偏光分離素子と、偏光分離素子から
の2つの偏光を検出する検出器とを備えていることを特
徴とする配向膜検査装置。
2. A mechanism for irradiating a substrate having an alignment film, which is a test object, with excitation light having a certain polarization state, a polarization separation element for allowing fluorescence from the test object to enter, and two polarizations from the polarization separation element. An alignment film inspection apparatus, comprising: a detector for detecting
【請求項3】 一定の偏光状態を有する励起光を、被験
試料である配向膜を有する基板に照射し、被験試料から
発せられた蛍光を偏光板に入射させ検出器で検出し、検
出器の出力を測定することを特徴とする配向膜検査方
法。
3. Excitation light having a certain polarization state is applied to a substrate having an alignment film as a test sample, and fluorescence emitted from the test sample is made incident on a polarizing plate and detected by a detector. An alignment film inspection method characterized by measuring an output.
【請求項4】 前記偏光板を回転させて検出器の出力を
測定する請求項3記載の配向膜検査方法。
4. The alignment film inspection method according to claim 3, wherein the output of the detector is measured by rotating the polarizing plate.
【請求項5】 前記被験試料を回転させて検出器の出力
を測定する請求項3記載の配向膜検査方法。
5. The alignment film inspection method according to claim 3, wherein the output of the detector is measured by rotating the test sample.
【請求項6】 励起光である直線偏光の偏光方位を回転
させて検出器の出力を測定する請求項3記載の配向膜検
査方法。
6. The alignment film inspection method according to claim 3, wherein the output of the detector is measured by rotating the polarization direction of the linearly polarized light which is the excitation light.
【請求項7】 一定の偏光状態を有する励起光を被験試
料である配向膜を有する基板に照射し、被験試料から発
した蛍光を偏光方向によって分離し、分離した蛍光を各
々の検出器で検出し、両検出器の信号を比較することを
特徴とする配向膜検査方法。
7. A substrate having an alignment film, which is a test sample, is irradiated with excitation light having a certain polarization state, the fluorescence emitted from the test sample is separated according to the polarization direction, and the separated fluorescence is detected by each detector. Then, the alignment film inspection method is characterized by comparing the signals of both detectors.
JP17639294A 1994-07-28 1994-07-28 Alignment film inspection device and inspection method Expired - Fee Related JP2677199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17639294A JP2677199B2 (en) 1994-07-28 1994-07-28 Alignment film inspection device and inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17639294A JP2677199B2 (en) 1994-07-28 1994-07-28 Alignment film inspection device and inspection method

Publications (2)

Publication Number Publication Date
JPH0843307A true JPH0843307A (en) 1996-02-16
JP2677199B2 JP2677199B2 (en) 1997-11-17

Family

ID=16012861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17639294A Expired - Fee Related JP2677199B2 (en) 1994-07-28 1994-07-28 Alignment film inspection device and inspection method

Country Status (1)

Country Link
JP (1) JP2677199B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102798993A (en) * 2011-05-24 2012-11-28 广西钦州天山微电子有限公司 Method and device for detecting liquid crystal display (LCD) directional grinding equipment
JP2013167542A (en) * 2012-02-16 2013-08-29 Fujitsu Ltd Resin cured state monitoring device and resin cured state monitoring method
JP6356372B1 (en) * 2017-05-23 2018-07-11 浜松ホトニクス株式会社 Alignment characteristic measurement method, alignment characteristic measurement program, and alignment characteristic measurement apparatus
WO2018216246A1 (en) * 2017-05-23 2018-11-29 浜松ホトニクス株式会社 Orientation characteristic measurement method, orientation characteristic measurement program, and orientation characteristic measurement device
CN113588216A (en) * 2021-08-02 2021-11-02 中国科学院光电技术研究所 Rapid high-precision calibrating device and method for optical zero position of polaroid

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102798993A (en) * 2011-05-24 2012-11-28 广西钦州天山微电子有限公司 Method and device for detecting liquid crystal display (LCD) directional grinding equipment
JP2013167542A (en) * 2012-02-16 2013-08-29 Fujitsu Ltd Resin cured state monitoring device and resin cured state monitoring method
JP6356372B1 (en) * 2017-05-23 2018-07-11 浜松ホトニクス株式会社 Alignment characteristic measurement method, alignment characteristic measurement program, and alignment characteristic measurement apparatus
WO2018216246A1 (en) * 2017-05-23 2018-11-29 浜松ホトニクス株式会社 Orientation characteristic measurement method, orientation characteristic measurement program, and orientation characteristic measurement device
JP2018197753A (en) * 2017-05-23 2018-12-13 浜松ホトニクス株式会社 Orientation characteristic measurement method, orientation characteristic measurement program, and orientation characteristic measurement device
KR20200011031A (en) * 2017-05-23 2020-01-31 하마마츠 포토닉스 가부시키가이샤 Orientation characteristic measurement method, orientation characteristic measurement program, and orientation characteristic measurement apparatus
US11243073B2 (en) 2017-05-23 2022-02-08 Hamamatsu Photonics K.K. Orientation characteristic measurement method, orientation characteristic measurement program, and orientation characteristic measurement device
KR20220025947A (en) * 2017-05-23 2022-03-03 하마마츠 포토닉스 가부시키가이샤 Orientation characteristic measurement method orientation characteristic measurement program, and orientation characteristic measurement device
US11920921B2 (en) 2017-05-23 2024-03-05 Hamamatsu Photonics K.K. Orientation characteristic measurement method, orientation characteristic measurement program, and orientation characteristic measurement device
CN113588216A (en) * 2021-08-02 2021-11-02 中国科学院光电技术研究所 Rapid high-precision calibrating device and method for optical zero position of polaroid
CN113588216B (en) * 2021-08-02 2023-09-19 中国科学院光电技术研究所 Quick high-precision calibrating device and method for optical zero position of polaroid

Also Published As

Publication number Publication date
JP2677199B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
Shindo et al. Problems of CD spectrometers (V): Can we measure CD and LD simultaneously? Comments on differential polarization microscopy (CD and linear dichroism)
CN101473212A (en) Focused-beam ellipsometer
JP2975991B2 (en) Polarization measurement method and apparatus
Dekkers et al. Optical artifacts in circularly polarized luminescence spectroscopy
JP3507319B2 (en) Optical property measurement device
JP4663529B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
Boulet-Audet et al. Attenuated total reflection infrared spectroscopy: an efficient technique to quantitatively determine the orientation and conformation of proteins in single silk fibers
JP3425923B2 (en) Evaluation method and evaluation device for anisotropic multilayer thin film structure
Plocinik et al. Polarization characterization in surface second harmonic generation by nonlinear optical null ellipsometry
JP2677199B2 (en) Alignment film inspection device and inspection method
EP0603863B1 (en) Birefringent member cell gap measurement method and instrument
JP3063843B2 (en) Liquid crystal initial alignment angle measuring method and liquid crystal initial alignment angle measuring device
JP4158801B2 (en) Method for manufacturing liquid crystal panel and method for manufacturing substrate for liquid crystal panel
Bur et al. Fluorescence anisotropy sensor and its application to polymer processing and characterization
JP3363743B2 (en) Optical anisotropy measuring apparatus and optical anisotropy measuring method using the same
JPH10281876A (en) Polarizing imaging system
JP4010760B2 (en) measuring device
US6236056B1 (en) Defect evaluation apparatus for evaluating defects and shape information thereof in an object or on the surface of an object
KR100974478B1 (en) Apparatus and method for inspecting surface of Liquid Crystal Alignment Layer
JP4728830B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
JPH07318500A (en) Inspection device for vicinity of object surface
JP2735053B2 (en) Organic thin film orientation inspection method and inspection device
KR20080061196A (en) Measuring apparatus and method for rubbing angle of liquid crystal alignment film
JP2005283552A (en) Birefringence measurement device and birefringence measurement method
JP2002162344A (en) Evaluation method of anisotropic thin film and its equipment

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070725

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 16

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 16

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees