JPH09143681A - Formation of high molecular thin film - Google Patents

Formation of high molecular thin film

Info

Publication number
JPH09143681A
JPH09143681A JP7319642A JP31964295A JPH09143681A JP H09143681 A JPH09143681 A JP H09143681A JP 7319642 A JP7319642 A JP 7319642A JP 31964295 A JP31964295 A JP 31964295A JP H09143681 A JPH09143681 A JP H09143681A
Authority
JP
Japan
Prior art keywords
thin film
substrate
forming
raw material
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7319642A
Other languages
Japanese (ja)
Other versions
JP3863934B2 (en
Inventor
Masayuki Iijima
正行 飯島
Masatoshi Sato
昌敏 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP31964295A priority Critical patent/JP3863934B2/en
Publication of JPH09143681A publication Critical patent/JPH09143681A/en
Application granted granted Critical
Publication of JP3863934B2 publication Critical patent/JP3863934B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the formation capable of forming a flat high molecular thin film by using a simple process or under simple conditions. SOLUTION: This formation is a vapor deposition polymerization method that comprises evaporating raw material monomers of a high molecule under vacuum and polymerizing these monomers on a substrate to form a high molecular thin film on the substrate. In this polymerization method, the temp. of the substrate is maintained at a level sufficient to provide <=10<-1> sec of the surface residence time on the substrate of one of the raw material monomers, which has lower vapor pressure than any of the other monomers, For example, at the time of forming a polyurea thin film, 4,4'-diphenylmethane-diisocyanate (MDI) and 4,4'-diaminodiphenylmethane (MDA) are used as the monomers.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、ポリイミ
ド、ポリ尿素等の高分子薄膜の形成方法に関し、特に、
原料モノマーを蒸発させて重合を行う蒸着重合による高
分子薄膜の形成方法に関する。
TECHNICAL FIELD The present invention relates to a method for forming a polymer thin film such as polyimide and polyurea, and
The present invention relates to a method for forming a polymer thin film by vapor deposition polymerization in which a raw material monomer is evaporated to perform polymerization.

【0002】[0002]

【従来の技術】従来、この種の高分子薄膜の形成方法と
しては、高分子物質の原料モノマーを適当な溶媒に溶か
してこれを基板上で重合させるいわゆる湿式法や、ポリ
マー自体を基板上に蒸着法あるいは高分子物質の原料モ
ノマーをプラズマ状態にしてプラズマ中の基板上で重合
させるプラズマ重合法等が知られている。
2. Description of the Related Art Conventionally, as a method of forming a polymer thin film of this type, a so-called wet method in which a raw material monomer of a polymer substance is dissolved in an appropriate solvent and polymerized on a substrate, or a polymer itself is placed on a substrate is used. A vapor deposition method or a plasma polymerization method in which a raw material monomer of a high molecular substance is put into a plasma state and polymerized on a substrate in plasma is known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の方法においては、次のような問題があった。
すなわち、湿式法の場合は、極めて薄い膜を得られ難
く、また基体に対する高分子薄膜の密着性が不十分で、
しかも溶媒の添加、除去、回収等の工程が入るため不純
物の混入が起こりやすいという欠点がある。さらに、ポ
リマーを原料として蒸着により成膜する場合は、解重合
とともに分解が起こることから重合度が十分でないとい
う欠点がある。一方、プラズマ重合法の場合は、原料モ
ノマー自体が分解したりして合成樹脂の分子設計が困難
で、しかも高分子物質が架橋構造を含むため比較的剛直
な薄膜しか得られないという欠点がある。かかる問題を
解決するものとして、本出願人によって既に出願されて
いる特開昭61−78463号公報において、真空中で
合成樹脂の原料モノマーを蒸発させてこれを基体上で重
合させることからなる合成樹脂皮膜の形成方法、いわゆ
る蒸着重合法が提案されている。
However, such a conventional method has the following problems.
That is, in the case of the wet method, it is difficult to obtain an extremely thin film, and the adhesion of the polymer thin film to the substrate is insufficient,
In addition, there is a drawback that impurities are likely to be mixed in since steps such as addition of solvent, removal, and recovery are included. Further, when a film is formed by vapor deposition using a polymer as a raw material, there is a drawback that the degree of polymerization is not sufficient because decomposition occurs together with depolymerization. On the other hand, in the case of the plasma polymerization method, it is difficult to design the molecular weight of the synthetic resin because the raw material monomer itself is decomposed, and the polymer material contains a cross-linking structure, so that only a relatively rigid thin film can be obtained. . As a solution to such a problem, in Japanese Patent Application Laid-Open No. 61-78463 already filed by the present applicant, a synthesis is performed by evaporating a raw material monomer of a synthetic resin in a vacuum and polymerizing the same on a substrate. A method for forming a resin film, a so-called vapor deposition polymerization method, has been proposed.

【0004】その一方、近年、LSIにおける多層配線
の層間絶縁膜など絶縁性の薄膜を形成する方法として、
かかる蒸着重合による高分子薄膜の形成方法が注目され
ている。すなわち、LSIにおける層間絶縁膜は、平坦
な薄膜であることが必要であるが、従来のCVD、エッ
チバック、リフロー技術等による方法では、成膜のプロ
セスや条件が複雑になってしまうという欠点がある。
On the other hand, in recent years, as a method of forming an insulating thin film such as an interlayer insulating film of a multilayer wiring in an LSI,
Attention has been focused on a method for forming a polymer thin film by such vapor deposition polymerization. That is, the interlayer insulating film in the LSI needs to be a flat thin film, but the conventional methods such as CVD, etchback, and reflow technology have a drawback that the film forming process and conditions become complicated. is there.

【0005】本発明は、このような従来の技術の課題を
解決するためになされたもので、簡素なプロセスや条件
で平坦な成膜が可能な高分子薄膜の形成方法を提供する
ことを目的とするものである。
The present invention has been made in order to solve the problems of the conventional techniques, and an object thereof is to provide a method for forming a polymer thin film capable of forming a flat film by a simple process and conditions. It is what

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に記載の発明は、真空中で高分子重合体の
原料モノマーを蒸発させ、これを基体上で蒸着重合させ
て高分子薄膜を形成する高分子薄膜の形成方法におい
て、上記原料モノマーのうち蒸気圧が低い(同温の基板
上において表面滞留時間が長い)モノマーの表面滞留時
間が10-1秒以下となるように上記基体の温度を保持し
てなることを特徴とする。
In order to achieve the above object, the invention described in claim 1 is to evaporate a raw material monomer of a high molecular polymer in a vacuum and vapor-deposit and polymerize this on a substrate to form a polymer. In the method of forming a polymer thin film for forming a thin film, the surface residence time of a monomer having a low vapor pressure (long surface residence time on a substrate at the same temperature) among the above-mentioned raw material monomers is set to 10 -1 second or less. It is characterized in that the temperature of the substrate is maintained.

【0007】また、請求項2に記載の発明は、請求項1
に記載の発明において、原料モノマーとして、4,4’
−ジフェニルメタンジイソシアナート(MDI)と、
4,4’−ジアミノジフェニルメタン(MDA)を用
い、ポリ尿素の薄膜を形成することを特徴とする。
The invention described in claim 2 is the same as claim 1
In the invention described in (4), the raw material monomer is 4,4 ′.
-Diphenylmethane diisocyanate (MDI),
It is characterized in that a thin film of polyurea is formed by using 4,4′-diaminodiphenylmethane (MDA).

【0008】さらに、請求項3に記載の発明は、請求項
2に記載の発明において、原料モノマーのうちMDAの
表面滞留時間が10-1秒以下となるように基体の温度を
保持してなることを特徴とする。
Further, in the invention described in claim 3, in the invention described in claim 2, the temperature of the substrate is kept such that the surface residence time of MDA among the raw material monomers is 10 -1 second or less. It is characterized by

【0009】さらにまた、請求項4に記載の発明は、請
求項3に記載の発明において、原料モノマーとして、無
水ピロメリト酸(PMDA)と、4,4’−ジアミノジ
フェニルメタン(ODA)を用い、ポリイミドの薄膜を
形成することを特徴とする。
Furthermore, in the invention described in claim 4, in the invention described in claim 3, pyromellitic dianhydride (PMDA) and 4,4'-diaminodiphenylmethane (ODA) are used as raw material monomers, and polyimide is used. Is formed.

【0010】加えて、請求項5に記載の発明は、請求項
4に記載の発明において、原料モノマーの表面滞留時間
が10-1秒以下となるように基体の温度を保持してなる
ことを特徴とする。
In addition, in the invention described in claim 5, in the invention described in claim 4, the temperature of the substrate is kept such that the surface residence time of the raw material monomer is 10 -1 second or less. Characterize.

【0011】一方、請求項6に記載の発明は、請求項1
乃至5のいずれかの1項に記載の発明において、基体上
にアスペクト比(孔部の深さと直径との比率)が1以上
で3を超えない孔部が形成されていることを特徴とす
る。
On the other hand, the invention described in claim 6 is the same as claim 1.
The invention according to any one of 1 to 5 is characterized in that a hole having an aspect ratio (ratio of the depth of the hole to the diameter) of 1 or more and not more than 3 is formed on the substrate. .

【0012】請求項1記載の発明の場合、真空中で高分
子重合体の原料モノマーを蒸発させ、これを基体上で蒸
着重合させて高分子薄膜を形成する高分子薄膜の形成方
法において、原料モノマーのうち蒸気圧が低いモノマー
の表面滞留時間が10-1秒以下となるように基体の温度
を保持することから、基板上において原料モノマーが十
分にマイグレーションを起こし、モノマー同士が反応し
て高分子重合体の膜が基体上において等方的に成長す
る。このため、請求項1に記載の発明によれば、段差を
有する基体上においても平坦な薄膜が得られる。
According to the first aspect of the present invention, in the method for forming a polymer thin film, the raw material monomer of the high molecular polymer is evaporated in a vacuum, and this is vapor-deposited and polymerized on a substrate to form a polymer thin film. Since the temperature of the substrate is maintained so that the surface residence time of the monomer having a low vapor pressure is 10 -1 seconds or less, the raw material monomers sufficiently migrate on the substrate, and the monomers react with each other to increase the temperature. A film of molecular polymer grows isotropically on the substrate. Therefore, according to the invention described in claim 1, a flat thin film can be obtained even on a substrate having a step.

【0013】また、請求項2に記載の発明のように、特
に、原料モノマーとして、4,4’−ジフェニルメタン
ジイソシアナート(MDI)と、4,4’−ジアミノジ
フェニルメタン(MDA)を用い、ポリ尿素の薄膜を形
成すること、または、請求項3に記載に発明のように、
原料モノマーのうちMDAの表面滞留時間が10-1秒以
下となるように基体の温度を保持することによって、基
体上における原料モノマーのマイグレーションがより十
分に引き起こされるようになる。
Further, as in the invention described in claim 2, particularly, 4,4'-diphenylmethane diisocyanate (MDI) and 4,4'-diaminodiphenylmethane (MDA) are used as raw material monomers, Forming a thin film of urea, or like the invention according to claim 3,
By maintaining the temperature of the substrate such that the surface residence time of MDA in the monomer is 10 -1 seconds or less, migration of the monomer on the substrate can be more sufficiently caused.

【0014】さらに、請求項4に記載の発明のように、
原料モノマーとして、無水ピロメリト酸(PMDA)
と、4,4’−ジアミノジフェニルメタン(ODA)を
用い、ポリイミドの薄膜を形成すること、または、請求
項5に記載の発明のように、原料モノマーの表面滞留時
間が10-1秒以下となるように基体の温度を保持するこ
とによって、基板上における原料モノマーのマイグレー
ションがより十分に引き起こされるようになる。
Further, as in the invention described in claim 4,
Pyromellitic anhydride (PMDA) as a raw material monomer
And 4,4′-diaminodiphenylmethane (ODA) is used to form a polyimide thin film, or the surface residence time of the raw material monomer is 10 −1 second or less as in the invention according to claim 5. By maintaining the temperature of the substrate in this way, migration of the raw material monomer on the substrate is more sufficiently caused.

【0015】一方、請求項6に記載の発明のように、請
求項1乃至5のいずれかの1項に記載の発明において、
アスペクト比が1以上で3を超えない孔部を有するパタ
ーンが形成された基体に対して成膜を行うことにより、
孔部においてボイドを発生させることなく、高分子薄膜
が形成される。
On the other hand, as in the invention described in claim 6, in the invention described in any one of claims 1 to 5,
By forming a film on a substrate on which a pattern having a hole having an aspect ratio of 1 or more and not exceeding 3 is formed,
A polymer thin film is formed without generating voids in the holes.

【0016】[0016]

【発明の実施の形態】以下、本発明に係る高分子薄膜の
形成方法の実施の形態を図面を参照して詳細に説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of a method for forming a polymer thin film according to the present invention will be described in detail with reference to the drawings.

【0017】図3は、本発明を実施するための蒸着重合
装置1の一例の概略構成を示すものである。図3に示す
ように、この蒸着重合装置1は、気密状態を保持可能な
処理室2を有し、この処理室2は、図示しない外部の真
空ポンプその他の真空排気系に接続されている。そし
て、処理室2内の上部には、高分子薄膜を形成すべき基
板3が基体ホルダ4によって下向きに保持され、また、
ホルダ4の背面側には、基板3を所望の温度に加熱する
ためのヒータ5が設けられている。
FIG. 3 shows a schematic structure of an example of a vapor deposition polymerization apparatus 1 for carrying out the present invention. As shown in FIG. 3, the vapor deposition polymerization apparatus 1 has a processing chamber 2 capable of maintaining an airtight state, and the processing chamber 2 is connected to an external vacuum pump or other vacuum exhaust system (not shown). The substrate 3 on which the polymer thin film is to be formed is held downward by the substrate holder 4 in the upper portion of the processing chamber 2, and
A heater 5 for heating the substrate 3 to a desired temperature is provided on the back side of the holder 4.

【0018】一方、処理室2の下方には、基板3に対抗
するように、各原料モノマーa、bを蒸発させるための
例えばガラスからなる蒸発用容器6、7が設けられてい
る。さらに、各蒸発用容器6、7の近傍には、加熱用の
ヒータ8、9と温度センサ10、11が設けられ、これ
らによって原料モノマーa、bの蒸発レートが常に一定
に保たれるように構成されている。
On the other hand, below the processing chamber 2, evaporation containers 6 and 7 made of, for example, glass for evaporating the raw material monomers a and b are provided so as to oppose the substrate 3. Further, heaters 8 and 9 for heating and temperature sensors 10 and 11 are provided near the evaporation containers 6 and 7, respectively, so that the evaporation rates of the raw material monomers a and b are always kept constant. It is configured.

【0019】なお、蒸発用容器6、7の間には、各原料
モノマーa、bの蒸気の混合を防止するための仕切板1
2が設けられ、また、加熱用のヒータ8、9の上方に
は、原料モノマーの蒸気の混入を防止するためのシャッ
ター13が設けられている。
A partition plate 1 for preventing the mixing of the vapors of the raw material monomers a and b is provided between the evaporation vessels 6 and 7.
2 is provided, and a shutter 13 is provided above the heaters 8 and 9 for heating to prevent the vapor of the raw material monomer from being mixed.

【0020】本発明に係る高分子薄膜の形成方法におい
ては、例えば、ポリ尿素による薄膜を形成する原料モノ
マーとして、4,4’−ジフェニルメタンジイソシアナ
ート(MDI)と、4,4’−ジアミノジフェニルメタ
ン(MDA)を用いる。
In the method for forming a polymer thin film according to the present invention, for example, 4,4'-diphenylmethane diisocyanate (MDI) and 4,4'-diaminodiphenylmethane are used as raw material monomers for forming a thin film of polyurea. (MDA) is used.

【0021】また、ポリイミドによる薄膜を形成する原
料モノマーとして、無水ピロメリト酸(PMDA)と、
4,4’−ジアミノジフェニルメタン(ODA)を用い
る。そして、このような原料モノマーを用い、図3に示
す装置を使用して、蒸着重合により基板3上に高分子薄
膜を形成する。
Further, as raw material monomers for forming a polyimide thin film, pyromellitic dianhydride (PMDA),
4,4'-diaminodiphenylmethane (ODA) is used. Then, using such a raw material monomer, a polymer thin film is formed on the substrate 3 by vapor deposition polymerization using the apparatus shown in FIG.

【0022】図2は本発明の実施の形態において用いら
れる原料モノマーの基板温度と表面滞留時間との関係
(実験値)を示すグラフである。図2に示すように、各
原料モノマーともに、基板の絶対温度の逆数が小さくな
る程、すなわち、基板3の絶対温度が高くなる程、原料
モノマーの表面滞留時間が短くなる傾向が見られる。
FIG. 2 is a graph showing the relationship (experimental value) between the substrate temperature and the surface residence time of the raw material monomers used in the embodiment of the present invention. As shown in FIG. 2, for each raw material monomer, the smaller the reciprocal of the absolute temperature of the substrate, that is, the higher the absolute temperature of the substrate 3, the shorter the residence time of the raw material monomer on the surface.

【0023】この場合、図2に示すように、ポリ尿素の
薄膜を形成するためのMDI、MDAよりも、ポリイミ
ド薄膜を形成するためのODA、PMDAの方が、同じ
温度における原料モノマーの表面滞留時間が長い。ま
た、ODAとPMDAは、ほぼ同じ表面滞留時間を有し
ている。一方、MDIよりもMDAの方が表面滞留時間
が長い。さらに、各原料モノマーの特性を示す直線の勾
配がその原料モノマーの活性化エネルギーを表してい
る。
In this case, as shown in FIG. 2, ODA and PMDA for forming a polyimide thin film are more likely to stay on the surface of raw material monomers at the same temperature than MDI and MDA for forming a polyurea thin film. Time is long. Also, ODA and PMDA have almost the same surface residence time. On the other hand, MDA has a longer surface residence time than MDI. Furthermore, the linear gradient showing the characteristics of each raw material monomer represents the activation energy of the raw material monomer.

【0024】図1は、本発明に係る高分子薄膜の形成方
法における基板の温度と空間率との関係を示すグラフで
ある。ここで、空間率とは、例えば、図4に示すような
ものである。すなわち、図4に示すように、基板3上に
例えばSiO2 からなる薄膜15が形成され、この薄膜
15上に高分子薄膜14が形成されている場合を考え
る。この場合、薄膜15には多くの孔部16が形成さ
れ、この部分が高分子化合物によって埋め込まれる。そ
して、孔部16の埋め込みされる範囲Bの断面積に対す
る空隙Aの断面積の百分率を空間率と定義する。
FIG. 1 is a graph showing the relationship between the substrate temperature and the porosity in the method for forming a polymer thin film according to the present invention. Here, the porosity is, for example, as shown in FIG. That is, as shown in FIG. 4, consider a case where a thin film 15 made of, for example, SiO 2 is formed on a substrate 3, and a polymer thin film 14 is formed on this thin film 15. In this case, many holes 16 are formed in the thin film 15, and this part is filled with the polymer compound. Then, the percentage of the cross-sectional area of the void A with respect to the cross-sectional area of the range B in which the hole 16 is embedded is defined as the porosity.

【0025】図1から理解されるように、ポリ尿素及び
ポリイミドによる薄膜を形成する場合には、ともに基板
3の温度が高くなるに従って空間率が低下する。ここ
で、例えば、アスペクト比が2の孔部16を有する基板
3にポリ尿素による薄膜を形成する場合には、基板3の
絶対温度の逆数が0.0029となる付近において空間
率が0となる。
As understood from FIG. 1, when forming a thin film of polyurea and polyimide, the porosity decreases as the temperature of the substrate 3 increases. Here, for example, when a thin film made of polyurea is formed on the substrate 3 having the holes 16 with an aspect ratio of 2, the void ratio becomes 0 near the reciprocal of the absolute temperature of the substrate 3 is 0.0029. .

【0026】一方、アスペクト比が1の孔部16を有す
る基板3にポリイミドによる薄膜を形成する場合には、
基板3の絶対温度の逆数が0.0023となる付近にお
いて空間率が0となる。その結果、図2に示すように、
少なくとも蒸発しにくい原料モノマーにおける表面滞留
時間(τ)が10-1秒以下となるように基板3の温度を
保持すれば、孔部16の中央部において空隙がなくな
る。
On the other hand, when a thin film of polyimide is formed on the substrate 3 having the holes 16 with an aspect ratio of 1,
The porosity becomes 0 near the reciprocal of the absolute temperature of the substrate 3 is 0.0023. As a result, as shown in FIG.
If the temperature of the substrate 3 is maintained such that the surface residence time (τ) of the raw material monomer that is difficult to evaporate is 10 −1 second or less, no void is formed in the central portion of the hole 16.

【0027】したがって、それぞれ、ポリ尿素について
は75℃、ポリイミドについては170℃となるように
基板3の温度を保持すれば、空間率を実用に耐え得る程
度に減少させることができる。
Therefore, if the temperature of the substrate 3 is kept at 75 ° C. for polyurea and 170 ° C. for polyimide, respectively, the porosity can be reduced to a practical level.

【0028】なお、基板3の温度の上限は、ポリ尿素に
よる薄膜を形成する場合には、250℃以下とすること
が好ましい。250℃より高い温度に保持すると、逆反
応、すなわち、基板3からのポリマーの再蒸発が生ず
る。また、ポリイミドによる薄膜を形成する場合には、
基板3の温度を400℃以下に保持することが好まし
い。400℃より高い温度に保持すると、ポリマーの分
解が生ずるおそれがある。
The upper limit of the temperature of the substrate 3 is preferably 250 ° C. or lower when forming a thin film of polyurea. Holding above 250 ° C results in the reverse reaction, i.e. re-evaporation of the polymer from the substrate 3. When forming a thin film of polyimide,
It is preferable to keep the temperature of the substrate 3 at 400 ° C. or lower. If the temperature is kept higher than 400 ° C, the polymer may be decomposed.

【0029】[0029]

【実施例】以下、本発明に係る高分子薄膜の形成方法の
実施例を比較例とともに詳細に説明する。
EXAMPLES Examples of the method for forming a polymer thin film according to the present invention will be described in detail below together with comparative examples.

【0030】〔実施例1〕高分子薄膜を形成するための
原料モノマーとして、4,4’−ジフェニルメタンジイ
ソシアナート(MDI)と、4,4’−ジアミノジフェ
ニルメタン(MDA)を用い、高真空中(3×10-3
a)において、MDIは70.5±0.1℃で、MDA
については100.0±0.1℃の温度で蒸発させ、基
板3上にポリ尿素を蒸着重合し、その薄膜を形成した。
この場合、蒸発源である各蒸発用容器6、7の開口部6
a、7aと基板3との間の距離を400mmに設定し、
基板3の温度は75℃に保持した。基板3上におけるポ
リ尿素の薄膜の成膜速度は、10オングストローム/秒
であった。
[Example 1] 4,4'-diphenylmethane diisocyanate (MDI) and 4,4'-diaminodiphenylmethane (MDA) were used as raw material monomers for forming a polymer thin film in a high vacuum. (3 × 10 -3 P
In a), MDI is 70.5 ± 0.1 ° C, MDA
In the case of No. 1, the polyurea was evaporated at a temperature of 100.0 ± 0.1 ° C., and polyurea was vapor-deposited and polymerized on the substrate 3 to form a thin film thereof.
In this case, the openings 6 of the evaporation containers 6 and 7 which are evaporation sources
Set the distance between a, 7a and the substrate 3 to 400 mm,
The temperature of the substrate 3 was maintained at 75 ° C. The deposition rate of the polyurea thin film on the substrate 3 was 10 Å / sec.

【0031】一方、基板3としては、直径4インチ(1
0.16センチメートル)のSiウェハ上に厚みが1.
1μmのSiO2 による薄膜15が形成されたものを用
いた。このSiO2 による薄膜15には、図4に示すよ
うに、薄膜15の表面まで貫通するように直径0.5μ
mの孔部16が数多く形成されている。この場合、アス
ペクト比は2である。
On the other hand, the substrate 3 has a diameter of 4 inches (1
0.16 cm) on a Si wafer with a thickness of 1.
A thin film 15 formed of 1 μm SiO 2 was used. As shown in FIG. 4, the thin film 15 made of SiO 2 has a diameter of 0.5 μm so as to penetrate to the surface of the thin film 15.
Many holes 16 of m are formed. In this case, the aspect ratio is 2.

【0032】図5は、本実施例の方法によりポリ尿素を
0.8μm蒸着重合したときの薄膜の表面及び断面構成
を示すSEM写真である。図5に示すように、本実施例
の方法によれば、SiO2 による薄膜15の孔部16は
完全にポリ尿素によって埋まり、また、表面もほぼ平坦
化されていることが理解される。
FIG. 5 is an SEM photograph showing the surface and cross-sectional structure of a thin film when polyurea was vapor-deposited and polymerized by 0.8 μm by the method of this embodiment. As shown in FIG. 5, according to the method of the present embodiment, it is understood that the pores 16 of the thin film 15 made of SiO 2 are completely filled with polyurea and the surface thereof is substantially flattened.

【0033】なお、本実施例においては、ポリ尿素によ
る高分子薄膜14の膜厚を1.0μm以上にするとより
平坦化が実現されることが確認された。また、上記アス
ペクト比が1以上3までは基板3に対して垂直に形成さ
れたパターンの場合も平坦化が可能であったが、アスペ
クト比が3より大きくなると、孔部16の中心部分にボ
イド(空隙)が発生した。この場合、このボイドを発生
させないためには、基板3の温度を高くするか孔部16
の側壁にテーパを形成する必要があった。
In this example, it was confirmed that flattening was realized when the film thickness of the polymer thin film 14 made of polyurea was 1.0 μm or more. Further, even in the case of the pattern formed perpendicularly to the substrate 3 when the aspect ratio is from 1 to 3, the planarization is possible. However, when the aspect ratio is larger than 3, voids are formed in the central portion of the hole portion 16. (Void) occurred. In this case, in order not to generate this void, the temperature of the substrate 3 should be raised or the hole 16
It was necessary to form a taper on the side wall of.

【0034】〔実施例2〕本実施例は、高分子薄膜を形
成するための原料モノマーとして、無水ピロメリト酸
(PMDA)と、4,4’−ジアミノジフェニルメタン
(ODA)を用い、基板3上で蒸着重合してポリアミド
酸を形成し、その後、基板3を加熱してポリイミドによ
る薄膜を形成する方法である。
Example 2 In this example, pyromellitic dianhydride (PMDA) and 4,4′-diaminodiphenylmethane (ODA) were used as raw material monomers for forming a polymer thin film, and on the substrate 3. This is a method of forming a polyamic acid by vapor deposition polymerization, and then heating the substrate 3 to form a thin film of polyimide.

【0035】本実施例においては、まず、実施例1の場
合と同様に、高真空中(3×10-3Pa)において、P
MDAは130.0±0.1℃で、ODAについては1
20.0±0.1℃の温度で蒸発させ、基板3上にポリ
アミド酸の薄膜を形成した。そして、基板3の温度を1
70℃に保持し、基板3上にポリイミド膜の成膜を行っ
た。この場合、ポリイミド膜の成膜速度は5オングスト
ローム/秒であった。本実施例において用いられる基板
3は、孔部16の直径が1.25μmでアスペクト比が
1である以外は実施例1と同様のものである。
In the present embodiment, first, as in the case of the first embodiment, in high vacuum (3 × 10 −3 Pa), P
MDA is 130.0 ± 0.1 ° C, ODA is 1
It was evaporated at a temperature of 20.0 ± 0.1 ° C. to form a polyamic acid thin film on the substrate 3. Then, the temperature of the substrate 3 is set to 1
The temperature was maintained at 70 ° C., and a polyimide film was formed on the substrate 3. In this case, the deposition rate of the polyimide film was 5 Å / sec. The substrate 3 used in this example is the same as that of the example 1 except that the diameter of the hole 16 is 1.25 μm and the aspect ratio is 1.

【0036】図6は、本実施例の方法によりポリイミド
を0.8μm蒸着重合したときの薄膜の表面及び断面構
成を示すSEM写真である。図6に示すように、実施例
2においても、実施例1と同様に、SiO2 による薄膜
15の孔部16は完全にポリ尿素によって埋まり、ま
た、表面もほぼ平坦化されていることが理解される。
FIG. 6 is an SEM photograph showing the surface and cross-sectional structure of a thin film when polyimide was vapor-deposited and polymerized by the method of this example in a thickness of 0.8 μm. As shown in FIG. 6, in Example 2 as well, similarly to Example 1, it was understood that the pores 16 of the thin film 15 made of SiO 2 were completely filled with polyurea and the surface was also substantially flattened. To be done.

【0037】〔比較例1〕基板3の温度を室温(20
℃)に保持した他は、実施例2と同様の方法によりポリ
イミド膜の形成を行った。その結果、SiO2 による薄
膜15の孔部16の側壁において膜がほとんど形成され
ず、ポリイミドによる平坦な薄膜を形成することができ
なかった。これは、各原料モノマーであるPMDA、O
DAのマイグレーションが不十分であることが原因であ
ると思われる。
Comparative Example 1 The temperature of the substrate 3 was set to room temperature (20
A polyimide film was formed by the same method as in Example 2 except that the temperature was kept at (° C.). As a result, almost no film was formed on the side wall of the hole 16 of the thin film 15 made of SiO 2 , and a flat thin film made of polyimide could not be formed. This is PMDA, O which is each raw material monomer
It seems that the migration of DA is insufficient.

【0038】なお、本発明はLSIの層間絶縁膜のみな
らず、種々の薄膜に適用しうることはもちろんである。
特に、ポリ尿素による薄膜は、例えば、紫外線によるパ
ターン形成などレジストの材料としても用いることがで
き、この場合、薄膜の加工も容易であるというメリット
がある。
Of course, the present invention can be applied not only to the interlayer insulating film of LSI but also to various thin films.
In particular, a thin film made of polyurea can be used as a resist material such as pattern formation by ultraviolet rays. In this case, there is an advantage that the thin film can be easily processed.

【0039】[0039]

【発明の効果】以上述べたように、本発明による高分子
薄膜の形成方法によれば、複雑な工程及び条件を必要と
することなく、簡素な工程及び条件で平坦な高分子薄膜
を形成することができる。
As described above, according to the method for forming a polymer thin film of the present invention, a flat polymer thin film can be formed by simple steps and conditions without requiring complicated steps and conditions. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る高分子薄膜の形成方法の好ましい
実施の形態における基板の温度と空間率との関係を示す
グラフ
FIG. 1 is a graph showing the relationship between substrate temperature and porosity in a preferred embodiment of a method for forming a polymer thin film according to the present invention.

【図2】本発明の実施の形態において用いられる原料モ
ノマーの基板温度と表面滞留時間との関係(実験値)を
示すグラフ
FIG. 2 is a graph showing a relationship (experimental value) between a substrate temperature and a surface residence time of a raw material monomer used in an embodiment of the present invention.

【図3】本発明を実施するための蒸着重合装置の一例を
示す概略構成図
FIG. 3 is a schematic configuration diagram showing an example of a vapor deposition polymerization apparatus for carrying out the present invention.

【図4】本発明の実施の形態における空間率を説明する
ための図
FIG. 4 is a diagram for explaining a porosity in the embodiment of the present invention.

【図5】実施例1の方法によりポリ尿素を0.8μm蒸
着重合したときの薄膜の表面及び断面構成を示すSEM
写真
5 is a SEM showing the surface and cross-sectional structure of a thin film when polyurea was vapor-deposited and polymerized by the method of Example 1 at 0.8 μm.
Photo

【図6】実施例2の方法によりポリイミドを0.8μm
蒸着重合したときの薄膜の表面及び断面構成を示すSE
M写真
FIG. 6 shows a method in which polyimide is 0.8 μm by the method of Example 2.
SE showing the surface and cross-sectional structure of a thin film after vapor deposition polymerization
M photo

【符号の説明】[Explanation of symbols]

1・・・蒸着重合装置、2・・・処理室、3・・・基
板、4・・・ホルダ、5・・・ヒータ、6、7・・・蒸
発用容器、8、9・・・ヒータ、14・・・高分子薄
膜、15・・・薄膜、16・・・孔部、a、b・・・原
料モノマー
DESCRIPTION OF SYMBOLS 1 ... Vapor deposition polymerization apparatus, 2 ... Processing chamber, 3 ... Substrate, 4 ... Holder, 5 ... Heater, 6, 7 ... Evaporation container, 8, 9 ... Heater , 14 ... Polymer thin film, 15 ... Thin film, 16 ... Pore, a, b ... Raw material monomer

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】真空中で高分子重合体の原料モノマーを蒸
発させ、これを基体上で蒸着重合させて高分子薄膜を形
成する高分子薄膜の形成方法において、上記原料モノマ
ーのうち蒸気圧が低いモノマーの表面滞留時間が10-1
秒以下となるように上記基体の温度を保持してなること
を特徴とする高分子薄膜の形成方法。
1. A method of forming a polymer thin film, comprising forming a polymer thin film by evaporating a raw material monomer of a high molecular polymer in a vacuum and vapor-depositing the same to form a polymer thin film on a substrate. Low monomer residence time 10 -1
A method for forming a polymer thin film, characterized in that the temperature of the substrate is maintained so as to be not more than a second.
【請求項2】原料モノマーとして、4,4’−ジフェニ
ルメタンジイソシアナート(MDI)と、4,4’−ジ
アミノジフェニルメタン(MDA)を用い、ポリ尿素の
薄膜を形成することを特徴とする請求項1に記載の高分
子薄膜の形成方法。
2. A polyurea thin film is formed by using 4,4′-diphenylmethane diisocyanate (MDI) and 4,4′-diaminodiphenylmethane (MDA) as raw material monomers. 1. The method for forming a polymer thin film as described in 1.
【請求項3】原料モノマーのうちMDAの表面滞留時間
が10-1秒以下となるように基体の温度を保持してなる
ことを特徴とする請求項2に記載の高分子薄膜の形成方
法。
3. The method for forming a polymer thin film according to claim 2, wherein the temperature of the substrate is maintained so that the surface residence time of MDA among the raw material monomers is 10 −1 second or less.
【請求項4】原料モノマーとして、無水ピロメリト酸
(PMDA)と、4,4’−ジアミノジフェニルメタン
(ODA)を用い、ポリイミドの薄膜を形成することを
特徴とする請求項3に記載の高分子薄膜の形成方法。
4. A polymer thin film according to claim 3, wherein a polyimide thin film is formed by using pyromellitic anhydride (PMDA) and 4,4′-diaminodiphenylmethane (ODA) as raw material monomers. Forming method.
【請求項5】原料モノマーの表面滞留時間が10-1秒以
下となるように基体の温度を保持してなることを特徴と
する請求項4に記載の高分子薄膜の形成方法。
5. The method for forming a polymer thin film according to claim 4, wherein the temperature of the substrate is maintained so that the surface residence time of the raw material monomer is 10 −1 second or less.
【請求項6】アスペクト比が1以上で3を超えない孔部
を有するパターンが形成された基体に対して成膜を行う
ことを特徴とする請求項1乃至5のいずれかの1項に記
載の高分子薄膜の形成方法。
6. The film according to claim 1, wherein the film is formed on a substrate on which a pattern having holes having an aspect ratio of 1 or more and not exceeding 3 is formed. Method for forming polymer thin film of.
JP31964295A 1995-11-14 1995-11-14 Method for forming polymer thin film Expired - Fee Related JP3863934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31964295A JP3863934B2 (en) 1995-11-14 1995-11-14 Method for forming polymer thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31964295A JP3863934B2 (en) 1995-11-14 1995-11-14 Method for forming polymer thin film

Publications (2)

Publication Number Publication Date
JPH09143681A true JPH09143681A (en) 1997-06-03
JP3863934B2 JP3863934B2 (en) 2006-12-27

Family

ID=18112583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31964295A Expired - Fee Related JP3863934B2 (en) 1995-11-14 1995-11-14 Method for forming polymer thin film

Country Status (1)

Country Link
JP (1) JP3863934B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002021588A1 (en) * 2000-09-01 2002-03-14 Japan Science And Technology Corporation Process for producing organic film by coevaporation
WO2007111092A1 (en) 2006-03-24 2007-10-04 Konica Minolta Medical & Graphic, Inc. Transparent barrier sheet and method for producing transparent barrier sheet
WO2007111076A1 (en) 2006-03-24 2007-10-04 Konica Minolta Medical & Graphic, Inc. Transparent barrier sheet and method for producing transparent barrier sheet
JP2010062480A (en) * 2008-09-05 2010-03-18 Tokyo Electron Ltd Film-forming device and cleaning method thereof
JP2011031594A (en) * 2009-08-06 2011-02-17 Ulvac Japan Ltd Tool and manufacturing method thereof
JP2012238907A (en) * 2012-08-27 2012-12-06 Tokyo Electron Ltd Film-forming device and cleaning method thereof
JP2012251224A (en) * 2011-06-03 2012-12-20 Kojima Press Industry Co Ltd Apparatus for controlling evaporation quantity of monomer, vapor deposition polymerizer, and method for controlling evaporation quantity of monomer
JP2013229622A (en) * 2013-06-25 2013-11-07 Tokyo Electron Ltd Film formation device and cleaning method of the same
JP2018022925A (en) * 2016-07-21 2018-02-08 東京エレクトロン株式会社 Semiconductor device manufacturing method, vacuum processing device and substrate processing device
JP2018107427A (en) * 2016-12-26 2018-07-05 東京エレクトロン株式会社 Semiconductor device manufacturing method, vacuum processing device and substrate processing device
JP2019079889A (en) * 2017-10-23 2019-05-23 東京エレクトロン株式会社 Manufacturing method of semiconductor device
JP2019079888A (en) * 2017-10-23 2019-05-23 東京エレクトロン株式会社 Manufacturing method of semiconductor device
JP2019106490A (en) * 2017-12-13 2019-06-27 東京エレクトロン株式会社 Semiconductor device manufacturing method
US10593556B2 (en) 2016-07-21 2020-03-17 Tokyo Electron Limited Method of fabricating semiconductor device, vacuum processing apparatus and substrate processing apparatus
JP2020053446A (en) * 2018-09-25 2020-04-02 東京エレクトロン株式会社 Method for manufacturing semiconductor device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002021588A1 (en) * 2000-09-01 2002-03-14 Japan Science And Technology Corporation Process for producing organic film by coevaporation
WO2007111092A1 (en) 2006-03-24 2007-10-04 Konica Minolta Medical & Graphic, Inc. Transparent barrier sheet and method for producing transparent barrier sheet
WO2007111076A1 (en) 2006-03-24 2007-10-04 Konica Minolta Medical & Graphic, Inc. Transparent barrier sheet and method for producing transparent barrier sheet
JP2010062480A (en) * 2008-09-05 2010-03-18 Tokyo Electron Ltd Film-forming device and cleaning method thereof
JP2011031594A (en) * 2009-08-06 2011-02-17 Ulvac Japan Ltd Tool and manufacturing method thereof
JP2012251224A (en) * 2011-06-03 2012-12-20 Kojima Press Industry Co Ltd Apparatus for controlling evaporation quantity of monomer, vapor deposition polymerizer, and method for controlling evaporation quantity of monomer
JP2012238907A (en) * 2012-08-27 2012-12-06 Tokyo Electron Ltd Film-forming device and cleaning method thereof
JP2013229622A (en) * 2013-06-25 2013-11-07 Tokyo Electron Ltd Film formation device and cleaning method of the same
JP2018022925A (en) * 2016-07-21 2018-02-08 東京エレクトロン株式会社 Semiconductor device manufacturing method, vacuum processing device and substrate processing device
US10593556B2 (en) 2016-07-21 2020-03-17 Tokyo Electron Limited Method of fabricating semiconductor device, vacuum processing apparatus and substrate processing apparatus
US11056349B2 (en) 2016-07-21 2021-07-06 Tokyo Electron Limited Method of fabricating semiconductor device, vacuum processing apparatus and substrate processing apparatus
JP2018107427A (en) * 2016-12-26 2018-07-05 東京エレクトロン株式会社 Semiconductor device manufacturing method, vacuum processing device and substrate processing device
JP2019079889A (en) * 2017-10-23 2019-05-23 東京エレクトロン株式会社 Manufacturing method of semiconductor device
JP2019079888A (en) * 2017-10-23 2019-05-23 東京エレクトロン株式会社 Manufacturing method of semiconductor device
JP2019106490A (en) * 2017-12-13 2019-06-27 東京エレクトロン株式会社 Semiconductor device manufacturing method
JP2020053446A (en) * 2018-09-25 2020-04-02 東京エレクトロン株式会社 Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP3863934B2 (en) 2006-12-27

Similar Documents

Publication Publication Date Title
JPH09143681A (en) Formation of high molecular thin film
US4624867A (en) Process for forming a synthetic resin film on a substrate and apparatus therefor
US4483901A (en) Selectively gas-permeable composite membrane and process for production thereof
US5688556A (en) Barrier films having vapor coated EVOH surfaces
US8101023B2 (en) Preparation of membranes using solvent-less vapor deposition followed by in-situ polymerization
JPH046791B2 (en)
JP4195205B2 (en) Preparation method of organic polymer thin film
EP0333284B1 (en) Process for preparing non-porous membrane layers
JPS61261322A (en) Formation of synthetic resin film
Matsuyama et al. Plasma polymerized membranes from organosilicon compounds for separation of oxygen over nitrogen
US5672383A (en) Barrier films having carbon-coated high energy surfaces
Nagasawa et al. Photo-induced sol–gel synthesis of polymer-supported silsesquioxane membranes
Liberman et al. Integration of vapor deposited polyimide into a multichip module packaging process
JPH05177163A (en) Formation of synthetic resin coat
JPH078725A (en) Filter
JPH0762236B2 (en) Method for forming synthetic resin film
JPS61107923A (en) Manufacture of gas selective permeable composite membrane
JPH0776416B2 (en) Method for forming polyimide resin coating
JPS6336286B2 (en)
JPH04180552A (en) Formation of high-molecular film and device for forming this film
JPH06182167A (en) Fluorine-containing polyimide-based gas separation membrane and method of mixture gas separation/ concentration using said membrane
JP2003054934A (en) Porous silicon oxide thin film and production method therefor
JPH11283974A (en) Low-ratio dielectric high-molecular film, formation therefor and interlayer insulating film
JPH02145763A (en) Manufacture of high polymer film
JPH0342021A (en) Production of gas transmissible membrane

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040709

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040715

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141006

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees