JPH09142993A - Method for growing single crystal of silicate of rare earth element - Google Patents

Method for growing single crystal of silicate of rare earth element

Info

Publication number
JPH09142993A
JPH09142993A JP23022396A JP23022396A JPH09142993A JP H09142993 A JPH09142993 A JP H09142993A JP 23022396 A JP23022396 A JP 23022396A JP 23022396 A JP23022396 A JP 23022396A JP H09142993 A JPH09142993 A JP H09142993A
Authority
JP
Japan
Prior art keywords
rare earth
single crystal
crystal
oxide
earth element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23022396A
Other languages
Japanese (ja)
Other versions
JP4195732B2 (en
Inventor
Yasushi Kurata
靖 倉田
Kazuhisa Kurashige
和央 蔵重
Hiroyuki Ishibashi
浩之 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP23022396A priority Critical patent/JP4195732B2/en
Publication of JPH09142993A publication Critical patent/JPH09142993A/en
Application granted granted Critical
Publication of JP4195732B2 publication Critical patent/JP4195732B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably obtain a colorless single crystal having satisfactory performance as a scintillator by specifying the concn. of Fe as an impurity in a stock melt contg. oxide of a rare earth element and silicon oxide. SOLUTION: Characteristics of a single crystal of silicate of a rare earth element grown from a stock melt contg. oxide of the rare earth element are affected by a specified impurity element in the melt. In the case of growth of a gadolinium silicate single crystal, gadolinium oxide having a low concn. of Fe as an impurity is used as stock. By this low concn. of Fe, the coloring of the resultant crystal is prevented and characteristics as a scintillator can be improved. Fluorescence generated in the crystal by irradiation with radiation such as γ-rays enters a photomultiplier brought into contact with one face of the crystal and the fluorescence output and energy resolving power of the photomultiplier are enhanced. As a result, characteristics of the crystal as a scintillator are improved. When stock having <=0.1ppm concn. of Fe as an impurity is used, oxide of a rare earth element having <=0.1ppm concn. of Fe is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、シンチレ−タ等に
用いられる希土類珪酸塩単結晶の育成方法に関する。
TECHNICAL FIELD The present invention relates to a method for growing a rare earth silicate single crystal used in scintillators and the like.

【0002】[0002]

【従来の技術】珪酸ガドリニウム単結晶等の希土類珪酸
塩単結晶は、シンチレ−タ、蛍光体等として広く用いら
れている。この珪酸ガドリニウム単結晶等は、希土類酸
化物の酸化ガドリニウムと珪素酸化物の2酸化珪素を原
料として、チョクラルスキ−法等の原料融液から単結晶
を育成する方法によって育成される。一般に、蛍光出力
等のシンチレ−タ特性には、構成元素以外の希土類元素
及び遷移金属等の不純物が悪影響を与えると考えられ、
それらの不純物元素を低減した4N以上(99.99重
量%以上)の高純度原料(Gd23、SiO2等)を使
用して結晶育成が行われている。
2. Description of the Related Art Rare earth silicate single crystals such as gadolinium silicate single crystals are widely used as scintillators, phosphors and the like. This gadolinium silicate single crystal or the like is grown by a method of growing a single crystal from a raw material melt such as the Czochralski method using gadolinium oxide of a rare earth oxide and silicon dioxide of silicon oxide as a raw material. Generally, scintillator characteristics such as fluorescence output are considered to be adversely affected by impurities such as rare earth elements other than the constituent elements and transition metals,
Crystal growth is performed using high purity raw materials (Gd 2 O 3 , SiO 2 etc.) of 4N or more (99.99% by weight or more) in which those impurity elements are reduced.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の原料を
使用した場合、結晶が黄色に着色したりすることによっ
て、安定して良好なシンチレ−タ特性が得られないとい
う問題があった。本発明は、希土類珪酸塩単結晶を育成
する場合に、結晶の着色の無い良好なシンチレ−タ性能
を有する希土類珪酸塩単結晶が安定して得られる希土類
珪酸塩単結晶の育成方法を提供するものである。
However, when the conventional raw materials are used, there is a problem that the crystals are colored yellow and stable scintillator characteristics cannot be obtained. The present invention provides a method for growing a rare earth silicate single crystal, which is capable of stably obtaining a rare earth silicate single crystal having good scintillator performance without crystal coloring when growing the rare earth silicate single crystal. It is a thing.

【0004】[0004]

【課題を解決するための手段】本発明は、希土類珪酸塩
単結晶を育成する場合に、特定の不純物元素を低減した
希土類酸化物等の原料を使用するものであり、希土類酸
化物、珪素酸化物を含む原料の融液から希土類珪酸塩単
結晶を育成する方法において、Feの不純物濃度が0.
1ppm以下の原料を用いることを特徴とする希土類珪
酸塩単結晶の育成方法である。
The present invention uses a raw material such as a rare earth oxide reduced in a specific impurity element when growing a rare earth silicate single crystal. In a method of growing a rare earth silicate single crystal from a melt of a raw material containing a substance, the impurity concentration of Fe is 0.
A method for growing a rare earth silicate single crystal is characterized by using 1 ppm or less of a raw material.

【0005】[0005]

【発明の実施の形態】本発明者らは、希土類珪酸塩単結
晶の着色及びシンチレ−タ特性と、その原料である希土
類酸化物等中の不純物濃度係について検討した。その結
果、特定の不純物元素の含有量の差が、育成した単結晶
の特性に影響することを見いだすことによって、本発明
はなされたものである。珪酸ガドリニウム単結晶を育成
する場合において、Feの不純物濃度が少ない希土類酸
化物を原料として使用することによって、結晶の着色が
無くなり、シンチレ−タ特性を向上できることがわかっ
た。すなわち結晶の着色が無くなると、結晶にγ線等の
放射線を照射することにより結晶中で生じた蛍光が結晶
の一面に接して設けられている光電子増倍管に効率良く
到達するため、蛍光出力、エネルギ−分解能が向上し、
結果としてシンチレ−タ特性が向上する。Feの不純物
濃度が0.1ppm以下の原料を用いる場合、Feの不
純物濃度が0.1ppm以下の希土類酸化物を使用する
ことが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have studied the coloring and scintillator properties of rare earth silicate single crystals and the impurity concentration relations in the rare earth oxides and the like as the raw material. As a result, the present invention has been made by finding that the difference in the content of a specific impurity element affects the characteristics of the grown single crystal. It has been found that, when a gadolinium silicate single crystal is grown, by using a rare earth oxide having a low Fe impurity concentration as a raw material, the coloring of the crystal is eliminated and the scintillator characteristics can be improved. That is, when the crystal is no longer colored, the fluorescence generated in the crystal by irradiating the crystal with radiation such as γ-rays efficiently reaches the photomultiplier tube provided in contact with one surface of the crystal. , Energy resolution is improved,
As a result, the scintillator characteristics are improved. When using a raw material having an Fe impurity concentration of 0.1 ppm or less, it is preferable to use a rare earth oxide having an Fe impurity concentration of 0.1 ppm or less.

【0006】珪酸ガドリニウム単結晶以外の、一般式 R2SiO5 但しR=La、Ce、Pr、Nd、Pm、Sm、Eu、
Tb、Dy、Ho、Er、Tm、Yb で示される希土類珪酸塩単結晶についても、原料中の不
純物の影響は同様であり、同様の結果となる。更に、一
般には希土類珪酸塩単結晶に蛍光中心としてCe等の添
加物をド−プするが、その場合も効果は同様である。以
上の希土類珪酸塩単結晶は、珪酸ガドリニウム単結晶の
結晶構造と同じ結晶構造を持ち、その構造は空間群P2
1/cに属する。
A general formula other than gadolinium silicate single crystal R 2 SiO 5 where R = La, Ce, Pr, Nd, Pm, Sm, Eu,
With respect to the rare earth silicate single crystal represented by Tb, Dy, Ho, Er, Tm, and Yb, the influence of impurities in the raw material is similar, and the same result is obtained. Further, generally, a rare earth silicate single crystal is doped with an additive such as Ce as a fluorescent center, but in that case, the effect is similar. The above rare earth silicate single crystal has the same crystal structure as that of the gadolinium silicate single crystal, and the structure is the space group P2.
Belongs to 1 / c.

【0007】[0007]

【実施例】【Example】

比較例 セリウム付活珪酸ガドリニウム単結晶(Ce:Gd2
iO5、Ce濃度0.5mol%)の場合の例を説明す
る。原料として酸化ガドリニウム(Gd23)4N(A
種)、2酸化珪素(SiO2)4N及び酸化セリウム
(CeO2)4Nを使用して、チョクラルスキ−法によ
って単結晶を育成した。酸化ガドリニウムを2573.
5g、2酸化珪素を426.5g、そして酸化セリウム
を5.9gを秤量して混合し、1200℃で焼成した後
直径100mmのIrるつぼにチャ−ジし、原料融液1
950℃、種結晶の回転数30rpm,引き上げ速度2
mm/hの条件で、原料の80重量%が結晶化した段階
で引き上げを完了し、直径50mmの単結晶を育成し
た。育成した単結晶は、黄色に着色していた。育成結晶
から10×10×30mm3の試料を採取して、γ線を
照射したときのシンチレ−タ特性について測定した結果
を表1に示すが、良好な結果が得られなかった。酸化ガ
ドリニウム、2酸化珪素、酸化セリウム中のFe不純物
測定を行った結果、各々1.3ppm、0.0005p
pm、3.5ppm未満であった。原料のFe不純物は
1.1ppmを越えている。
Comparative Example Cerium Activated Gadolinium Silicate Single Crystal (Ce: Gd 2 S
An example in the case of iO 5 and Ce concentration of 0.5 mol%) will be described. Gadolinium oxide (Gd 2 O 3 ) 4N (A
Seed) Silicon dioxide (SiO 2 ) 4N and cerium oxide (CeO 2 ) 4N were used to grow a single crystal by the Czochralski method. Gadolinium oxide 2573.
5 g of silicon dioxide, 426.5 g of silicon dioxide, and 5.9 g of cerium oxide were weighed and mixed, fired at 1200 ° C., and then charged into an Ir crucible having a diameter of 100 mm to obtain a raw material melt 1
950 ° C., seed crystal rotation speed 30 rpm, pulling speed 2
Under the condition of mm / h, the pulling was completed when 80% by weight of the raw material was crystallized, and a single crystal having a diameter of 50 mm was grown. The grown single crystal was colored yellow. Table 1 shows the result of measuring a scintillator characteristic when a sample of 10 × 10 × 30 mm 3 was collected from the grown crystal and irradiated with γ-ray, but a good result was not obtained. Fe impurities in gadolinium oxide, silicon oxide, and cerium oxide were measured and found to be 1.3 ppm and 0.0005 p, respectively.
pm was less than 3.5 ppm. The Fe impurity of the raw material exceeds 1.1 ppm.

【0008】実施例 比較例と同様に、セリウム付活珪酸ガドリニウム単結晶
(Ce:Gd2SiO5、Ce濃度0.5mol%)の場
合の例を説明する。原料として酸化ガドリニウム(Gd
25)4N(B種)と、比較例で使用したものと全く同
じ(精製ロット番号も同じ)2酸化珪素(SiO2)4
N及び酸化セリウム(CeO2)4Nを使用して、チョ
クラルスキ−法によって単結晶を育成した。酸化ガドリ
ニウムを2573.5g、2酸化珪素を426.5g、
そして酸化セリウムを5.9gを秤量して混合し、12
00℃で焼成した後Irるつぼにチャ−ジして比較例と
同様にして単結晶を育成した。育成の結果、安定して着
色の無い結晶が得られた。育成結晶から10×10×3
0mm3の試料を採取して、γ線を照射したときのシン
チレ−タ特性について測定した結果を同様に表1に示す
が、安定して良好なシンチレ−タ特性を示した。Fe不
純物の低減により、結晶特性の改善が明確に観測され
た。酸化ガドリニウム中のFe不純物測定を行った結
果、0.1ppmであり、比較例で使用した酸化ガドリ
ニウム原料に比べ、Fe不純物量が大幅に少ない結果で
あった。原料のFe不純物は0.093ppm未満とな
る。
EXAMPLE An example in the case of a cerium activated gadolinium silicate single crystal (Ce: Gd 2 SiO 5 , Ce concentration 0.5 mol%) will be described as in the comparative example. Gadolinium oxide (Gd) as a raw material
2 O 5 ) 4N (B type) and silicon dioxide (SiO 2 ) 4 which is exactly the same as that used in the comparative example (same refining lot number)
A single crystal was grown by the Czochralski method using N and cerium oxide (CeO 2 ) 4N. 2573.5 g of gadolinium oxide, 426.5 g of silicon dioxide,
Then, 5.9 g of cerium oxide was weighed and mixed, and 12
After firing at 00 ° C., it was charged in an Ir crucible to grow a single crystal in the same manner as in the comparative example. As a result of the growth, a stable and colorless crystal was obtained. 10 × 10 × 3 from grown crystal
Similarly, the results obtained by measuring a scintillator characteristic when a 0 mm 3 sample was sampled and irradiated with γ-rays are shown in Table 1, but the scintillator characteristic was stably shown. An improvement in crystal characteristics was clearly observed due to the reduction of Fe impurities. As a result of measuring Fe impurities in gadolinium oxide, the result was 0.1 ppm, which was a result that the amount of Fe impurities was significantly smaller than that of the gadolinium oxide raw material used in the comparative example. The Fe impurity of the raw material is less than 0.093 ppm.

【0009】[0009]

【表1】 表1 光透過率及びγ線照射した時の蛍光特性 ━━━━━━━━━━━━━━━━━━━━━━━━━━━ 比較例 実施例 ─────────────────────────── 透過率(%)430nm 65 80 蛍光出力(ch) 229 322 エネルギ−分解能(%) 10.5 8.5 ━━━━━━━━━━━━━━━━━━━━━━━━━━━[Table 1] Table 1 Light transmittance and fluorescence characteristics upon γ-ray irradiation ━━━━━━━━━━━━━━━━━━━━━━━━━━━ Comparative Example Example ─ ────────────────────────── Transmission rate (%) 430nm 65 80 Fluorescence output (ch) 229 322 Energy-resolution (%) 10.5 8.5 ━━━━━━━━━━━━━━━━━━━━━━━━━━━

【0010】蛍光出力(ch)、エネルギ−分解能
(%)の測定法 試料の10mm×10mmの一面を鏡面にし、前記鏡面
にした面以外の部分に反射材を被覆し、試料を前記鏡面
を下にして光電子増倍管(浜松フォトニクス工業(株)
製、商品名R878)の受光ヘッド上に載せる。光電子
増倍管に印加電圧800Vをかけ、試料の上方100m
mの位置のCs−137線源からγ線を照射する。光電
子増倍管でエネルギ−スペクトルを測定し、蛍光出力
(ch)、エネルギ−分解能(%)を測定する。
Method for measuring fluorescence output (ch) and energy-resolution (%) One surface of a sample of 10 mm × 10 mm is made into a mirror surface, and a portion other than the above-mentioned mirror surface is coated with a reflecting material, and the sample is made to face the mirror surface downward. And photomultiplier tube (Hamamatsu Photonics Industry Co., Ltd.)
It is mounted on the light receiving head manufactured by the product name R878). Applying an applied voltage of 800 V to the photomultiplier tube, 100 m above the sample
Gamma rays are emitted from the Cs-137 radiation source at the position m. The energy spectrum is measured with a photomultiplier tube, and the fluorescence output (ch) and energy resolution (%) are measured.

【0011】[0011]

【発明の効果】本発明の希土類珪酸塩単結晶の育成方法
により、結晶の着色の無い安定して良好なシンチレ−タ
性能を有する希土類珪酸塩単結晶を育成することができ
る。
According to the method for growing a rare earth silicate single crystal of the present invention, it is possible to grow a rare earth silicate single crystal having stable and good scintillator performance without crystal coloring.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 希土類酸化物、珪素酸化物を含む原料の
融液から希土類珪酸塩単結晶を育成する方法において、
Feの不純物濃度が0.1ppm以下の原料を用いるこ
とを特徴とする希土類珪酸塩単結晶の育成方法。
1. A method for growing a rare earth silicate single crystal from a melt of a raw material containing a rare earth oxide and a silicon oxide,
A method for growing a rare earth silicate single crystal, characterized in that a raw material having an Fe impurity concentration of 0.1 ppm or less is used.
【請求項2】 Feの不純物濃度が0.1ppm以下の
希土類酸化物を使用する請求項1記載の希土類珪酸塩単
結晶の育成方法。
2. The method for growing a rare earth silicate single crystal according to claim 1, wherein a rare earth oxide having an Fe impurity concentration of 0.1 ppm or less is used.
【請求項3】 希土類酸化物が酸化ガドリニウムである
請求項1記載の希土類珪酸塩単結晶の育成方法。
3. The method for growing a rare earth silicate single crystal according to claim 1, wherein the rare earth oxide is gadolinium oxide.
JP23022396A 1995-08-31 1996-08-30 Method for growing rare earth silicate single crystals Expired - Lifetime JP4195732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23022396A JP4195732B2 (en) 1995-08-31 1996-08-30 Method for growing rare earth silicate single crystals

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22344295 1995-08-31
JP7-223442 1995-08-31
JP23022396A JP4195732B2 (en) 1995-08-31 1996-08-30 Method for growing rare earth silicate single crystals

Publications (2)

Publication Number Publication Date
JPH09142993A true JPH09142993A (en) 1997-06-03
JP4195732B2 JP4195732B2 (en) 2008-12-10

Family

ID=26525476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23022396A Expired - Lifetime JP4195732B2 (en) 1995-08-31 1996-08-30 Method for growing rare earth silicate single crystals

Country Status (1)

Country Link
JP (1) JP4195732B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241251A (en) * 2005-03-01 2006-09-14 Hitachi Chem Co Ltd Method for producing scintillator and scintillator
WO2008093869A1 (en) * 2007-02-02 2008-08-07 Hitachi Metals, Ltd. Fluorescent material, scintillator using the fluorescent material, and radiation detector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241251A (en) * 2005-03-01 2006-09-14 Hitachi Chem Co Ltd Method for producing scintillator and scintillator
WO2008093869A1 (en) * 2007-02-02 2008-08-07 Hitachi Metals, Ltd. Fluorescent material, scintillator using the fluorescent material, and radiation detector
JPWO2008093869A1 (en) * 2007-02-02 2010-05-20 日立金属株式会社 Fluorescent material, scintillator and radiation detector using the same
US8410446B2 (en) 2007-02-02 2013-04-02 Hitachi Metals, Ltd. Fluorescent material, scintillator using same, and radiation detector using same
JP5212115B2 (en) * 2007-02-02 2013-06-19 日立金属株式会社 Fluorescent material, scintillator and radiation detector using the same

Also Published As

Publication number Publication date
JP4195732B2 (en) 2008-12-10

Similar Documents

Publication Publication Date Title
US6437336B1 (en) Scintillator crystals and their applications and manufacturing process
US5728213A (en) Method of growing a rare earth silicate single crystal
CA2741850C (en) Cerium-doped lutetium oxyorthosilicate (lso) scintillators
CN101945974A (en) Scintillator for neutron detection and neutron detector
CN113529168A (en) Li+Zero-dimensional perovskite structure doped metal halide scintillation crystal and preparation method and application thereof
US4988882A (en) Monocrystals of silicates of lanthanides usable as scintillators for the detection of X and gamma radiation
JP2011026547A (en) Single crystal for scintillator, method of heat treatment for manufacturing single crystal for scintillator, and method of manufacturing single crystal for scintillator
US7060982B2 (en) Fluoride single crystal for detecting radiation, scintillator and radiation detector using the single crystal, and method for detecting radiation
Shimura et al. Zr doped GSO: Ce single crystals and their scintillation performance
JPH04218588A (en) Single crystal scintillator and underground layer prospecting apparatus using the same
JP2701577B2 (en) Single crystal heat treatment method
EP1489205A1 (en) LUMINOUS MATERIAL FOR SCINTILLATOR COMPRISING SINGLE CRYSTAL OF Yb MIXED CRYSTAL OXIDE
JPH09142993A (en) Method for growing single crystal of silicate of rare earth element
JP2016056378A (en) Single crystal for scintillator, heat treatment method for producing single crystal for scintillator and method for producing single crystal for scintillator
JP3694884B2 (en) Method for growing rare earth silicate single crystals
JP4228609B2 (en) Cerium-activated gadolinium silicate single crystal
EP0760403B1 (en) Method of growing a rare earth silicate single crystal
RU2031987C1 (en) Scintillation material
JPH09157090A (en) Growth method of rare earth silicate single crystal
JP4228611B2 (en) Cerium-activated gadolinium silicate single crystal
RU2233916C1 (en) Method of production of scintillation monocrystalline lutecium-yttric aluminate
JP4228610B2 (en) Rare earth silicate single crystal
JP4342695B2 (en) Lead tungstate single crystal for Cherenkov materials
SU1075727A1 (en) Monocrystalline luminiscent and scintillation material
Visser et al. Scintillation properties and mechanisms of Ce and La doped BaF2 crystals

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080929

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term