JP4228610B2 - Rare earth silicate single crystal - Google Patents

Rare earth silicate single crystal Download PDF

Info

Publication number
JP4228610B2
JP4228610B2 JP2002221537A JP2002221537A JP4228610B2 JP 4228610 B2 JP4228610 B2 JP 4228610B2 JP 2002221537 A JP2002221537 A JP 2002221537A JP 2002221537 A JP2002221537 A JP 2002221537A JP 4228610 B2 JP4228610 B2 JP 4228610B2
Authority
JP
Japan
Prior art keywords
single crystal
concentration
ppm
gadolinium
grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002221537A
Other languages
Japanese (ja)
Other versions
JP2004059383A (en
Inventor
圭二 住谷
浩之 石橋
セングットバン ナチムス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2002221537A priority Critical patent/JP4228610B2/en
Priority to US10/621,350 priority patent/US6926847B2/en
Priority to DE10334513A priority patent/DE10334513B4/en
Priority to FR0309375A priority patent/FR2843131B1/en
Publication of JP2004059383A publication Critical patent/JP2004059383A/en
Application granted granted Critical
Publication of JP4228610B2 publication Critical patent/JP4228610B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Luminescent Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シンチレータ等に用いられる希土類珪酸塩単結晶に関する。
【0002】
【従来の技術】
珪酸ガドリニウム単結晶等の希土類珪酸塩単結晶は、シンチレータ、蛍光体等として広く用いられている。この珪酸ガドリニウム単結晶等は、希土類酸化物の酸化ガドリニウムと珪素酸化物の二酸化珪素を原料として、チョクラルスキー法等の原料融液から単結晶を育成する方法によって製造される。更に、一般には希土類珪酸塩単結晶に蛍光中心としてCe等の添加物をドープしている。従来の珪酸ガドリニウム単結晶等の希土類珪酸塩単結晶をシンチレータとして用いた場合の発光減衰曲線は2成分系からなり、減衰の速い成分(Fast成分)は30〜60ns、遅い成分(Slow成分)は400〜600nsであり、その減衰の速い成分(Fast成分)と遅い成分(Slow成分)の出力比(存在比)はそれぞれ70〜80%:30〜20%程度であった。このため蛍光減衰時間の短縮化が望まれるPET(陽電子放出核種断層撮像装置、Positron emission computed tomography)用シンチレータでは、他のシンチレータに必要な諸特性を損なうことなく、発光減衰曲線の遅い成分(Slow成分)のみを高速化させ、その出力比(存在比)を低減することが望まれていた。蛍光減衰時間の短縮化には、Ce濃度を従来の濃度より高めに添加する方法があった。
【0003】
【発明が解決しようとする課題】
しかし、蛍光中心となるCe濃度を0.6mol%以上とした珪酸ガドリニウム単結晶では、淡黄色の着色が発生し、着色は蛍光出力、エネルギー分解能を劣化させ、シンチレータの特性が低下してしまうため好ましくなかった。着色は、発光に寄与しない4価のCeが原因と考えられる。蛍光減衰時間の短縮化と蛍光出力の維持の両立を図る方法として、蛍光減衰時間の短縮化が図れるCe濃度を高くしながら、着色の原因と推定される4価のCeを減らす事ができる対策が必要とされる。
本発明は、Ce濃度が従来より高い濃度域すなわち淡黄色の着色が発生する濃度でも、着色の発生が小さく、蛍光減衰時間を短縮することができ、PET用シンチレータの高速化に寄与する希土類珪酸塩単結晶、及び希土類成分がガドリニウムである希土類珪酸塩単結晶を提供することを目的とした。
【0004】
【課題を解決するための手段】
本発明は、淡黄色の着色が発生する0.6mol%以上、5mol%以下のCe濃度であり、特定の不純物元素すなわちAlの含有率が0.4ppmを超えて50ppm以下であり、波長450nmにおける透過率が75%以上であり、希土類成分がガドリニウムである希土類珪酸塩単結晶である。
【0005】
【発明の実施の形態】
本発明者らは、希土類珪酸塩単結晶のCe濃度、着色状態及び透過率特性、不純物添加について検討した結果、特定の不純物元素を含有させることにより、育成した単結晶のCe濃度を従来より高めても、着色の発生が抑制され透過率が高くなることを見出し本発明に達した。すなわち珪酸ガドリニウム単結晶中にAlを0.4ppmを超えて50ppm以下含有させることにより、淡黄色の着色の発生原因と考えられるCe濃度が従来より高い濃度域でも、着色の発生が小さく透明性の高い希土類珪酸塩単結晶が得られ、蛍光出力が高くなりシンチレータ特性を向上できることがわかった。
【0006】
本発明における希土類珪酸塩単結晶中のCeの添加量は0.6mol%以上、5mol%以下の濃度で波長450nmにおける透過率が75%以上である事が必要であり、好ましくは1mol%〜3mol%の範囲、最も好ましくは1.5mol%〜2mol%の範囲である。上記を達成するためには、Ceを0.6〜5mol%ドープした希土類珪酸塩単結晶中のAlの含有量が0.4ppmを超えて50ppm以下とすることが好ましい。
【0007】
不純物Alの含有量が0.4ppm以下の場合、単結晶の着色の発生を防ぐ効果はなく、単結晶は淡黄色を呈し、透過率が悪くなる。一方、不純物Alの含有量が50ppmを超えると単結晶内部にボイドが発生し、透過率が悪くなる。これは珪酸ガドリニウム単結晶中に微少な異相の形成が増加することによって生じるためと思われる。しかしAlの含有量が0.4ppmを超えて50ppm以下含有する場合、Ce濃度が0.6mol%以上の高濃度である時は異相形成が抑制されボイドは発生しないと考えられる。
【0008】
本発明におけるAl不純物含有量としては、0.4ppmを超えて50ppm以下であることが必要であるが、2ppm〜30ppmの範囲がより好ましく、5ppm〜20ppmの範囲が最も好ましい。
【0009】
本発明の希土類珪酸塩単結晶は、珪酸ガドリニウム単結晶以外の、一般式Ln2−xCeSiO(但し、Ln=Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群より選ばれる少なくとも1種の元素を表し、x=0〜2の値である)で示される希土類珪酸塩単結晶についても、同様の結果となる。以上の希土類珪酸塩単結晶は、珪酸ガドリニウム単結晶の結晶構造と同じ結晶構造を持ち、その構造は空間群P21/cに属する。
【0010】
【実施例】
本発明を実施例に基づいて具体的に説明する。原料として酸化ガドリニウム(Gd、99.99重量%)、二酸化珪素(SiO、99.99重量%)、酸化セリウム(CeO、99.99重量%)、及び酸化アルミニウム(Al、99.99重量%)を使用して、チョクラルスキー法によって単結晶を育成した。単結晶から10×10×10mmの試料を採取して、波長450nmでの透過率を測定した。また単結晶の外観を目視により観察し、それらの結果をまとめて表1に示した。ただし、それぞれの実施例について3本の単結晶を育成し、その平均値を示した。なお、本実施例は好適な一例を示すもので、本発明はこれらの実施例に限定されるものではない。
【0011】
(実施例1)
Ce濃度1.45mol%の珪酸ガドリニウム単結晶を以下のようにして作製した。酸化ガドリニウムを2573.5g、二酸化珪素を426.5g、酸化セリウムを17.7g、そして酸化アルミニウムを0.0075g秤量して混合し、1200℃で焼成した後直径100mmのIrるつぼにチャージし、原料融液1950℃、種結晶の回転数30rpm、引き上げ速度2mm/hの条件で、原料の80重量%が結晶化した段階で引き上げを完了し、直径50mmの単結晶を育成した。育成した単結晶は僅かだけ淡黄色であった。また作製した結晶中のAl濃度測定を、誘導結合プラズマ(ICP:Inductively Coupled Plasma)質量分析法を用いて測定した結果、0.5ppmであった。
【0012】
(実施例2)
Ce濃度1.45mol%の珪酸ガドリニウム単結晶を以下のようにして作製した。酸化ガドリニウムを2573.5g、二酸化珪素を426.5g、酸化セリウムを17.7g、そして酸化アルミニウムを0.15g秤量して混合し、1200℃で焼成した後直径100mmのIrるつぼにチャージし、原料融液1950℃、種結晶の回転数30rpm、引き上げ速度2mm/hの条件で、原料の80重量%が結晶化した段階で引き上げを完了し、直径50mmの単結晶を育成した。育成した単結晶は無色透明であった。また作製した結晶中のAl濃度を、誘導結合プラズマ(ICP)質量分析法を用いて測定した結果、14ppmであった。
【0013】
(実施例3)
Ce濃度1.45mol%の珪酸ガドリニウム単結晶を以下のようにして作製した。酸化ガドリニウムを2573.5g、二酸化珪素を426.5g、酸化セリウムを17.7g、そして酸化アルミニウムを0.5625g秤量して混合し、1200℃で焼成した後直径100mmのIrるつぼにチャージし、原料融液1950℃、種結晶の回転数30rpm、引き上げ速度2mm/hの条件で、原料の80重量%が結晶化した段階で引き上げを完了し、直径50mmの単結晶を育成した。育成した単結晶は無色透明であった。また作製した結晶中のAl濃度を、誘導結合プラズマ(ICP)質量分析法を用いて測定した結果、47ppmであった。
【0014】
(実施例4)
Ce濃度1.93mol%の珪酸ガドリニウム単結晶を以下のようにして作製した。酸化ガドリニウムを2573.5g、二酸化珪素を426.5g、酸化セリウムを23.6g、そして酸化アルミニウムを0.0075g秤量して混合し、1200℃で焼成した後直径100mmのIrるつぼにチャージし、原料融液1950℃、種結晶の回転数3rpm、引き上げ速度2mm/hの条件で、原料の80重量%が結晶化した段階で引き上げを完了し、直径50mmの単結晶を育成した。育成した単結晶は僅かに淡黄色であった。また作製した結晶中のAl濃度を、誘導結合プラズマ(ICP)質量分析法を用いて測定した結果、0.6ppmであった。
【0015】
(実施例5)
Ce濃度1.93mol%の珪酸ガドリニウム単結晶を以下のようにして作製した。酸化ガドリニウムを2573.5g、二酸化珪素を426.5g、酸化セリウムを23.6g、そして酸化アルミニウムを0.15g秤量して混合し、1200℃で焼成した後直径100mmのIrるつぼにチャージし、原料融液1950℃、種結晶の回転数30rpm、引き上げ速度2mm/hの条件で、原料の80重量%が結晶化した段階で引き上げを完了し、直径50mmの単結晶を育成した。育成した単結晶は無色透明であった。また作製した結晶中のAl濃度を、誘導結合プラズマ(ICP)質量分析法を用いて測定した結果、12ppmであった。
【0016】
(実施例6)
Ce濃度1.93mol%の珪酸ガドリニウム単結晶を以下のようにして作製した。酸化ガドリニウムを2573.5g、二酸化珪素を426.5g、酸化セリウムを23.6g、そして酸化アルミニウムを0.5625g秤量して混合し、1200℃で焼成した後直径100mmのIrるつぼにチャージし、原料融液1950℃、種結晶の回転数30rpm、引き上げ速度2mm/hの条件で、原料の80重量%が結晶化した段階で引き上げを完了し、直径50mmの単結晶を育成した。育成した単結晶は無色透明であった。また作製した結晶中のAl濃度を、誘導結合プラズマ(ICP)質量分析法を用いて測定した結果、45ppmであった。
【0017】
比較例として、実施例と同様にセリウム賦活珪酸ガドリニウム単結晶(Ce:GdSiO)の場合の例を説明する。原料として実施例で使用したものと全く同じ(精製ロット番号も同じ)酸化ガドリニウム(Gd、99.99重量%)と、二酸化珪素(SiO、99.99重量%)及び酸化セリウム(CeO、99.99重量%)を使用して、チョクラルスキー法によって単結晶を育成した。単結晶から10×10×10mmの試料を採取して、波長450nmでの透過率を測定し、また単結晶の外観を目視により観察し、それらの結果をまとめて表1に示した。ただし、それぞれの条件について3本の単結晶を育成し、その平均値を示した。
【0018】
(比較例1)
Ce濃度1.45mol%の珪酸ガドリニウム単結晶を以下のようにして作製した。酸化ガドリニウム2573.5g、二酸化珪素426.5g、そして酸化セリウム17.7gを秤量し、混同して焼成した後、Irるつぼに入れて実施例1と同様にして育成を行った。育成した単結晶は強い淡黄色であった。また作製した結晶中のAl濃度を、誘導結合プラズマ(ICP)質量分析法を用いて測定した結果、0ppmであった。
【0019】
(比較例2)
Ce濃度1.45mol%の珪酸ガドリニウム単結晶を以下のようにして作製した。酸化ガドリニウム2573.5g、二酸化珪素426.5g、酸化セリウム17.7g、そして酸化アルミニウムを0.0025g秤量して混合し、焼成した後、Irるつぼに入れて実施例1と同様にして育成を行った。育成した単結晶は強い淡黄色であった。また作製した結晶中のAl濃度を、誘導結合プラズマ(ICP)質量分析法を用いて測定した結果、0.2ppmであった。
【0020】
(比較例3)
Ce濃度1.45mol%の珪酸ガドリニウム単結晶を以下のようにして作製した。酸化ガドリニウム2573.5g、二酸化珪素426.5g、酸化セリウム17.7g、そして酸化アルミニウムを0.65g秤量して混合し、焼成した後、Irるつぼに入れて実施例1と同様にして育成を行った。育成した単結晶にはボイドが多く存在した。また作製した結晶中のAl濃度を、誘導結合プラズマ(ICP)質量分析法を用いて測定した結果、52ppmであった。
【0021】
(比較例4)
Ce濃度1.45mol%の珪酸ガドリニウム単結晶を以下のようにして作製した。酸化ガドリニウム2573.5g、二酸化珪素426.5g、酸化セリウム17.7g、そして酸化アルミニウムを0.875g秤量して混合し、焼成した後、Irるつぼに入れて実施例1と同様にして育成を行った。育成した単結晶にはボイドが多く存在した。また作製した結晶中のAl濃度を、誘導結合プラズマ(ICP)質量分析法を用いて測定した結果、70ppmであった。
【0022】
(比較例5)
Ce濃度1.93mol%の珪酸ガドリニウム単結晶を以下のようにして作製した。酸化ガドリニウム2573.5g、二酸化珪素426.5g、そして酸化セリウム23.6gを秤量し、混同して焼成した後、Irるつぼに入れて実施例4と同様にして育成を行った。育成した単結晶は強い淡黄色であった。また作製した結晶中のAl濃度を誘導結合プラズマ(ICP)質量分析法を用いて測定した結果、0ppmであった。
【0023】
(比較例6)
Ce濃度1.93mol%の珪酸ガドリニウム単結晶を以下のようにして作製した。酸化ガドリニウム2573.5g、二酸化珪素426.5g、酸化セリウム23.6g、そして酸化アルミニウムを0.0025g秤量して混合し、焼成した後、Irるつぼに入れて実施例4と同様にして育成を行った。育成した単結晶は強い淡黄色であった。また作製した結晶中のAl濃度を、誘導結合プラズマ(ICP)質量分析法を用いて測定した結果、0.3ppmであった。
【0024】
(比較例7)
Ce濃度1.93mol%の珪酸ガドリニウム単結晶を以下のようにして作製した。酸化ガドリニウム2573.5g、二酸化珪素426.5g、酸化セリウム23.6g、そして酸化アルミニウムを0.65g秤量して混合し、焼成した後、Irるつぼに入れて実施例4と同様にして育成を行った。育成した単結晶にはボイドが多く存在した。また作製した結晶中のAl濃度を、誘導結合プラズマ(ICP)質量分析法を用いて測定した結果、53ppmであった。
【0025】
(比較例8)
Ce濃度1.93mol%の珪酸ガドリニウム単結晶を以下のようにして作製した。酸化ガドリニウム2573.5g、二酸化珪素426.5g、酸化セリウム23.6g、そして酸化アルミニウムを0.875g秤量して混合し、焼成した後、Irるつぼに入れて実施例4と同様にして育成を行った。育成した単結晶にはボイドが多く存在した。また作製した結晶中のAl濃度を、誘導結合プラズマ(ICP)質量分析法を用いて測定した結果、69ppmであった。
【0026】
【表1】

Figure 0004228610
【0027】
比較例1、5に示したように、Ce濃度が高くなると単結晶が強く淡黄色に着色し、透過率が低下する。このCe高濃度の単結晶中にAlを0.4ppmを超えて50ppmの範囲に存在させた実施例1〜6においては、450nmでの透過率が高く、しかも着色が非常に少ない。これに対し、単結晶中のAl濃度が0.4ppm以下、あるいは50ppmを超えた比較例では、Al濃度が低いと透過率が低く、強く着色するようになる。そしてAl濃度が高いとボイドが発生し透過率は著しく低下する。このように、本発明は、蛍光減衰時間を短縮化するためにCe濃度を高めた場合の欠点となっていた着色の低減や透過率向上の課題を、不純物としてAlを特定範囲での濃度とする事により単結晶の着色を抑制し、透過率を高めることができる。これによりPET装置の高速診断化を図ることができる。
【0028】
【発明の効果】
本発明による希土類珪酸塩単結晶は淡黄色の着色が発生するCe濃度が従来より高い濃度域でも、淡黄色の発生が小さく透明性を高くすることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rare earth silicate single crystal used for scintillators and the like.
[0002]
[Prior art]
Rare earth silicate single crystals such as gadolinium silicate single crystals are widely used as scintillators, phosphors and the like. The gadolinium silicate single crystal or the like is manufactured by a method of growing a single crystal from a raw material melt such as the Czochralski method using gadolinium oxide as a rare earth oxide and silicon dioxide as a silicon oxide as raw materials. Further, generally, a rare earth silicate single crystal is doped with an additive such as Ce as a fluorescent center. When a rare earth silicate single crystal such as a conventional gadolinium silicate single crystal is used as a scintillator, the emission decay curve is composed of two components, the fast decay component (Fast component) is 30-60 ns, and the slow component (Slow component) is The output ratio (existence ratio) of the fast-damping component (Fast component) and the slow component (Slow component) was about 70 to 80%: 30 to 20%, respectively. For this reason, in a scintillator for PET (Positron emission computed tomography) for which shortening of the fluorescence decay time is desired, a slow component (Slow) of the emission decay curve is obtained without impairing various characteristics necessary for other scintillators. It has been desired to speed up only the component) and reduce its output ratio (existence ratio). In order to shorten the fluorescence decay time, there has been a method of adding Ce concentration higher than the conventional concentration.
[0003]
[Problems to be solved by the invention]
However, in a gadolinium silicate single crystal having a Ce concentration of 0.6 mol% or more as a fluorescence center, light yellow coloration occurs, and the coloration deteriorates the fluorescence output and energy resolution, thereby reducing the scintillator characteristics. It was not preferable. The coloring is considered to be caused by tetravalent Ce that does not contribute to light emission. As a method for achieving both reduction of the fluorescence decay time and maintenance of the fluorescence output, a measure capable of reducing the tetravalent Ce, which is estimated to be the cause of coloring, while increasing the Ce concentration capable of shortening the fluorescence decay time. Is needed.
The present invention is a rare earth silicic acid that contributes to speeding up of a scintillator for PET, which can reduce the occurrence of coloration and shorten the fluorescence decay time even in a concentration range where Ce concentration is higher than that in the prior art, that is, a concentration where pale yellow coloring occurs. An object of the present invention is to provide a salt single crystal and a rare earth silicate single crystal whose rare earth component is gadolinium.
[0004]
[Means for Solving the Problems]
The present invention has a Ce concentration of 0.6 mol% or more and 5 mol% or less in which pale yellow coloring occurs, the specific impurity element, that is, the content of Al is more than 0.4 ppm and 50 ppm or less, at a wavelength of 450 nm. der transmittance of 75% or more is, rare earth component is gadolinium der Ru rare earth silicate single crystal.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
As a result of studying the Ce concentration, coloring state and transmittance characteristics, and impurity addition of the rare earth silicate single crystal, the present inventors have increased the Ce concentration of the grown single crystal as compared with the conventional case by including a specific impurity element. However, the present inventors have found that the occurrence of coloring is suppressed and the transmittance is increased, and the present invention has been achieved. That is, by including Al in the gadolinium silicate single crystal in an amount of more than 0.4 ppm to 50 ppm or less, even when the Ce concentration, which is considered to be the cause of pale yellow coloring, is higher than the conventional concentration, the occurrence of coloring is small and transparent. It was found that a high rare earth silicate single crystal was obtained, the fluorescence output was increased, and the scintillator characteristics could be improved.
[0006]
The addition amount of Ce in the rare earth silicate single crystal in the present invention is required to have a transmittance of 75% or more at a wavelength of 450 nm at a concentration of 0.6 mol% or more and 5 mol% or less, preferably 1 mol% to 3 mol. % Range, most preferably in the range of 1.5 mol% to 2 mol%. In order to achieve the above, it is preferable that the Al content in the rare earth silicate single crystal doped with 0.6 to 5 mol% of Ce exceeds 0.4 ppm and is 50 ppm or less.
[0007]
When the content of impurity Al is 0.4 ppm or less, there is no effect of preventing the occurrence of coloration of the single crystal, and the single crystal exhibits a light yellow color, resulting in poor transmittance. On the other hand, when the content of the impurity Al exceeds 50 ppm, voids are generated inside the single crystal and the transmittance is deteriorated. This seems to be caused by an increase in the formation of minute heterogeneous phases in the gadolinium silicate single crystal. However, when the Al content exceeds 0.4 ppm and is 50 ppm or less, it is considered that the heterogeneous phase formation is suppressed and voids are not generated when the Ce concentration is a high concentration of 0.6 mol% or more.
[0008]
The Al impurity content in the present invention needs to be more than 0.4 ppm and 50 ppm or less, more preferably in the range of 2 ppm to 30 ppm, and most preferably in the range of 5 ppm to 20 ppm.
[0009]
Rare earth silicate single crystal of the present invention, other than gadolinium silicate single crystal, the formula Ln 2-x Ce x SiO 5 ( where, Ln = Sc, Y, La , Ce, Pr, Nd, Pm, Sm, Eu, The same applies to the rare earth silicate single crystal represented by at least one element selected from the group consisting of Tb, Dy, Ho, Er, Tm, Yb, and Lu, where x = 0 to 2. Result. The above rare earth silicate single crystal has the same crystal structure as that of the gadolinium silicate single crystal, and the structure belongs to the space group P21 / c.
[0010]
【Example】
The present invention will be specifically described based on examples. As raw materials, gadolinium oxide (Gd 2 O 3 , 99.99% by weight), silicon dioxide (SiO 2 , 99.99% by weight), cerium oxide (CeO 2 , 99.99% by weight), and aluminum oxide (Al 2 O) 3 , 99.99 wt%) were used to grow single crystals by the Czochralski method. A sample of 10 × 10 × 10 mm 3 was taken from the single crystal, and the transmittance at a wavelength of 450 nm was measured. The appearance of the single crystal was visually observed, and the results are summarized in Table 1. However, three single crystals were grown for each example, and the average value was shown. In addition, a present Example shows a suitable example, This invention is not limited to these Examples.
[0011]
Example 1
A gadolinium silicate single crystal having a Ce concentration of 1.45 mol% was prepared as follows. 2573.5 g of gadolinium oxide, 426.5 g of silicon dioxide, 17.7 g of cerium oxide, and 0.0075 g of aluminum oxide were weighed and mixed, fired at 1200 ° C., and charged into an Ir crucible having a diameter of 100 mm. Pulling was completed when 80 wt% of the raw material was crystallized under the conditions of the melt at 1950 ° C., the seed crystal rotation speed of 30 rpm, and the pulling speed of 2 mm / h, and a single crystal having a diameter of 50 mm was grown. The grown single crystal was slightly pale yellow. The Al concentration in the produced crystal was measured using an inductively coupled plasma (ICP) mass spectrometry and found to be 0.5 ppm.
[0012]
(Example 2)
A gadolinium silicate single crystal having a Ce concentration of 1.45 mol% was prepared as follows. 2573.5 g of gadolinium oxide, 426.5 g of silicon dioxide, 17.7 g of cerium oxide, and 0.15 g of aluminum oxide were weighed and mixed, fired at 1200 ° C., and charged into an Ir crucible having a diameter of 100 mm. Pulling was completed when 80 wt% of the raw material was crystallized under the conditions of the melt at 1950 ° C., the seed crystal rotation speed of 30 rpm, and the pulling speed of 2 mm / h, and a single crystal having a diameter of 50 mm was grown. The grown single crystal was colorless and transparent. The Al concentration in the produced crystal was 14 ppm as a result of measurement using inductively coupled plasma (ICP) mass spectrometry.
[0013]
(Example 3)
A gadolinium silicate single crystal having a Ce concentration of 1.45 mol% was prepared as follows. 2573.5 g of gadolinium oxide, 426.5 g of silicon dioxide, 17.7 g of cerium oxide, and 0.5625 g of aluminum oxide were weighed and mixed, fired at 1200 ° C., and charged into an Ir crucible having a diameter of 100 mm. Pulling was completed when 80 wt% of the raw material was crystallized under the conditions of the melt at 1950 ° C., the seed crystal rotation speed of 30 rpm, and the pulling speed of 2 mm / h, and a single crystal having a diameter of 50 mm was grown. The grown single crystal was colorless and transparent. The Al concentration in the produced crystal was 47 ppm as a result of measurement using inductively coupled plasma (ICP) mass spectrometry.
[0014]
(Example 4)
A gadolinium silicate single crystal having a Ce concentration of 1.93 mol% was prepared as follows. 2573.5 g of gadolinium oxide, 426.5 g of silicon dioxide, 23.6 g of cerium oxide, and 0.0075 g of aluminum oxide were weighed and mixed, fired at 1200 ° C., and charged into an Ir crucible having a diameter of 100 mm. Pulling was completed when 80% by weight of the raw material was crystallized under the conditions of the melt at 1950 ° C., the seed crystal rotation speed of 3 rpm, and the pulling speed of 2 mm / h, and a single crystal having a diameter of 50 mm was grown. The grown single crystal was slightly pale yellow. Moreover, as a result of measuring the Al concentration in the produced crystal using inductively coupled plasma (ICP) mass spectrometry, it was 0.6 ppm.
[0015]
(Example 5)
A gadolinium silicate single crystal having a Ce concentration of 1.93 mol% was prepared as follows. 2573.5 g of gadolinium oxide, 426.5 g of silicon dioxide, 23.6 g of cerium oxide, and 0.15 g of aluminum oxide were weighed and mixed, fired at 1200 ° C., and charged into an Ir crucible having a diameter of 100 mm. Pulling was completed when 80 wt% of the raw material was crystallized under the conditions of the melt at 1950 ° C., the seed crystal rotation speed of 30 rpm, and the pulling speed of 2 mm / h, and a single crystal having a diameter of 50 mm was grown. The grown single crystal was colorless and transparent. Further, the Al concentration in the produced crystal was measured using inductively coupled plasma (ICP) mass spectrometry, and as a result, it was 12 ppm.
[0016]
(Example 6)
A gadolinium silicate single crystal having a Ce concentration of 1.93 mol% was prepared as follows. 2573.5 g of gadolinium oxide, 426.5 g of silicon dioxide, 23.6 g of cerium oxide, and 0.5625 g of aluminum oxide were weighed and mixed, fired at 1200 ° C., and charged into an Ir crucible having a diameter of 100 mm. Pulling was completed when 80 wt% of the raw material was crystallized under the conditions of the melt at 1950 ° C., the seed crystal rotation speed of 30 rpm, and the pulling speed of 2 mm / h, and a single crystal having a diameter of 50 mm was grown. The grown single crystal was colorless and transparent. Further, the Al concentration in the produced crystal was measured by using inductively coupled plasma (ICP) mass spectrometry, and found to be 45 ppm.
[0017]
As a comparative example, an example in the case of a cerium-activated gadolinium silicate single crystal (Ce: Gd 2 SiO 5 ) will be described as in the example. Gadolinium oxide (Gd 2 O 3 , 99.99% by weight), silicon dioxide (SiO 2 , 99.99% by weight), and cerium oxide (same as those used in the examples as raw materials) A single crystal was grown by the Czochralski method using CeO 2 , 99.99 wt%). A sample of 10 × 10 × 10 mm 3 was taken from the single crystal, the transmittance at a wavelength of 450 nm was measured, and the appearance of the single crystal was visually observed. The results are summarized in Table 1. However, three single crystals were grown for each condition and the average value was shown.
[0018]
(Comparative Example 1)
A gadolinium silicate single crystal having a Ce concentration of 1.45 mol% was prepared as follows. 2573.5 g of gadolinium oxide, 426.5 g of silicon dioxide, and 17.7 g of cerium oxide were weighed, mixed and fired, and then placed in an Ir crucible and grown in the same manner as in Example 1. The grown single crystal was a strong pale yellow. Moreover, as a result of measuring Al concentration in the produced crystal using inductively coupled plasma (ICP) mass spectrometry, it was 0 ppm.
[0019]
(Comparative Example 2)
A gadolinium silicate single crystal having a Ce concentration of 1.45 mol% was prepared as follows. 2573.5 g of gadolinium oxide, 426.5 g of silicon dioxide, 17.7 g of cerium oxide, and 0.0025 g of aluminum oxide were weighed and mixed, baked, and then placed in an Ir crucible and grown in the same manner as in Example 1. It was. The grown single crystal was a strong pale yellow. The Al concentration in the produced crystal was 0.2 ppm as a result of measurement using inductively coupled plasma (ICP) mass spectrometry.
[0020]
(Comparative Example 3)
A gadolinium silicate single crystal having a Ce concentration of 1.45 mol% was prepared as follows. 2573.5 g of gadolinium oxide, 426.5 g of silicon dioxide, 17.7 g of cerium oxide, and 0.65 g of aluminum oxide were weighed and mixed, baked, and then placed in an Ir crucible and grown in the same manner as in Example 1. It was. There were many voids in the grown single crystal. The Al concentration in the produced crystal was 52 ppm as a result of measurement using inductively coupled plasma (ICP) mass spectrometry.
[0021]
(Comparative Example 4)
A gadolinium silicate single crystal having a Ce concentration of 1.45 mol% was prepared as follows. Gadolinium oxide 2573.5 g, silicon dioxide 426.5 g, cerium oxide 17.7 g, and aluminum oxide 0.875 g were weighed and mixed, fired, and then placed in an Ir crucible and grown in the same manner as in Example 1. It was. There were many voids in the grown single crystal. The Al concentration in the produced crystal was 70 ppm as a result of measurement using inductively coupled plasma (ICP) mass spectrometry.
[0022]
(Comparative Example 5)
A gadolinium silicate single crystal having a Ce concentration of 1.93 mol% was prepared as follows. 2573.5 g of gadolinium oxide, 426.5 g of silicon dioxide, and 23.6 g of cerium oxide were weighed, mixed and fired, and then placed in an Ir crucible and grown in the same manner as in Example 4. The grown single crystal was a strong pale yellow. Further, the Al concentration in the produced crystal was measured by using inductively coupled plasma (ICP) mass spectrometry, and found to be 0 ppm.
[0023]
(Comparative Example 6)
A gadolinium silicate single crystal having a Ce concentration of 1.93 mol% was prepared as follows. 2573.5 g of gadolinium oxide, 426.5 g of silicon dioxide, 23.6 g of cerium oxide, and 0.0025 g of aluminum oxide were weighed and mixed, baked, and then placed in an Ir crucible and grown in the same manner as in Example 4. It was. The grown single crystal was a strong pale yellow. Further, the Al concentration in the produced crystal was measured by using inductively coupled plasma (ICP) mass spectrometry, and found to be 0.3 ppm.
[0024]
(Comparative Example 7)
A gadolinium silicate single crystal having a Ce concentration of 1.93 mol% was prepared as follows. 2573.5 g of gadolinium oxide, 426.5 g of silicon dioxide, 23.6 g of cerium oxide, and 0.65 g of aluminum oxide were weighed and mixed, baked, and then placed in an Ir crucible and grown in the same manner as in Example 4. It was. There were many voids in the grown single crystal. The Al concentration in the produced crystal was 53 ppm as a result of measurement using inductively coupled plasma (ICP) mass spectrometry.
[0025]
(Comparative Example 8)
A gadolinium silicate single crystal having a Ce concentration of 1.93 mol% was prepared as follows. 2573.5 g of gadolinium oxide, 426.5 g of silicon dioxide, 23.6 g of cerium oxide, and 0.875 g of aluminum oxide were weighed and mixed, baked, and then placed in an Ir crucible and grown in the same manner as in Example 4. It was. There were many voids in the grown single crystal. Further, the Al concentration in the produced crystal was measured by inductively coupled plasma (ICP) mass spectrometry, and found to be 69 ppm.
[0026]
[Table 1]
Figure 0004228610
[0027]
As shown in Comparative Examples 1 and 5, when the Ce concentration is increased, the single crystal is strongly colored in pale yellow, and the transmittance is decreased. In Examples 1 to 6 in which Al is present in the range of 50 ppm to more than 0.4 ppm in this Ce high concentration single crystal, the transmittance at 450 nm is high and the coloring is very small. On the other hand, in the comparative example in which the Al concentration in the single crystal is 0.4 ppm or less or exceeds 50 ppm, if the Al concentration is low, the transmittance is low and the color is strongly colored. If the Al concentration is high, voids are generated and the transmittance is significantly reduced. As described above, the present invention addresses the problem of reduction in coloration and improvement in transmittance, which has been a drawback when the Ce concentration is increased in order to shorten the fluorescence decay time. By doing so, coloring of the single crystal can be suppressed and the transmittance can be increased. Thereby, high-speed diagnosis of the PET apparatus can be achieved.
[0028]
【The invention's effect】
In the rare earth silicate single crystal according to the present invention, the occurrence of light yellow is small and the transparency can be increased even in the concentration range where Ce concentration at which light yellow coloration is generated is higher than the conventional one.

Claims (1)

0.6mol%以上で5mol%以下のCe濃度であり、Alの含有率が0.4ppmを超えて50ppm以下であり、かつ波長450nmにおける透過率が75%以上であり、希土類成分がガドリニウムであることを特徴とする希土類珪酸塩単結晶。A Ce concentration of less 5 mol% with 0.6 mol% or more, and the content of Al is 50ppm or less beyond 0.4 ppm, and Ri der transmittance of 75% or more at a wavelength of 450 nm, the rare earth component is gadolinium Oh earth silicate single crystal according to claim Rukoto.
JP2002221537A 2002-07-30 2002-07-30 Rare earth silicate single crystal Expired - Fee Related JP4228610B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002221537A JP4228610B2 (en) 2002-07-30 2002-07-30 Rare earth silicate single crystal
US10/621,350 US6926847B2 (en) 2002-07-30 2003-07-18 Single crystals of silicates of rare earth elements
DE10334513A DE10334513B4 (en) 2002-07-30 2003-07-29 A process for producing a single crystal of a cerium-doped gadolinium silicate
FR0309375A FR2843131B1 (en) 2002-07-30 2003-07-30 RARE EARTH ELEMENTS SILICATE MONOCRYSTAL AND SCINTILLATOR CONTAINING SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002221537A JP4228610B2 (en) 2002-07-30 2002-07-30 Rare earth silicate single crystal

Publications (2)

Publication Number Publication Date
JP2004059383A JP2004059383A (en) 2004-02-26
JP4228610B2 true JP4228610B2 (en) 2009-02-25

Family

ID=31941822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002221537A Expired - Fee Related JP4228610B2 (en) 2002-07-30 2002-07-30 Rare earth silicate single crystal

Country Status (1)

Country Link
JP (1) JP4228610B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206640A (en) 2004-01-20 2005-08-04 Hitachi Chem Co Ltd Inorganic scintillator

Also Published As

Publication number Publication date
JP2004059383A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
CA2741850C (en) Cerium-doped lutetium oxyorthosilicate (lso) scintillators
KR101311695B1 (en) High light yield fast scintillator
CN105543963B (en) The rare earth scintillating crystals and its inexpensive growth technique prepared by low-cost rare earth raw material
CN103388179B (en) Cesium iodide,crystal scintillation crystal of codope and its preparation method and application
WO1999033934A1 (en) Phosphors, and radiation detectors and x-ray ct unit made by using the same
JP2009007545A (en) Single crystal for scintillator, heat treatment method for producing single crystal for scintillator and method of manufacturing single crystal for scintillator
US20060163484A1 (en) Metal halide for radiation detection, method for production thereof and radiation detector
Gu et al. Luminescent properties of Na-codoped Lu2SiO5: Ce phosphor
Liu et al. Effect of Li+ ions co-doping on luminescence, scintillation properties and defects characteristics of LuAG: Ce ceramics
JP2011026547A (en) Single crystal for scintillator, method of heat treatment for manufacturing single crystal for scintillator, and method of manufacturing single crystal for scintillator
Qian et al. Luminescent properties of Ce3+-doped transparent oxyfluoride glass ceramics containing BaGdF5 nanocrystals
Shimura et al. Zr doped GSO: Ce single crystals and their scintillation performance
CN105332056A (en) Divalent metal cation and cerium co-doped lutetium aluminum garnet crystal for laser illumination and preparation method thereof
JPH0264008A (en) Single crystal of lanthanide silicate useful as scintillator for detecting x-rays and/or gamma rays
JP3877162B2 (en) GSO single crystal and scintillator for PET
JP4228610B2 (en) Rare earth silicate single crystal
JP2701577B2 (en) Single crystal heat treatment method
JP4228609B2 (en) Cerium-activated gadolinium silicate single crystal
JP2016056378A (en) Single crystal for scintillator, heat treatment method for producing single crystal for scintillator and method for producing single crystal for scintillator
JP4228611B2 (en) Cerium-activated gadolinium silicate single crystal
He et al. Growth and optical properties of YBa3B9O18: Ce crystals
US6926847B2 (en) Single crystals of silicates of rare earth elements
JP4605588B2 (en) Fluoride single crystal for radiation detection, method for producing the same, and radiation detector
US20100224798A1 (en) Scintillator based on lanthanum iodide and lanthanum bromide
JP4195732B2 (en) Method for growing rare earth silicate single crystals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070801

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081124

R151 Written notification of patent or utility model registration

Ref document number: 4228610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees