JP2003054934A - Porous silicon oxide thin film and production method therefor - Google Patents

Porous silicon oxide thin film and production method therefor

Info

Publication number
JP2003054934A
JP2003054934A JP2001250784A JP2001250784A JP2003054934A JP 2003054934 A JP2003054934 A JP 2003054934A JP 2001250784 A JP2001250784 A JP 2001250784A JP 2001250784 A JP2001250784 A JP 2001250784A JP 2003054934 A JP2003054934 A JP 2003054934A
Authority
JP
Japan
Prior art keywords
thin film
silicon oxide
based monomer
hydrocarbon
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001250784A
Other languages
Japanese (ja)
Other versions
JP4002965B2 (en
Inventor
Toshihiro Hirotsu
敏博 広津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001250784A priority Critical patent/JP4002965B2/en
Publication of JP2003054934A publication Critical patent/JP2003054934A/en
Application granted granted Critical
Publication of JP4002965B2 publication Critical patent/JP4002965B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicon Compounds (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a silicon oxide thin film which has a controlled porous structure. SOLUTION: A copolymer thin film is deposited by plasma polymerization of a gaseous mixture of a silicon-based monomer and a hydrocarbon-based monomer in a fixed ratio. After that, the copolymer thin film is further treated by an electric discharge with oxygen or an oxygen-containing gas as a plasma source, and the polymer component originated from the hydrocarbon-based monomer is removed by etching, and simultaneously, the silicon-based polymer part is oxidized and converted into silicon oxide to obtain the porous silicon oxide thin film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、プラズマ共重合
により得られたケイ素含有ポリマー薄膜を、更に酸化性
プラズマ処理するプロセスを経て、共重合成分である炭
化水素系ポリマー部を除去すると同時に、酸化ケイ素に
変換するという方法によって、分子レベルでの多孔性構
造を構成した酸化ケイ素薄膜、その調製を目的とした製
造方法、及びその加工体に関するものである。このよう
な構造からなる多孔性酸化ケイ素薄膜は、表面に特徴的
なモルホロジーを呈していること、表面積が大きいこと
等の特徴があり、光散乱材料、酵素等の生体関連分子の
固定化材、分子吸着材、分離膜材として利用することが
出来る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a process for treating a silicon-containing polymer thin film obtained by plasma copolymerization with an oxidizing plasma to remove a hydrocarbon-based polymer portion as a copolymerization component and at the same time to oxidize the same. The present invention relates to a silicon oxide thin film having a porous structure at the molecular level by a method of converting into silicon, a manufacturing method for preparing the same, and a processed product thereof. The porous silicon oxide thin film having such a structure has a characteristic that the surface exhibits a characteristic morphology, a large surface area, and the like, and a light-scattering material, an immobilizing material for bio-related molecules such as an enzyme, It can be used as a molecular adsorbent or a separation membrane material.

【0002】[0002]

【従来の技術】酸化ケイ素系の物質を得る方法として
は、800度から1000度に加熱してケイ素系ポリマ
ーを酸化変換することが知られている。しかしながら、
これは高温処理を伴うために処理や加工上の制限があ
る。また、効果的に多孔性薄膜を得るためにも適してい
るとは言えず、分子レベルでの多孔構造を構築すること
は実質上不可能である。
2. Description of the Related Art As a method for obtaining a silicon oxide-based substance, it is known to oxidize a silicon-based polymer by heating it at 800 to 1000 ° C. However,
Since this involves high temperature processing, there are restrictions on processing and processing. Further, it is not suitable for obtaining a porous thin film effectively, and it is virtually impossible to construct a porous structure at the molecular level.

【0003】これに対して、酸化ケイ素からなる薄膜層
を設ける方法としてはケイ素系モノマーからのプラズマ
重合薄膜を酸化性プラズマで酸化変換処理する方法が公
知である。また、ケイ素系モノマーのプラズマ重合の際
にモノマーガスに酸素を同時に導入して反応を行い、同
時酸化によって酸化ケイ素の層を得る方法が知られる。
On the other hand, as a method of providing a thin film layer made of silicon oxide, a method of subjecting a plasma-polymerized thin film made of a silicon-based monomer to an oxidative conversion treatment with an oxidizing plasma is known. Further, a method is known in which oxygen is simultaneously introduced into a monomer gas at the time of plasma polymerization of a silicon-based monomer to cause a reaction, and a silicon oxide layer is obtained by simultaneous oxidation.

【0004】プラズマプロセスからなる上の二つの方法
は、加熱酸化的に酸化ケイ素を形成するものではない。
即ち、これらはいずれも非加熱プロセスであり、高分子
等の基板上へ適用して酸化ケイ素薄膜層を設けることが
できるという特徴がある。
The above two methods consisting of a plasma process do not form silicon oxide by thermal oxidation.
That is, these are all non-heating processes and are characterized in that they can be applied to a substrate such as a polymer to provide a silicon oxide thin film layer.

【0005】上記方法で得られる膜は、いずれも気相か
ら得られるプラズマ活性化分子種を中間体とする重合に
より薄膜層を堆積したものであり、この層の表面から酸
化エッチングして得られる構造であって、且つ均一な構
造の薄膜が得られる。
Each of the films obtained by the above methods is a thin film layer deposited by polymerization using a plasma-activated molecular species obtained from the gas phase as an intermediate, and is obtained by oxidative etching from the surface of this layer. A thin film having a uniform structure can be obtained.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、これら
はコントロールされた孔径の多孔構造を呈しているわけ
ではない。従って、酸化ケイ素薄膜表面のモルホロジー
が関与した機能を発揮するためには構造上課題があっ
た。即ち、或る一定の孔径の多孔性薄膜で初めて有効に
作用することができる酵素の固定化、光の乱反射による
遮光性の付与、膜透過等の機能の発揮には困難な所があ
った。
However, they do not have a porous structure with a controlled pore size. Therefore, there is a structural problem in order to exert the function related to the morphology of the surface of the silicon oxide thin film. That is, it has been difficult to immobilize an enzyme that can effectively work for the first time with a porous thin film having a certain pore size, to impart a light-shielding property due to diffused reflection of light, and to exert functions such as membrane permeation.

【0007】[0007]

【課題を解決するための手段】本発明者は鋭意研究を進
めた結果、プラズマ重合によるケイ素系のポリマー薄膜
層を形成する際に、予め分解脱離しやすい成分を一定の
割合で導入しておくと、エッチングによりこれらが脱離
して膜に分子レベルで孔の構造を形成することができ、
この過程を経ることによって上記課題が解決できること
を見いだした。
Means for Solving the Problems As a result of intensive studies, the present inventor has previously introduced a certain proportion of a component which is easily decomposed and desorbed when a silicon-based polymer thin film layer is formed by plasma polymerization. Then, these can be desorbed by etching to form a pore structure in the film at the molecular level,
It has been found that the above problems can be solved by going through this process.

【0008】即ち、酸化エッチングにより優先的に除去
できる微小サイズの部分を、ケイ素系プラズマポリマー
薄膜内に導入しておいて、この部分が酸化エッチング処
理によって脱離されると同時にケイ素系ポリマー部分が
酸化されて、この後に多孔性の酸化ケイ素層が形成され
る。
That is, a micro-sized portion which can be removed preferentially by oxidation etching is introduced into the silicon-based plasma polymer thin film, and this portion is desorbed by the oxidation etching treatment and at the same time the silicon-based polymer portion is oxidized. After this, a porous silicon oxide layer is formed.

【0009】本発明は、こうしてなる多孔性酸化ケイ素
薄膜、及びその製造方法を提供するものである。以下に
本発明の概要を説明する。
The present invention provides a porous silicon oxide thin film thus obtained and a method for producing the same. The outline of the present invention will be described below.

【0010】[0010]

【発明の実施の形態】本発明方法におけるプラズマ重合
においては、プラズマで活性化されたラジカル種が生長
点となって反応が開始される。即ち、放電のもとで発生
した電子がガス状の有機化合物に衝突し、これがこの化
合物を構成する化学結合を解離してラジカルを生成さ
せ、この生成した気相のラジカルが再結合することによ
って、架橋構造からなる重合体が形成される。
BEST MODE FOR CARRYING OUT THE INVENTION In the plasma polymerization in the method of the present invention, the radical species activated by plasma serve as a growth point to initiate the reaction. That is, the electrons generated under the discharge collide with a gaseous organic compound, which dissociates the chemical bond forming the compound to generate a radical, and the generated gas-phase radical is recombined. A polymer having a crosslinked structure is formed.

【0011】プラズマ重合では種々の有機系モノマーガ
スから直接に重合薄膜が形成でき、これをフィルム、シ
ート、粒状物等適用すれば、これらの成形体表面にコー
ティング処理ができる。しかも、モノマー種を選択する
ことにより、膜の機能を制御することができると共に、
基材表面に極めて密着した均一な薄膜を形成できる。
In plasma polymerization, a polymerized thin film can be formed directly from various organic monomer gases, and by applying a film, sheet, granular material, etc., the surface of these molded products can be coated. Moreover, the function of the film can be controlled by selecting the monomer species.
It is possible to form a uniform thin film that is extremely close to the surface of the substrate.

【0012】本発明において用いるシロキサン、シラ
ン、シラザン等のケイ素系モノマーは、プラズマ重合し
易い化合物であって、ケイ素−ケイ素架橋反応を経由し
て効率的に重合薄膜を与える。これらのケイ素系ポリマ
ー薄膜を酸化プラズマで酸化処理することによって酸化
ケイ素を形成することができる。
Silicon-based monomers such as siloxane, silane, and silazane used in the present invention are compounds that are easily plasma-polymerized, and efficiently give a polymerized thin film through a silicon-silicon crosslinking reaction. Silicon oxide can be formed by subjecting these silicon-based polymer thin films to oxidation treatment with an oxidizing plasma.

【0013】一方、炭化水素系モノマーはプラズマ照射
下に同様に重合し、構成元素からなる重合薄膜が形成さ
れ、架橋による緻密な構造を与える。これらは、酸化プ
ラズマで処理することによって酸化エッチングされ、乃
至は灰化分解されて脱離除去される。
On the other hand, the hydrocarbon-based monomer is similarly polymerized under the irradiation of plasma to form a polymerized thin film composed of the constituent elements, which gives a dense structure by crosslinking. These are oxidatively etched by being treated with oxidative plasma, or are ash decomposed to be removed by desorption.

【0014】ケイ素系モノマーと炭化水素系モノマーか
らなる混合ガスのプラズマ重合により、混合の割合に従
って双方ポリマー成分が含まれる共重合薄膜を構成でき
る。この共重合薄膜を使い、導入された炭化水素ポリマ
ー部を酸化エッチング、乃至は灰化分解により除去して
空隙を形成し、同時にケイ素成分を酸化して目的の多孔
性の構造からなる酸化ケイ素薄膜を形成する。
By plasma polymerization of a mixed gas composed of a silicon-based monomer and a hydrocarbon-based monomer, a copolymer thin film containing both polymer components can be formed according to the mixing ratio. Using this copolymer thin film, the introduced hydrocarbon polymer part is removed by oxidative etching or ash decomposition to form voids, and at the same time, the silicon component is oxidized to form a silicon oxide thin film having a desired porous structure. To form.

【0015】本発明方法において、プラズマ重合用原料
として用いられるケイ素系モノマーとしては、高真空下
において50℃程度までの温度で蒸発し、気体状になる
ものであれば良く、特に制限されない。例えば、ヘキサ
メチルジシロキサン、テトラメチルジシロキサメチルシ
クロシロキサン、テトラメチルジシロキサン等のシロキ
サン系化合物、ヘキサメチルジシラン等のシラン系化合
物、及びヘキサメチルジシラザン等のシラザン系化合物
が用いられる。
In the method of the present invention, the silicon-based monomer used as the raw material for plasma polymerization is not particularly limited as long as it can be vaporized at a temperature of up to about 50 ° C. under high vacuum and becomes a gas. For example, siloxane compounds such as hexamethyldisiloxane, tetramethyldisiloxamethylcyclosiloxane, tetramethyldisiloxane, silane compounds such as hexamethyldisilane, and silazane compounds such as hexamethyldisilazane are used.

【0016】炭化水素系のモノマーとしては特に限定さ
れるものではなく、汎用に用いられているメタン、エタ
ン、プロパン等の直鎖状炭化水素、トルエン等の芳香族
化合物、ピリジン、ピロール等のヘテロ化合物、酢酸、
アクリル酸、メタクリル酸等のカルボン酸性化合物、ア
セトン等のケトン化合物等が上げられる。共重合薄膜中
でカルボニル基やカルボン酸基で構成される部分は、酸
化プラズマ処理で効果的に酸化エッチング脱離できる。
The hydrocarbon-based monomer is not particularly limited, and is a commonly used straight-chain hydrocarbon such as methane, ethane and propane, an aromatic compound such as toluene and a hetero compound such as pyridine and pyrrole. Compound, acetic acid,
Carboxylic acid compounds such as acrylic acid and methacrylic acid, and ketone compounds such as acetone can be used. A portion formed by a carbonyl group or a carboxylic acid group in the copolymer thin film can be effectively removed by oxidative etching by oxidizing plasma treatment.

【0017】ケイ素系モノマーはプラズマ下に重合しや
すい物質であり、共重合反応においても系内でのモノマ
ー分圧と放電出力による放電に好ましい条件が得られれ
ば双方モノマーのいかなる割合のもとでも重合が可能で
ある。本発明方法における適切な多孔性酸化ケイ素薄膜
を与えるためには、共重合に供されるケイ素系モノマー
と炭化水素系モノマーの混合ガス中の炭化水素系モノマ
ーの割合が、0.1〜0.8、より好ましくは0.2〜
0.6の範囲であることが望ましい。
The silicon-based monomer is a substance which is easily polymerized under plasma, and even in the copolymerization reaction, any ratio of both monomers can be used as long as favorable conditions can be obtained for the partial pressure of the monomer in the system and the discharge by the discharge output. Polymerization is possible. In order to provide a suitable porous silicon oxide thin film in the method of the present invention, the ratio of the hydrocarbon-based monomer in the mixed gas of the silicon-based monomer and the hydrocarbon-based monomer to be copolymerized is 0.1 to 0. 8, more preferably 0.2 to
The range of 0.6 is desirable.

【0018】本発明方法における共重合薄膜の形成、及
び該薄膜の酸素系プラズマによる処理は、公知のプラズ
マ重合装置を用いて行うことができる。プラズマ放電の
発生は、一般には13.56MHzのラジオ波による。
しかし、この周波数に限定されるものではない。放電下
にモノマーが活性化し、重合が可能であれば良く、例え
ば、kHzオーダーのオーディオ波、波数が更に大きい
マイクロ波を用いることもできる。
The formation of the copolymer thin film and the treatment of the thin film with oxygen plasma in the method of the present invention can be carried out using a known plasma polymerization apparatus. The generation of plasma discharge is generally due to a radio wave of 13.56 MHz.
However, it is not limited to this frequency. It suffices that the monomer be activated and polymerized under discharge, and for example, an audio wave on the order of kHz or a microwave having a larger wave number can be used.

【0019】プラズマ重合、及び酸化性プラズマによる
処理のためのリアクターの形状、サイズ、処理様式も特
に限定されるものではない。重合膜形成と酸化プラズマ
処理が可能であるならばいずれでも差し支えなく、管状
のリアクター、ベルジャー型のリアクターを使用するこ
とができる。
The shape, size, and treatment mode of the reactor for plasma polymerization and treatment with an oxidizing plasma are not particularly limited. As long as polymer film formation and oxidative plasma treatment are possible, a tubular reactor or a bell jar type reactor can be used without any problem.

【0020】プラズマ重合による薄膜の生成状態は、モ
ノマーガスの供給条件のほかプラズマ放電の条件によ
る。
The state of thin film formation by plasma polymerization depends on the conditions of plasma discharge as well as the conditions of supplying the monomer gas.

【0021】膜生成速度は、放電出力の他に反応系にお
けるモノマー供給速度、即ちガス圧に影響される。より
効果的にプラズマ重合を行うためには、原料化合物から
なる混合ガスの全圧が1〜10パスカルの範囲になるよ
うに導入され、十分な強さの電力が付加されてガスがプ
ラズマ活性化できるような条件が整えられれば良い。
The film formation rate is influenced by the monomer supply rate in the reaction system, that is, the gas pressure in addition to the discharge output. In order to carry out the plasma polymerization more effectively, the mixed gas containing the raw material compounds is introduced so that the total pressure is in the range of 1 to 10 Pascal, and electric power of sufficient strength is added to activate the gas into plasma. All that is necessary is to prepare the conditions that can be achieved.

【0022】適切な放電出力は、供給するモノマーガス
の圧力等の条件の他、重合装置の形状、基板の設置状態
にも依存する。一般には10〜200Wの範囲でプラズ
マ重合が可能であなる。低出力の下で作成された重合膜
は架橋度の低い、有機性の高い生成膜を与えるし、逆に
高出力の場合には架橋度の高い膜を与える。極端に架橋
度を高めた時には無機化した構造が考えられる。
The appropriate discharge output depends not only on the conditions such as the pressure of the supplied monomer gas, but also on the shape of the polymerization apparatus and the installation state of the substrate. Generally, plasma polymerization is possible in the range of 10 to 200W. The polymerized film prepared under a low output gives a product film having a low degree of crosslinking and a high degree of organicity, and conversely gives a film having a high degree of crosslinking when the output is high. When the degree of crosslinking is extremely increased, an inorganic structure is considered.

【0023】前述のように、ケイ素系モノマーのプラズ
マ重合による生成薄膜は架橋性の構造を呈しており、形
成される膜は酸素等の気体分離膜、エタノール等の有機
溶媒の分離膜として応用され、選択透過膜として有効で
ある。また、生成膜は、引っ掻き強度、硬度等の機械的
特性に優れる。更に、化学的に安定であり、耐久性を持
つ。
As described above, the thin film produced by plasma polymerization of the silicon-based monomer has a crosslinkable structure, and the formed film is applied as a gas separation film such as oxygen and an organic solvent separation film such as ethanol. , Effective as a permselective membrane. Further, the produced film has excellent mechanical properties such as scratch strength and hardness. Furthermore, it is chemically stable and durable.

【0024】膜材料においては、膜の厚さも重要な因子
であるが、プラズマ重合では或る一定の重合条件下、適
宜重合時間の長短を選択することにより膜厚をコントロ
ールすることができる。本発明において、共重合薄膜の
厚さは0.01ミクロン程度から10ミクロンの範囲、
より好適には0.02〜2.0ミクロンが望ましい。
In the film material, the film thickness is also an important factor, but in the plasma polymerization, the film thickness can be controlled by appropriately selecting the length of the polymerization time under certain constant polymerization conditions. In the present invention, the thickness of the copolymer thin film is in the range of about 0.01 to 10 microns,
More preferably, 0.02-2.0 micron is desirable.

【0025】本発明においては、ケイ素系モノマーの共
重合によって得られた薄膜を、酸化性プラズマによって
処理するが、酸化性プラズマガスとしては、酸素自体、
或いは空気のような酸素を含んだガスが用いられる。こ
の場合の酸化プラズマ処理の条件は特に限定されるもの
ではなく、放電が発生し酸化エッチングが生じれば差し
支えない。即ち、ガス圧、放電処理出力等の条件は特に
限定されるものではない。酸化の程度は酸素の供給量と
出力に依存しており、例えば酸素分圧として10〜50
パスカル、出力として10W〜100Wで放電を発生さ
せることによって効率的に酸化エッチングによる炭素成
分の脱離と酸化ケイ素の形成を進めることができる。
In the present invention, the thin film obtained by the copolymerization of the silicon-based monomer is treated with oxidizing plasma. As the oxidizing plasma gas, oxygen itself,
Alternatively, a gas containing oxygen such as air is used. The conditions of the oxidative plasma treatment in this case are not particularly limited, and it suffices that discharge occurs and oxidative etching occurs. That is, conditions such as gas pressure and discharge processing output are not particularly limited. The degree of oxidation depends on the supply amount and output of oxygen. For example, the oxygen partial pressure is 10 to 50.
By generating electric discharge at a power of 10 W to 100 W in Pascal, the desorption of carbon components and the formation of silicon oxide by oxidative etching can be efficiently promoted.

【0026】本発明で得られた多孔性酸化ケイ素薄膜
は、膜の化学的な機能・構造に従って種々の用途に用い
ることが可能である。特に、重合膜中に酸化ケイ素がラ
ンダムに導入されていることから、多孔質光散乱材料、
酵素等の生体関連分子の固定化材、分子吸着材、分離膜
材として利用することができる。
The porous silicon oxide thin film obtained by the present invention can be used in various applications depending on the chemical function and structure of the film. In particular, since the silicon oxide is randomly introduced into the polymer film, the porous light scattering material,
It can be used as an immobilizing material for bio-related molecules such as enzymes, a molecular adsorbing material, and a separation membrane material.

【0027】[0027]

【実施例】次に、本発明を実施例により更に詳細に説明
するが、本発明はこれらの例によって何ら限定されるも
のではない。
EXAMPLES Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0028】実施例1 内径4.4cm、長さ40cmのパイレックス(登録商
標)ガラス製の円筒状反応管内にスライドガラス(1.
8cmx4.0cm)を置き、この系をあらかじめ真空
脱気した後、精密バルブを通してアクリル酸(以下、A
Aと略記)の割合が0.33であるヘキサメチルジシロ
キサン(HMSO)との混合ガスを、トータル圧として
3.0パスカル導入した。ガス流が定常に達したあと1
3.56MHzのラジオ波を用いる誘導結合方式のプラ
ズマ処理装置を使用し50ワットのパワーにてプラズマ
放電を発生して反応を行った。10分間の重合反応を行
った後に放電を停止し、モノマーガスの供給を止めた後
に真空脱気し、この後に20パスカルの酸素ガスの導入
条件下、20Wで更に10分間プラズマ酸化処理を行っ
た。この工程により約0.93ミクロンの厚さに相当す
る多孔性の酸化ケイ素層が形成できた。
Example 1 A slide glass (1. cm) was placed in a cylindrical reaction tube made of Pyrex (registered trademark) glass having an inner diameter of 4.4 cm and a length of 40 cm.
8 cm × 4.0 cm), this system was vacuum degassed beforehand, and then acrylic acid (hereinafter referred to as A
A mixed gas of hexamethyldisiloxane (HMSO) having a ratio of A) of 0.33 was introduced at a total pressure of 3.0 Pascal. 1 after gas flow reaches steady state
A plasma processing apparatus of an inductive coupling type using a radio wave of 3.56 MHz was used to generate a plasma discharge with a power of 50 watts for reaction. After carrying out the polymerization reaction for 10 minutes, the discharge was stopped, the supply of the monomer gas was stopped, and then the vacuum deaeration was performed, and then the plasma oxidation treatment was further performed for 10 minutes at 20 W under the introduction condition of oxygen gas of 20 Pascal. . This step produced a porous silicon oxide layer corresponding to a thickness of about 0.93 micron.

【0029】実施例2 実施例1と同じ方法で、トルエンの割合が0.33であ
るHMSOとの混合ガスを導入し、3.0パスカルのモ
ノマーガス圧条件下に50Wで共重合を行った。10分
間の重合処理の後、これに50パスカル、100Wの条
件下、酸素プラズマを10分間照射して約0.60ミク
ロンの厚さの多孔性酸化ケイ素薄膜を得た。
Example 2 In the same manner as in Example 1, a mixed gas with HMSO having a toluene ratio of 0.33 was introduced, and copolymerization was carried out at 50 W under a monomer gas pressure of 3.0 Pascal. . After the polymerization treatment for 10 minutes, this was irradiated with oxygen plasma for 10 minutes at 50 Pascal and 100 W to obtain a porous silicon oxide thin film having a thickness of about 0.60 micron.

【0030】実施例3 実施例1と同じ方法で、ピリジンの割合が0.33であ
るHMSOとの混合ガスを導入し、3.0パスカルのモ
ノマーガス圧条件下に50Wで共重合を行った。10分
間の重合処理の後、50パスカル、100Wの条件下、
酸素プラズマを10分間照射して約0.54ミクロンの
厚さの多孔性酸化ケイ素薄膜を得た。
Example 3 In the same manner as in Example 1, a mixed gas with HMSO having a pyridine ratio of 0.33 was introduced, and copolymerization was carried out at 50 W under a monomer gas pressure of 3.0 Pascal. . After the polymerization treatment for 10 minutes, under the condition of 50 Pascal and 100 W,
Irradiation with oxygen plasma for 10 minutes gave a porous silicon oxide thin film with a thickness of about 0.54 micron.

【0031】実施例4 実施例1と同じ方法で、アセトンの割合が0.33であ
るHMSOとの混合ガスを導入し、3.0パスカルのモ
ノマーガス圧条件下に50Wで共重合を行った。10分
間の重合処理の後、これに20パスカル、50Wの条件
下、酸素プラズマを10分間照射して約0.4ミクロン
の厚さの多孔性酸化ケイ素薄膜を得た。
Example 4 In the same manner as in Example 1, a mixed gas with HMSO having an acetone ratio of 0.33 was introduced, and copolymerization was carried out at 50 W under a monomer gas pressure of 3.0 Pascal. . After the polymerization treatment for 10 minutes, it was irradiated with oxygen plasma for 10 minutes under the condition of 20 Pascal and 50 W to obtain a porous silicon oxide thin film having a thickness of about 0.4 micron.

【0032】実施例5 実施例1と同様の方法で、AAの割合が0.5であるヘ
キサメチルジシラザン(HMSZ)との混合ガスを導入し
て4.0パスカルのモノマーガス圧条件下に50Wで共
重合を行った。10分間の重合処理の後、20パスカル
の酸素ガスを加え、20Wで更に10分間放電照射し、
薄膜層の酸化処理を行った。この工程により表層部から
酸化が進み全体として約0.8ミクロンの厚さの多孔性
酸化ケイ素薄膜が形成された。
Example 5 In the same manner as in Example 1, a mixed gas with hexamethyldisilazane (HMSZ) having an AA ratio of 0.5 was introduced to obtain a monomer gas pressure condition of 4.0 Pascal. Copolymerization was performed at 50W. After the polymerization treatment for 10 minutes, 20 Pascal oxygen gas was added, and the discharge irradiation was further performed at 20 W for 10 minutes,
The thin film layer was oxidized. Oxidation proceeded from the surface layer by this step, and a porous silicon oxide thin film having a thickness of about 0.8 μm was formed as a whole.

【0033】実施例6 実施例5と同様の方法で、トルエンの割合が0.2であ
るHMSZとの混合ガスを導入し、4.0パスカルのガ
ス圧条件下13.56MHzにて100Wで20分間反
応させて共重合膜を得た後、更に50パスカルの酸素ガ
スを導入して100Wにて10分間のプラズマ処理を行
った。この工程により約2.0ミクロンの厚さに相当す
る酸化ケイ素の層が形成された。
Example 6 In the same manner as in Example 5, a mixed gas with HMSZ in which the proportion of toluene was 0.2 was introduced, and the gas pressure was 4.0 Pascal at 13.56 MHz and 100 W at 20 W. After reacting for a minute to obtain a copolymer film, an oxygen gas of 50 Pascal was further introduced, and plasma treatment was performed at 100 W for 10 minutes. This step formed a layer of silicon oxide corresponding to a thickness of about 2.0 microns.

【0034】[0034]

【発明の効果】ケイ素系モノマーと炭化水素系モノマー
の一定割合の混合ガスからのプラズマ重合によって得ら
れた共重合薄膜を、酸化プラズマで処理することによっ
て多孔構造の酸化ケイ素薄膜が得られる。これらの薄膜
は、酵素等の生体関連分子の固定化材、遮光性の材料、
分子吸着材料として用いることができる。
EFFECTS OF THE INVENTION A porous silicon oxide thin film is obtained by treating a copolymer thin film obtained by plasma polymerization from a mixed gas of a silicon-based monomer and a hydrocarbon-based monomer in a fixed ratio with an oxidizing plasma. These thin films are used for immobilizing bio-related molecules such as enzymes, light-shielding materials,
It can be used as a molecular adsorption material.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 20/30 B01J 20/30 C08G 83/00 C08G 83/00 C08J 7/00 306 C08J 7/00 306 CFH CFH // C08L 83:00 C08L 83:00 Fターム(参考) 4D006 MA06 MA31 MC03X NA33 NA43 NA54 4F073 BA32 BB01 CA01 4G066 AA22B AA71D AB01A AB03A AB05A AB07A AB12A BA03 BA20 FA07 FA31 FA37 4G072 AA26 BB09 GG01 GG03 HH03 JJ47 MM01 NN27 NN30 RR03 RR25 UU11 4J031 BA04 BA17 BC07 BD03 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B01J 20/30 B01J 20/30 C08G 83/00 C08G 83/00 C08J 7/00 306 C08J 7/00 306 CFH CFH // C08L 83:00 C08L 83:00 F term (reference) 4D006 MA06 MA31 MC03X NA33 NA43 NA54 4F073 BA32 BB01 CA01 4G066 AA22B AA71D AB01A AB03A AB05A AB07A AB12A BA03 BA20 FA07 FA31 FA37 4G072 HM01JJ03 BB03FA03 BB09FA03 BB07FA03A27JJ03H01 RR03 RR25 UU11 4J031 BA04 BA17 BC07 BD03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一定割合のケイ素系モノマーと炭化水素
系モノマーの混合ガスのプラズマ重合によって共重合薄
膜を形成したのち、該共重合薄膜を更に酸素乃至は酸素
含有ガスをプラズマ源とする放電にて処理を行い、炭化
水素系モノマー由来ポリマー成分をエッチング除去する
と同時にケイ素系ポリマー部を酸化して酸化ケイ素に変
換して得られることを特徴とする多孔性酸化ケイ素薄
膜。
1. A copolymer thin film is formed by plasma polymerization of a mixed gas of a certain proportion of a silicon-based monomer and a hydrocarbon-based monomer, and then the copolymerized thin film is further subjected to discharge using oxygen or an oxygen-containing gas as a plasma source. A porous silicon oxide thin film, which is obtained by performing treatment to remove a hydrocarbon-based monomer-derived polymer component by etching and at the same time oxidizing a silicon-based polymer portion to convert it into silicon oxide.
【請求項2】 炭化水素系モノマーが、メタン、エタ
ン、プロパン等の直鎖状化合物、トルエン等の芳香族化
合物、ピリジン、ピロール等のヘテロ化合物、酢酸、ア
クリル酸、メタクリル、プロピオン酸等のカルボン酸化
合物、アセトン等のケトン化合物からなる群から選ばれ
た少なくとも1種若しくは2種以上であることを特徴と
する請求項1に記載した多孔性酸化ケイ素薄膜。
2. The hydrocarbon-based monomer is a linear compound such as methane, ethane or propane, an aromatic compound such as toluene, a hetero compound such as pyridine or pyrrole, a carboxylic acid such as acetic acid, acrylic acid, methacrylic acid or propionic acid. The porous silicon oxide thin film according to claim 1, which is at least one kind or two or more kinds selected from the group consisting of acid compounds and ketone compounds such as acetone.
【請求項3】 共重合薄膜作製に際して反応時に導入さ
れるケイ素系モノマーと炭化水素系モノマーの混合ガス
中の炭化水素モノマーガスの割合が、モル比にて0.1
〜0.8、より好ましくは0.2〜0.6の範囲からな
ることを特徴とする請求項1乃至2のいずれか一つに記
載した多孔性酸化ケイ素薄膜。
3. The ratio of the hydrocarbon monomer gas in the mixed gas of the silicon-based monomer and the hydrocarbon-based monomer, which is introduced at the time of reaction for producing the copolymer thin film, is 0.1 in molar ratio.
To 0.8, and more preferably 0.2 to 0.6. 3. The porous silicon oxide thin film according to claim 1, wherein the porous silicon oxide thin film is in the range of 0.2 to 0.6.
【請求項4】 酸化ケイ素からなる薄膜層の厚さが0.
01ミクロンから10ミクロン、より好ましくは0.0
2ミクロンから2ミクロンの範囲であることを特徴とす
る請求項1ないし3のいずれか一つに記載した多孔性酸
化ケイ素薄膜。
4. The thin film layer made of silicon oxide has a thickness of 0.
01 micron to 10 micron, more preferably 0.0
4. The porous silicon oxide thin film according to claim 1, wherein the thickness is in the range of 2 microns to 2 microns.
【請求項5】 一定割合のケイ素系モノマーと炭化水素
系モノマーの混合ガスのプラズマ重合によって共重合薄
膜を形成したのち、該共重合薄膜を更に酸素乃至は酸素
含有ガスをプラズマ源とする放電にて処理を行い、炭化
水素系モノマー由来ポリマー成分をエッチング除去する
と同時にケイ素系ポリマー部を酸化して酸化ケイ素に変
換して得られることを特徴とする多孔性酸化ケイ素薄膜
の製造方法。
5. A copolymer thin film is formed by plasma polymerization of a mixed gas of a certain proportion of a silicon-based monomer and a hydrocarbon-based monomer, and then the copolymerized thin film is further subjected to discharge using oxygen or an oxygen-containing gas as a plasma source. A method for producing a porous silicon oxide thin film, which is obtained by subjecting a hydrocarbon-based monomer-derived polymer component to etching removal to simultaneously oxidize a silicon-based polymer portion to convert it into silicon oxide.
JP2001250784A 2001-08-21 2001-08-21 Method for producing porous silicon oxide thin film Expired - Lifetime JP4002965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001250784A JP4002965B2 (en) 2001-08-21 2001-08-21 Method for producing porous silicon oxide thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001250784A JP4002965B2 (en) 2001-08-21 2001-08-21 Method for producing porous silicon oxide thin film

Publications (2)

Publication Number Publication Date
JP2003054934A true JP2003054934A (en) 2003-02-26
JP4002965B2 JP4002965B2 (en) 2007-11-07

Family

ID=19079533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001250784A Expired - Lifetime JP4002965B2 (en) 2001-08-21 2001-08-21 Method for producing porous silicon oxide thin film

Country Status (1)

Country Link
JP (1) JP4002965B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005247678A (en) * 2004-02-03 2005-09-15 Seiko Epson Corp Method for forming silicon oxide film, and silicon oxide film
JPWO2006035893A1 (en) * 2004-09-30 2008-05-15 浜松ホトニクス株式会社 Silicon substrate processing method
WO2017098887A1 (en) * 2015-12-10 2017-06-15 富士フイルム株式会社 Method for producing gas separation membrane with protective layer, gas separation membrane with protective layer, gas separation membrane module and gas separation device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005247678A (en) * 2004-02-03 2005-09-15 Seiko Epson Corp Method for forming silicon oxide film, and silicon oxide film
JPWO2006035893A1 (en) * 2004-09-30 2008-05-15 浜松ホトニクス株式会社 Silicon substrate processing method
JP4654195B2 (en) * 2004-09-30 2011-03-16 清一 永田 Silicon substrate processing method
WO2017098887A1 (en) * 2015-12-10 2017-06-15 富士フイルム株式会社 Method for producing gas separation membrane with protective layer, gas separation membrane with protective layer, gas separation membrane module and gas separation device
US10843137B2 (en) 2015-12-10 2020-11-24 Fujifilm Corporation Method for producing protective-layer-covered gas separation membrane, protective-layer-covered gas separation membrane, gas separation membrane module, and gas separation apparatus

Also Published As

Publication number Publication date
JP4002965B2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
EP0346055B1 (en) Method for causing plasma reaction under atmospheric pressure
US4483901A (en) Selectively gas-permeable composite membrane and process for production thereof
EP2268846B1 (en) A method for stable hydrophilicity enhancement of a substrate by atmospheric pressure plasma deposition
JPS60137417A (en) Gas separating member and its preparation
JP4002965B2 (en) Method for producing porous silicon oxide thin film
JPH0561297B2 (en)
JPH03241739A (en) Atmospheric pressure plasma reaction method
JPH01274875A (en) Method for manufacturing non-porous membrane layer
Matsuyama et al. Plasma polymerized membranes from organosilicon compounds for separation of oxygen over nitrogen
JP3668772B2 (en) Separation membrane and manufacturing method thereof
JPH09246263A (en) Amorphous carbon film, manufacture thereof, and semiconductor device
Masuda et al. Glow‐discharge‐induced graft polymerization of acrylic acid onto poly [1‐(trimethylsilyl)‐1‐propyne] film
Inagaki et al. Gas separation membranes made by plasma polymerization of perfluorobenzene/cf4 and pentafluorobenzene/cf4 mixtures
Malekzad et al. Single‐step deposition of hexamethyldisiloxane surface gradient coatings with a high amplitude of water contact angles over a polyethylene foil
JP3668771B2 (en) Separation membrane and manufacturing method thereof
EP1390421A1 (en) Method of plasma polymerisation of substituted benzenes, polymeric material obtainable by the method, and use thereof
US4976856A (en) Process for preparing non-porous, selective membrane layers
Lewis et al. Controlled nitroxide-mediated styrene surface graft polymerization with atmospheric plasma surface activation
JP3704552B2 (en) Carboxylic acid-containing silicon-based polymer thin film and method for producing the same
Nagasawa et al. Photo-induced sol–gel synthesis of polymer-supported silsesquioxane membranes
JPH01306569A (en) Method and device for forming thin film
JP3141104B2 (en) Silicon polymer thin film laminate and method for producing the same
JPH0330416B2 (en)
Zou et al. Modification of Si (100) surface by plasma-enhanced graft polymerization of allylpentafluorobenzene
JPS61153105A (en) Manufacture of gas permselective composite membrane

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070402

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

R150 Certificate of patent or registration of utility model

Ref document number: 4002965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term