JPH09142993A - Method for growing single crystal of silicate of rare earth element - Google Patents
Method for growing single crystal of silicate of rare earth elementInfo
- Publication number
- JPH09142993A JPH09142993A JP23022396A JP23022396A JPH09142993A JP H09142993 A JPH09142993 A JP H09142993A JP 23022396 A JP23022396 A JP 23022396A JP 23022396 A JP23022396 A JP 23022396A JP H09142993 A JPH09142993 A JP H09142993A
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- single crystal
- crystal
- oxide
- earth element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 55
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 title claims description 15
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 title abstract description 9
- 239000012535 impurity Substances 0.000 claims abstract description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 16
- CMIHHWBVHJVIGI-UHFFFAOYSA-N gadolinium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Gd+3].[Gd+3] CMIHHWBVHJVIGI-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910001938 gadolinium oxide Inorganic materials 0.000 claims abstract description 9
- 229940075613 gadolinium oxide Drugs 0.000 claims abstract description 9
- 229910052814 silicon oxide Inorganic materials 0.000 claims abstract description 4
- 239000000155 melt Substances 0.000 claims abstract description 3
- -1 rare earth silicate Chemical class 0.000 claims description 19
- 239000002994 raw material Substances 0.000 claims description 19
- 229910001404 rare earth metal oxide Inorganic materials 0.000 claims description 8
- 229910052688 Gadolinium Inorganic materials 0.000 abstract description 6
- 238000004040 coloring Methods 0.000 abstract description 5
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 abstract description 5
- 230000005855 radiation Effects 0.000 abstract description 3
- 230000004304 visual acuity Effects 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 6
- 235000012239 silicon dioxide Nutrition 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- 229910000420 cerium oxide Inorganic materials 0.000 description 5
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 5
- 229910052684 Cerium Inorganic materials 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 150000000921 Gadolinium Chemical class 0.000 description 2
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 2
- 230000005251 gamma ray Effects 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Measurement Of Radiation (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、シンチレ−タ等に
用いられる希土類珪酸塩単結晶の育成方法に関する。TECHNICAL FIELD The present invention relates to a method for growing a rare earth silicate single crystal used in scintillators and the like.
【0002】[0002]
【従来の技術】珪酸ガドリニウム単結晶等の希土類珪酸
塩単結晶は、シンチレ−タ、蛍光体等として広く用いら
れている。この珪酸ガドリニウム単結晶等は、希土類酸
化物の酸化ガドリニウムと珪素酸化物の2酸化珪素を原
料として、チョクラルスキ−法等の原料融液から単結晶
を育成する方法によって育成される。一般に、蛍光出力
等のシンチレ−タ特性には、構成元素以外の希土類元素
及び遷移金属等の不純物が悪影響を与えると考えられ、
それらの不純物元素を低減した4N以上(99.99重
量%以上)の高純度原料(Gd2O3、SiO2等)を使
用して結晶育成が行われている。2. Description of the Related Art Rare earth silicate single crystals such as gadolinium silicate single crystals are widely used as scintillators, phosphors and the like. This gadolinium silicate single crystal or the like is grown by a method of growing a single crystal from a raw material melt such as the Czochralski method using gadolinium oxide of a rare earth oxide and silicon dioxide of silicon oxide as a raw material. Generally, scintillator characteristics such as fluorescence output are considered to be adversely affected by impurities such as rare earth elements other than the constituent elements and transition metals,
Crystal growth is performed using high purity raw materials (Gd 2 O 3 , SiO 2 etc.) of 4N or more (99.99% by weight or more) in which those impurity elements are reduced.
【0003】[0003]
【発明が解決しようとする課題】しかし、従来の原料を
使用した場合、結晶が黄色に着色したりすることによっ
て、安定して良好なシンチレ−タ特性が得られないとい
う問題があった。本発明は、希土類珪酸塩単結晶を育成
する場合に、結晶の着色の無い良好なシンチレ−タ性能
を有する希土類珪酸塩単結晶が安定して得られる希土類
珪酸塩単結晶の育成方法を提供するものである。However, when the conventional raw materials are used, there is a problem that the crystals are colored yellow and stable scintillator characteristics cannot be obtained. The present invention provides a method for growing a rare earth silicate single crystal, which is capable of stably obtaining a rare earth silicate single crystal having good scintillator performance without crystal coloring when growing the rare earth silicate single crystal. It is a thing.
【0004】[0004]
【課題を解決するための手段】本発明は、希土類珪酸塩
単結晶を育成する場合に、特定の不純物元素を低減した
希土類酸化物等の原料を使用するものであり、希土類酸
化物、珪素酸化物を含む原料の融液から希土類珪酸塩単
結晶を育成する方法において、Feの不純物濃度が0.
1ppm以下の原料を用いることを特徴とする希土類珪
酸塩単結晶の育成方法である。The present invention uses a raw material such as a rare earth oxide reduced in a specific impurity element when growing a rare earth silicate single crystal. In a method of growing a rare earth silicate single crystal from a melt of a raw material containing a substance, the impurity concentration of Fe is 0.
A method for growing a rare earth silicate single crystal is characterized by using 1 ppm or less of a raw material.
【0005】[0005]
【発明の実施の形態】本発明者らは、希土類珪酸塩単結
晶の着色及びシンチレ−タ特性と、その原料である希土
類酸化物等中の不純物濃度係について検討した。その結
果、特定の不純物元素の含有量の差が、育成した単結晶
の特性に影響することを見いだすことによって、本発明
はなされたものである。珪酸ガドリニウム単結晶を育成
する場合において、Feの不純物濃度が少ない希土類酸
化物を原料として使用することによって、結晶の着色が
無くなり、シンチレ−タ特性を向上できることがわかっ
た。すなわち結晶の着色が無くなると、結晶にγ線等の
放射線を照射することにより結晶中で生じた蛍光が結晶
の一面に接して設けられている光電子増倍管に効率良く
到達するため、蛍光出力、エネルギ−分解能が向上し、
結果としてシンチレ−タ特性が向上する。Feの不純物
濃度が0.1ppm以下の原料を用いる場合、Feの不
純物濃度が0.1ppm以下の希土類酸化物を使用する
ことが好ましい。BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have studied the coloring and scintillator properties of rare earth silicate single crystals and the impurity concentration relations in the rare earth oxides and the like as the raw material. As a result, the present invention has been made by finding that the difference in the content of a specific impurity element affects the characteristics of the grown single crystal. It has been found that, when a gadolinium silicate single crystal is grown, by using a rare earth oxide having a low Fe impurity concentration as a raw material, the coloring of the crystal is eliminated and the scintillator characteristics can be improved. That is, when the crystal is no longer colored, the fluorescence generated in the crystal by irradiating the crystal with radiation such as γ-rays efficiently reaches the photomultiplier tube provided in contact with one surface of the crystal. , Energy resolution is improved,
As a result, the scintillator characteristics are improved. When using a raw material having an Fe impurity concentration of 0.1 ppm or less, it is preferable to use a rare earth oxide having an Fe impurity concentration of 0.1 ppm or less.
【0006】珪酸ガドリニウム単結晶以外の、一般式 R2SiO5 但しR=La、Ce、Pr、Nd、Pm、Sm、Eu、
Tb、Dy、Ho、Er、Tm、Yb で示される希土類珪酸塩単結晶についても、原料中の不
純物の影響は同様であり、同様の結果となる。更に、一
般には希土類珪酸塩単結晶に蛍光中心としてCe等の添
加物をド−プするが、その場合も効果は同様である。以
上の希土類珪酸塩単結晶は、珪酸ガドリニウム単結晶の
結晶構造と同じ結晶構造を持ち、その構造は空間群P2
1/cに属する。A general formula other than gadolinium silicate single crystal R 2 SiO 5 where R = La, Ce, Pr, Nd, Pm, Sm, Eu,
With respect to the rare earth silicate single crystal represented by Tb, Dy, Ho, Er, Tm, and Yb, the influence of impurities in the raw material is similar, and the same result is obtained. Further, generally, a rare earth silicate single crystal is doped with an additive such as Ce as a fluorescent center, but in that case, the effect is similar. The above rare earth silicate single crystal has the same crystal structure as that of the gadolinium silicate single crystal, and the structure is the space group P2.
Belongs to 1 / c.
【0007】[0007]
比較例 セリウム付活珪酸ガドリニウム単結晶(Ce:Gd2S
iO5、Ce濃度0.5mol%)の場合の例を説明す
る。原料として酸化ガドリニウム(Gd2O3)4N(A
種)、2酸化珪素(SiO2)4N及び酸化セリウム
(CeO2)4Nを使用して、チョクラルスキ−法によ
って単結晶を育成した。酸化ガドリニウムを2573.
5g、2酸化珪素を426.5g、そして酸化セリウム
を5.9gを秤量して混合し、1200℃で焼成した後
直径100mmのIrるつぼにチャ−ジし、原料融液1
950℃、種結晶の回転数30rpm,引き上げ速度2
mm/hの条件で、原料の80重量%が結晶化した段階
で引き上げを完了し、直径50mmの単結晶を育成し
た。育成した単結晶は、黄色に着色していた。育成結晶
から10×10×30mm3の試料を採取して、γ線を
照射したときのシンチレ−タ特性について測定した結果
を表1に示すが、良好な結果が得られなかった。酸化ガ
ドリニウム、2酸化珪素、酸化セリウム中のFe不純物
測定を行った結果、各々1.3ppm、0.0005p
pm、3.5ppm未満であった。原料のFe不純物は
1.1ppmを越えている。Comparative Example Cerium Activated Gadolinium Silicate Single Crystal (Ce: Gd 2 S
An example in the case of iO 5 and Ce concentration of 0.5 mol%) will be described. Gadolinium oxide (Gd 2 O 3 ) 4N (A
Seed) Silicon dioxide (SiO 2 ) 4N and cerium oxide (CeO 2 ) 4N were used to grow a single crystal by the Czochralski method. Gadolinium oxide 2573.
5 g of silicon dioxide, 426.5 g of silicon dioxide, and 5.9 g of cerium oxide were weighed and mixed, fired at 1200 ° C., and then charged into an Ir crucible having a diameter of 100 mm to obtain a raw material melt 1
950 ° C., seed crystal rotation speed 30 rpm, pulling speed 2
Under the condition of mm / h, the pulling was completed when 80% by weight of the raw material was crystallized, and a single crystal having a diameter of 50 mm was grown. The grown single crystal was colored yellow. Table 1 shows the result of measuring a scintillator characteristic when a sample of 10 × 10 × 30 mm 3 was collected from the grown crystal and irradiated with γ-ray, but a good result was not obtained. Fe impurities in gadolinium oxide, silicon oxide, and cerium oxide were measured and found to be 1.3 ppm and 0.0005 p, respectively.
pm was less than 3.5 ppm. The Fe impurity of the raw material exceeds 1.1 ppm.
【0008】実施例 比較例と同様に、セリウム付活珪酸ガドリニウム単結晶
(Ce:Gd2SiO5、Ce濃度0.5mol%)の場
合の例を説明する。原料として酸化ガドリニウム(Gd
2O5)4N(B種)と、比較例で使用したものと全く同
じ(精製ロット番号も同じ)2酸化珪素(SiO2)4
N及び酸化セリウム(CeO2)4Nを使用して、チョ
クラルスキ−法によって単結晶を育成した。酸化ガドリ
ニウムを2573.5g、2酸化珪素を426.5g、
そして酸化セリウムを5.9gを秤量して混合し、12
00℃で焼成した後Irるつぼにチャ−ジして比較例と
同様にして単結晶を育成した。育成の結果、安定して着
色の無い結晶が得られた。育成結晶から10×10×3
0mm3の試料を採取して、γ線を照射したときのシン
チレ−タ特性について測定した結果を同様に表1に示す
が、安定して良好なシンチレ−タ特性を示した。Fe不
純物の低減により、結晶特性の改善が明確に観測され
た。酸化ガドリニウム中のFe不純物測定を行った結
果、0.1ppmであり、比較例で使用した酸化ガドリ
ニウム原料に比べ、Fe不純物量が大幅に少ない結果で
あった。原料のFe不純物は0.093ppm未満とな
る。EXAMPLE An example in the case of a cerium activated gadolinium silicate single crystal (Ce: Gd 2 SiO 5 , Ce concentration 0.5 mol%) will be described as in the comparative example. Gadolinium oxide (Gd) as a raw material
2 O 5 ) 4N (B type) and silicon dioxide (SiO 2 ) 4 which is exactly the same as that used in the comparative example (same refining lot number)
A single crystal was grown by the Czochralski method using N and cerium oxide (CeO 2 ) 4N. 2573.5 g of gadolinium oxide, 426.5 g of silicon dioxide,
Then, 5.9 g of cerium oxide was weighed and mixed, and 12
After firing at 00 ° C., it was charged in an Ir crucible to grow a single crystal in the same manner as in the comparative example. As a result of the growth, a stable and colorless crystal was obtained. 10 × 10 × 3 from grown crystal
Similarly, the results obtained by measuring a scintillator characteristic when a 0 mm 3 sample was sampled and irradiated with γ-rays are shown in Table 1, but the scintillator characteristic was stably shown. An improvement in crystal characteristics was clearly observed due to the reduction of Fe impurities. As a result of measuring Fe impurities in gadolinium oxide, the result was 0.1 ppm, which was a result that the amount of Fe impurities was significantly smaller than that of the gadolinium oxide raw material used in the comparative example. The Fe impurity of the raw material is less than 0.093 ppm.
【0009】[0009]
【表1】 表1 光透過率及びγ線照射した時の蛍光特性 ━━━━━━━━━━━━━━━━━━━━━━━━━━━ 比較例 実施例 ─────────────────────────── 透過率(%)430nm 65 80 蛍光出力(ch) 229 322 エネルギ−分解能(%) 10.5 8.5 ━━━━━━━━━━━━━━━━━━━━━━━━━━━[Table 1] Table 1 Light transmittance and fluorescence characteristics upon γ-ray irradiation ━━━━━━━━━━━━━━━━━━━━━━━━━━━ Comparative Example Example ─ ────────────────────────── Transmission rate (%) 430nm 65 80 Fluorescence output (ch) 229 322 Energy-resolution (%) 10.5 8.5 ━━━━━━━━━━━━━━━━━━━━━━━━━━━
【0010】蛍光出力(ch)、エネルギ−分解能
(%)の測定法 試料の10mm×10mmの一面を鏡面にし、前記鏡面
にした面以外の部分に反射材を被覆し、試料を前記鏡面
を下にして光電子増倍管(浜松フォトニクス工業(株)
製、商品名R878)の受光ヘッド上に載せる。光電子
増倍管に印加電圧800Vをかけ、試料の上方100m
mの位置のCs−137線源からγ線を照射する。光電
子増倍管でエネルギ−スペクトルを測定し、蛍光出力
(ch)、エネルギ−分解能(%)を測定する。Method for measuring fluorescence output (ch) and energy-resolution (%) One surface of a sample of 10 mm × 10 mm is made into a mirror surface, and a portion other than the above-mentioned mirror surface is coated with a reflecting material, and the sample is made to face the mirror surface downward. And photomultiplier tube (Hamamatsu Photonics Industry Co., Ltd.)
It is mounted on the light receiving head manufactured by the product name R878). Applying an applied voltage of 800 V to the photomultiplier tube, 100 m above the sample
Gamma rays are emitted from the Cs-137 radiation source at the position m. The energy spectrum is measured with a photomultiplier tube, and the fluorescence output (ch) and energy resolution (%) are measured.
【0011】[0011]
【発明の効果】本発明の希土類珪酸塩単結晶の育成方法
により、結晶の着色の無い安定して良好なシンチレ−タ
性能を有する希土類珪酸塩単結晶を育成することができ
る。According to the method for growing a rare earth silicate single crystal of the present invention, it is possible to grow a rare earth silicate single crystal having stable and good scintillator performance without crystal coloring.
Claims (3)
融液から希土類珪酸塩単結晶を育成する方法において、
Feの不純物濃度が0.1ppm以下の原料を用いるこ
とを特徴とする希土類珪酸塩単結晶の育成方法。1. A method for growing a rare earth silicate single crystal from a melt of a raw material containing a rare earth oxide and a silicon oxide,
A method for growing a rare earth silicate single crystal, characterized in that a raw material having an Fe impurity concentration of 0.1 ppm or less is used.
希土類酸化物を使用する請求項1記載の希土類珪酸塩単
結晶の育成方法。2. The method for growing a rare earth silicate single crystal according to claim 1, wherein a rare earth oxide having an Fe impurity concentration of 0.1 ppm or less is used.
請求項1記載の希土類珪酸塩単結晶の育成方法。3. The method for growing a rare earth silicate single crystal according to claim 1, wherein the rare earth oxide is gadolinium oxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23022396A JP4195732B2 (en) | 1995-08-31 | 1996-08-30 | Method for growing rare earth silicate single crystals |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22344295 | 1995-08-31 | ||
JP7-223442 | 1995-08-31 | ||
JP23022396A JP4195732B2 (en) | 1995-08-31 | 1996-08-30 | Method for growing rare earth silicate single crystals |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09142993A true JPH09142993A (en) | 1997-06-03 |
JP4195732B2 JP4195732B2 (en) | 2008-12-10 |
Family
ID=26525476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23022396A Expired - Lifetime JP4195732B2 (en) | 1995-08-31 | 1996-08-30 | Method for growing rare earth silicate single crystals |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4195732B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006241251A (en) * | 2005-03-01 | 2006-09-14 | Hitachi Chem Co Ltd | Method for producing scintillator and scintillator |
WO2008093869A1 (en) * | 2007-02-02 | 2008-08-07 | Hitachi Metals, Ltd. | Fluorescent material, scintillator using the fluorescent material, and radiation detector |
-
1996
- 1996-08-30 JP JP23022396A patent/JP4195732B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006241251A (en) * | 2005-03-01 | 2006-09-14 | Hitachi Chem Co Ltd | Method for producing scintillator and scintillator |
WO2008093869A1 (en) * | 2007-02-02 | 2008-08-07 | Hitachi Metals, Ltd. | Fluorescent material, scintillator using the fluorescent material, and radiation detector |
JPWO2008093869A1 (en) * | 2007-02-02 | 2010-05-20 | 日立金属株式会社 | Fluorescent material, scintillator and radiation detector using the same |
US8410446B2 (en) | 2007-02-02 | 2013-04-02 | Hitachi Metals, Ltd. | Fluorescent material, scintillator using same, and radiation detector using same |
JP5212115B2 (en) * | 2007-02-02 | 2013-06-19 | 日立金属株式会社 | Fluorescent material, scintillator and radiation detector using the same |
Also Published As
Publication number | Publication date |
---|---|
JP4195732B2 (en) | 2008-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6437336B1 (en) | Scintillator crystals and their applications and manufacturing process | |
US5728213A (en) | Method of growing a rare earth silicate single crystal | |
CA2741850C (en) | Cerium-doped lutetium oxyorthosilicate (lso) scintillators | |
CN101945974A (en) | Scintillator for neutron detection and neutron detector | |
CN113529168A (en) | Li+Zero-dimensional perovskite structure doped metal halide scintillation crystal and preparation method and application thereof | |
US4988882A (en) | Monocrystals of silicates of lanthanides usable as scintillators for the detection of X and gamma radiation | |
JP2011026547A (en) | Single crystal for scintillator, method of heat treatment for manufacturing single crystal for scintillator, and method of manufacturing single crystal for scintillator | |
US7060982B2 (en) | Fluoride single crystal for detecting radiation, scintillator and radiation detector using the single crystal, and method for detecting radiation | |
Shimura et al. | Zr doped GSO: Ce single crystals and their scintillation performance | |
JPH04218588A (en) | Single crystal scintillator and underground layer prospecting apparatus using the same | |
JP2701577B2 (en) | Single crystal heat treatment method | |
EP1489205A1 (en) | LUMINOUS MATERIAL FOR SCINTILLATOR COMPRISING SINGLE CRYSTAL OF Yb MIXED CRYSTAL OXIDE | |
JPH09142993A (en) | Method for growing single crystal of silicate of rare earth element | |
JP2016056378A (en) | Single crystal for scintillator, heat treatment method for producing single crystal for scintillator and method for producing single crystal for scintillator | |
JP3694884B2 (en) | Method for growing rare earth silicate single crystals | |
JP4228609B2 (en) | Cerium-activated gadolinium silicate single crystal | |
EP0760403B1 (en) | Method of growing a rare earth silicate single crystal | |
RU2031987C1 (en) | Scintillation material | |
JPH09157090A (en) | Growth method of rare earth silicate single crystal | |
JP4228611B2 (en) | Cerium-activated gadolinium silicate single crystal | |
RU2233916C1 (en) | Method of production of scintillation monocrystalline lutecium-yttric aluminate | |
JP4228610B2 (en) | Rare earth silicate single crystal | |
JP4342695B2 (en) | Lead tungstate single crystal for Cherenkov materials | |
SU1075727A1 (en) | Monocrystalline luminiscent and scintillation material | |
Visser et al. | Scintillation properties and mechanisms of Ce and La doped BaF2 crystals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041006 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050401 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050516 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050921 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080807 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080929 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111003 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121003 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131003 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131003 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |