JPH09142848A - Production of magnetic oxide powder - Google Patents

Production of magnetic oxide powder

Info

Publication number
JPH09142848A
JPH09142848A JP7295635A JP29563595A JPH09142848A JP H09142848 A JPH09142848 A JP H09142848A JP 7295635 A JP7295635 A JP 7295635A JP 29563595 A JP29563595 A JP 29563595A JP H09142848 A JPH09142848 A JP H09142848A
Authority
JP
Japan
Prior art keywords
powder
magnetic oxide
oxide powder
peroxide
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7295635A
Other languages
Japanese (ja)
Inventor
Kazumi Okabe
参省 岡部
Tomohiro Nagai
智浩 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP7295635A priority Critical patent/JPH09142848A/en
Publication of JPH09142848A publication Critical patent/JPH09142848A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a magnetic oxide powder having a small particle diameter and high surface activities at a low cost according to spinel-forming reaction at a low heat-treating temperature by adopting a specific method when producing the prescribed magnetic oxide powder. SOLUTION: A method for supporting and fixing a peroxide of an Me metallic element to the surface of an α-FeOOH powder and then heat-treating the resultant powder is adopted when producing a magnetic oxide powder represented by the formula MeFe2 O4 (Me is one or more bivalent metallic elements of Mn, Ni, Zn, Cu and Co). The heat-treating temperature is preferably 700-900 deg.C when the magnetic oxide powder is an Mn-Zn-based ferrite and the temperature is preferably 450-700 deg.C when the powder is an Ni-Zn-based ferrite.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、低温焼結に適した
表面活性の高い磁性酸化物粉体を製造する方法に関す
る。
TECHNICAL FIELD The present invention relates to a method for producing a magnetic oxide powder having high surface activity, which is suitable for low temperature sintering.

【0002】[0002]

【従来の技術】従来、磁性酸化物粉体、例えばMn−Z
n系フェライト粉体の製造方法としては、次のような種
々の方法が提案されている。
2. Description of the Related Art Conventionally, magnetic oxide powders such as Mn-Z are used.
The following various methods have been proposed as a method for producing the n-type ferrite powder.

【0003】(a)フェライトを構成する元素の酸化物
あるいは炭酸塩の粉体を混合した後、この混合粉体を高
温で仮焼してMn−Znフェライト粉体を得る方法。
(A) A method of obtaining powder of Mn-Zn ferrite by mixing powders of oxides or carbonates of elements constituting ferrite and then calcining the mixed powder at high temperature.

【0004】(b)Mn,Zn及びFeの水溶性化合物
の混合溶液に蓚酸塩を添加してそれらの蓚酸塩化合物を
沈殿させた後、この蓚酸塩化合物を仮焼してMn−Zn
フェライト粉体を得る方法。
(B) Oxalates are added to a mixed solution of water-soluble compounds of Mn, Zn and Fe to precipitate the oxalate compounds, and the oxalate compounds are calcined to obtain Mn-Zn.
Method for obtaining ferrite powder.

【0005】(c)FeのアルコキシドとMn及びZn
のアセチルアセトネート化合物を有機溶剤に溶解して混
合溶液を作製し、この混合溶液に水を加えて加水分解を
行ないゲルを生成させ、そのゲルを仮焼してMn−Zn
フェライト粉体を得る方法。
(C) Alkoxide of Fe and Mn and Zn
Of the acetylacetonate compound is dissolved in an organic solvent to prepare a mixed solution, water is added to the mixed solution to cause hydrolysis to form a gel, and the gel is calcined to prepare Mn-Zn
Method for obtaining ferrite powder.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
製造方法それぞれにおいて、以下に示すような問題点を
有していた。
However, each of the above-described manufacturing methods has the following problems.

【0007】(a)の方法においては、出発原料が酸化
物又は炭酸塩の粉体であるため、各々の粉体を原子レベ
ルで均一に分散させることができず、得られたフェライ
ト粉体に部分的な組成ずれが生じた。又、出発原料粉体
の表面活性が低いので、スピネル化合物を得るためには
高温で仮焼しなければならなかった。
In the method (a), since the starting material is an oxide or carbonate powder, it is impossible to uniformly disperse each powder at the atomic level, and the obtained ferrite powder is added. A partial composition shift occurred. Further, since the starting material powder has a low surface activity, it was necessary to perform calcination at a high temperature in order to obtain a spinel compound.

【0008】なお、出発原料の各粉体は、湿式反応によ
り合成した微細な沈殿物を仮焼して得ることが可能であ
る。しかしながら、合成段階での沈殿物が微細であって
も乾燥、仮焼後はやはり凝集して粒径が大きくなり、表
面活性が低下した状態になっている。したがって、この
場合においても各々の粉体を原子レベルで均一に混合分
散させることができず、均一なスピネル化合物を得るた
めには高温で仮焼する必要があった。
Each powder of the starting material can be obtained by calcining a fine precipitate synthesized by a wet reaction. However, even if the precipitate in the synthesis stage is fine, after drying and calcination, it still aggregates and the particle size becomes large, and the surface activity is reduced. Therefore, even in this case, the respective powders could not be uniformly mixed and dispersed at the atomic level, and it was necessary to perform calcination at a high temperature in order to obtain a uniform spinel compound.

【0009】又、以上のように高温で仮焼して得られる
磁性酸化物粉体は、強固な凝集体となって表面活性が低
下するので、焼成温度を一段と高くする必要があった。
この問題を解決するために、焼結助材を添加することに
よって焼結温度を下げる方法が提唱されている。しかし
ながら、焼結助材を添加することで焼結温度を低下させ
ることはできるが、一方では磁気特性を劣化させるため
根本的な解決策とはなっていない。
Further, since the magnetic oxide powder obtained by calcination at high temperature as described above becomes a strong agglomerate and its surface activity is lowered, it is necessary to further raise the firing temperature.
In order to solve this problem, a method of lowering the sintering temperature by adding a sintering aid has been proposed. However, although it is possible to lower the sintering temperature by adding a sintering aid, this is not a fundamental solution because it deteriorates the magnetic properties.

【0010】さらに、仮焼後の凝集した粉体を微細化す
るために粉砕が必要であるが、このときに粉砕装置の内
壁あるいはメディアの磨耗物が不純物として混入した。
Further, it is necessary to pulverize the agglomerated powder after calcination to make it fine, but at this time, the abrasion material of the inner wall of the pulverizing device or the medium is mixed as an impurity.

【0011】(b)の製造方法においては、フェライト
を構成する元素間で,蓚酸塩を生成する最適pHが互い
に異なる場合があり、このようなときには目的とする分
子化合物を生成できず、組成の異なる分子化合物と未反
応の金属イオン各々の蓚酸塩の混合物が得られることに
なる。したがって、構成元素の均一分散性は、(a)の
方法と比べると改善されているもののまだ不十分であっ
た。
In the manufacturing method (b), the optimum pH for producing oxalate may differ between the elements constituting the ferrite, and in such a case, the desired molecular compound cannot be produced and the composition of the composition is A mixture of different molecular compounds and oxalates of each unreacted metal ion will be obtained. Therefore, although the uniform dispersibility of the constituent elements was improved as compared with the method (a), it was still insufficient.

【0012】又、これら沈殿物の溶解度がそれぞれ異な
るため、洗浄時の溶出量に差が生じ、仕込み時の組成と
得られる沈殿物の組成との間にずれが生じた。
Further, since the solubilities of these precipitates are different from each other, there is a difference in the elution amount at the time of washing, which causes a difference between the composition at the time of charging and the composition of the obtained precipitate.

【0013】さらに、得られた蓚酸塩化合物を仮焼して
スピネル化するときの反応メカニズムは、まず蓚酸塩化
合物が脱CO2 や脱COにより炭酸塩を経て酸化物に分
解した後、生成した酸化物同志が固相反応するものであ
る。したがって、この製造方法においても(a)と同様
に、高温で仮焼する必要があった。このため、仮焼後の
凝集したフェライト粉体の粉砕が必要であり、この粉砕
時に不純物の混入を避けることができなかった。
Further, the reaction mechanism when the obtained oxalate compound is calcined to form a spinel is that the oxalate compound is produced by decomposing the oxalate compound into an oxide through a carbonate by de-CO 2 and de-CO. The oxides are solid-phase reacted. Therefore, also in this manufacturing method, similarly to (a), it was necessary to perform calcination at a high temperature. For this reason, it is necessary to pulverize the agglomerated ferrite powder after calcination, and it is impossible to avoid mixing of impurities during the pulverization.

【0014】さらに又、蓚酸塩化合物を生成させた後の
廃液処理として、未反応の蓚酸イオンに起因するBOD
を下げる曝気処理や、酸性廃液の中和処理を必要とし
た。
Furthermore, as a waste liquid treatment after the formation of the oxalate compound, BOD resulting from unreacted oxalate ion
It required aeration treatment to lower the temperature and neutralization treatment of acidic waste liquid.

【0015】(c)の製造方法においては、仮焼温度が
低く、表面活性及び純度が高いフェライト粉体が得られ
る。しかしながら、使用する出発原料の価格が非常に高
価であって、実験室規模では最適であるが量産には適さ
なかった。
In the manufacturing method of (c), a calcination temperature is low and a ferrite powder having high surface activity and high purity can be obtained. However, the price of the starting material used was very high, and although it was optimal on a laboratory scale, it was not suitable for mass production.

【0016】そこで、本発明の目的は、上記の問題点を
解決して、粒径が小さく表面活性が高く易焼結性であっ
て、安価な磁性酸化物粉体の製造方法を提供することに
ある。
Therefore, an object of the present invention is to solve the above problems and provide a method for producing an inexpensive magnetic oxide powder having a small particle size, high surface activity, easy sinterability. It is in.

【0017】[0017]

【課題を解決するための手段】上記目的を達成するた
め、本発明の磁性酸化物粉体の製造方法は、一般式Me
Fe2 4 (但し、MeはMn、Ni、Zn、Cu、C
oのうち少なくとも1種類の2価の金属元素)で示され
る磁性酸化物粉体の製造において、α−FeOOH粉体
表面に前記Me金属元素の過酸化物を担持固定した後、
熱処理することを特徴とする。
In order to achieve the above object, the method for producing a magnetic oxide powder according to the present invention is carried out according to the general formula Me.
Fe 2 O 4 (However, Me is Mn, Ni, Zn, Cu, C
In the production of the magnetic oxide powder represented by at least one kind of divalent metal element of o), after the peroxide of the Me metal element is supported and fixed on the surface of the α-FeOOH powder,
Characterized by heat treatment.

【0018】又、前記熱処理温度は、磁性酸化物粉体が
Mn−Zn系フェライトであるときは700〜900℃
であり、磁性酸化物粉体がNi−Zn系フェライトであ
るときは450〜700℃であることを特徴とする。
The heat treatment temperature is 700 to 900 ° C. when the magnetic oxide powder is Mn-Zn ferrite.
And when the magnetic oxide powder is a Ni—Zn ferrite, the temperature is 450 to 700 ° C.

【0019】又、Me金属イオンを含む溶液にα−Fe
OOH粉体を分散させたスラリー中に、アルカリ及び過
酸化水素を加えて前記Me金属の過酸化物を生成させ、
該過酸化物を前記α−FeOOH粉体表面に担持固定さ
せることを特徴とする。
Further, α-Fe is added to a solution containing Me metal ions.
To the slurry in which the OOH powder is dispersed, alkali and hydrogen peroxide are added to generate the Me metal peroxide,
The peroxide is supported and fixed on the surface of the α-FeOOH powder.

【0020】さらに、前記Me金属イオン源は、水溶性
のMe金属化合物又は硝酸、塩酸、硫酸及び酢酸のうち
いずれかに可溶なMe金属化合物であることを特徴とす
る。そして、前記アルカリ源は、NaOH、KOH及び
LiOHのうち少なくとも1種類であることを特徴とす
る。
Further, the Me metal ion source is characterized by being a water-soluble Me metal compound or a Me metal compound soluble in any of nitric acid, hydrochloric acid, sulfuric acid and acetic acid. The alkali source is at least one of NaOH, KOH, and LiOH.

【0021】本発明の、α−FeOOH粉体表面にFe
以外の磁性酸化物を構成する金属元素の過酸化物を担持
固定した前駆体を熱処理する方法によれば、α−FeO
OH及び過酸化物が300℃付近でそれぞれ熱分解しな
がら互いに反応を開始する。即ち、低熱処理温度でスピ
ネル化反応が起きる。このため、反応物の凝集が抑えら
れて従来のように機械的強制粉砕を必要とせず、粉砕に
より不純物が混入することもない。
Fe on the surface of the α-FeOOH powder of the present invention
According to the method of heat-treating the precursor carrying and fixing the peroxide of the metal element constituting the magnetic oxide other than α-FeO
OH and peroxide start to react with each other while thermally decomposing at around 300 ° C. That is, the spinelization reaction occurs at a low heat treatment temperature. Therefore, agglomeration of the reaction product is suppressed and mechanical forced pulverization is not required unlike in the conventional case, and impurities are not mixed by pulverization.

【0022】又、本発明によれば、α−FeOOH粉体
の懸濁液中でFe以外の磁性酸化物を構成する金属の過
酸化物を生成させ、α−FeOOH粉体表面に沈着させ
る。したがって、α−FeOOH粉体各々の表面をFe
以外の磁性酸化物を構成する過酸化物で均一に被覆する
ことが可能である。
Further, according to the present invention, a peroxide of a metal constituting a magnetic oxide other than Fe is produced in a suspension of α-FeOOH powder and deposited on the surface of the α-FeOOH powder. Therefore, the surface of each α-FeOOH powder is
It is possible to uniformly coat with a peroxide constituting a magnetic oxide other than.

【0023】又、本発明で得られる過酸化物の溶解度積
は10-11 と、蓚酸塩法で得られる蓚酸塩化合物の溶解
度積10-7〜10-8と比較して3〜4桁も小さく、生成
沈殿物の溶出が大幅に抑えられる。
Further, the solubility product of the peroxide obtained in the present invention is 10 -11 , which is 3 to 4 digits as compared with the solubility product 10 -7 to 10 -8 of the oxalate compound obtained by the oxalate method. It is small and the elution of the produced precipitate is greatly suppressed.

【0024】[0024]

【発明の実施の形態】以下、本発明の磁性酸化物粉体の
製造方法について、まずMn−Zn系フェライトを例と
してその実施の形態を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of the method for producing a magnetic oxide powder of the present invention will be described by taking Mn-Zn ferrite as an example.

【0025】(実施例1)表1に示す組成になるよう
に、水溶性の金属化合物である硝酸マンガン及び硝酸亜
鉛を正確に秤量分取して純水に溶解し、NaOHを加え
て溶液のpHを5〜6に調整した後、正確に秤量分取し
たα−FeOOH粉体を高速攪拌しながら加えて懸濁液
を作製した。その後、NaOHを加え懸濁液のpHを9
以上に保ちながら、過酸化物を生成させるのに必要な過
酸化水素水をゆっくりと加えてMn及びZnを構成金属
元素とする過酸化物をα−FeOOH粉体表面に沈着さ
せて前駆体沈殿物を作製した。
Example 1 Manganese nitrate and zinc nitrate, which are water-soluble metal compounds, were accurately weighed out and dissolved in pure water so that the composition shown in Table 1 was obtained, and NaOH was added to form a solution. After adjusting the pH to 5 to 6, accurately weighed and collected α-FeOOH powder was added with high-speed stirring to prepare a suspension. Then add NaOH to adjust the pH of the suspension to 9
While keeping the above, the hydrogen peroxide solution necessary for generating the peroxide is slowly added to deposit the peroxide having Mn and Zn as the constituent metal elements on the surface of the α-FeOOH powder, thereby precipitating the precursor. The thing was made.

【0026】その後、得られた前駆体沈殿物の洗浄を繰
り返してNa+ を除去し、熱風乾燥器内で乾燥させた
後、650〜900℃で熱処理を行ないMn−Znフェ
ライトの粉体を得た。
Thereafter, the obtained precursor precipitate was repeatedly washed to remove Na + and dried in a hot air drier, and then heat-treated at 650 to 900 ° C. to obtain Mn-Zn ferrite powder. It was

【0027】[0027]

【表1】 [Table 1]

【0028】次に、これら熱処理済み粉体について、X
線回折(XRD)分析、マグネットによる磁性化の有無
の定性確認を行なった。その結果を表2に示す。
Next, regarding these heat-treated powders, X
Line diffraction (XRD) analysis and qualitative confirmation of the presence or absence of magnetization by a magnet were performed. Table 2 shows the results.

【0029】(比較例1)表1に示す組成になるよう
に、酸化鉄(Fe2 3 )、酸化マンガン及び酸化亜鉛
の粉体を正確に秤量分取し、混合粉砕した後700〜9
50℃で熱処理を行ないMn−Znフェライトの粉体を
得た。以下、実施例1と同様にX線回折(XRD)分
析、マグネットによる磁性化の有無の定性確認を行なっ
た。その結果を表2に示す。
Comparative Example 1 Iron oxide (Fe 2 O 3 ), manganese oxide and zinc oxide powders were accurately weighed out so as to have the composition shown in Table 1, mixed and ground, and then 700 to 9
Heat treatment was performed at 50 ° C. to obtain Mn—Zn ferrite powder. Thereafter, as in Example 1, X-ray diffraction (XRD) analysis and qualitative confirmation of the presence or absence of magnetization by a magnet were performed. Table 2 shows the results.

【0030】(比較例2)表1に示す組成になるよう
に、硝酸マンガン及び硝酸亜鉛を正確に秤量分取して純
水に溶解し、NaOHを加えて溶液のpHを5〜6に調
整した後、正確に秤量分取した酸化鉄(Fe2 3 )粉
体を高速攪拌しながら加えて懸濁液を作製した。その
後、NaOHを加え懸濁液のpHを9以上に保ちなが
ら、過酸化物を生成させるのに必要な過酸化水素水をゆ
っくりと加えてMn及びZnを構成金属元素とする過酸
化物をFe2 3 粉体表面に沈着させて前駆体沈殿物を
作製した。
Comparative Example 2 Manganese nitrate and zinc nitrate were accurately weighed out and dissolved in pure water so that the composition shown in Table 1 was obtained, and NaOH was added to adjust the pH of the solution to 5-6. After that, an iron oxide (Fe 2 O 3 ) powder that was accurately weighed out was added with high speed stirring to prepare a suspension. Thereafter, while adding NaOH to maintain the pH of the suspension at 9 or more, the hydrogen peroxide solution necessary for generating peroxide is slowly added to convert the peroxide containing Mn and Zn as constituent metal elements to Fe. A precursor precipitate was prepared by depositing it on the surface of 2 O 3 powder.

【0031】その後、得られた前駆体沈殿物の洗浄を繰
り返してNa+ を除去し、熱風乾燥器内で乾燥させた
後、600〜950℃で熱処理を行ないMn−Znフェ
ライトの粉体を得た。以下、実施例1と同様にX線回折
(XRD)分析、マグネットによる磁性化の有無の定性
確認を行なった。その結果を表2に示す。
Thereafter, the obtained precursor precipitate was repeatedly washed to remove Na + and dried in a hot air drier, and then heat-treated at 600 to 950 ° C. to obtain Mn-Zn ferrite powder. It was Thereafter, as in Example 1, X-ray diffraction (XRD) analysis and qualitative confirmation of the presence or absence of magnetization by a magnet were performed. Table 2 shows the results.

【0032】[0032]

【表2】 [Table 2]

【0033】表2に示す通り、X線回折(XRD)分析
結果では、実施例1、比較例1、2の粉体とも、700
℃以上の熱処理で、スピネル化合物の回折ピークが検出
されている。一方、マグネットによる磁性の発現の有無
のチェックの結果では、実施例1の粉体の場合には70
0℃以上の熱処理で磁性の発現が認められているのに対
して、比較例1、2の粉体は熱処理が800℃以上にな
らないと磁性の発現が認められない。
As shown in Table 2, the X-ray diffraction (XRD) analysis results show that the powders of Example 1 and Comparative Examples 1 and 2 were 700
The diffraction peak of the spinel compound is detected by the heat treatment at ℃ or above. On the other hand, the result of checking the presence or absence of magnetism by the magnet shows 70 in the case of the powder of Example 1.
While the magnetism is exhibited by the heat treatment at 0 ° C. or higher, the powders of Comparative Examples 1 and 2 do not exhibit the magnetism unless the heat treatment is performed at 800 ° C. or higher.

【0034】これは比較例1、2の粉体は、700℃の
熱処理ではスピネル化合物の生成割合が少なく、磁性が
発現しないことを示しており、比較例1、2の粉体の表
面活性が実施例1の粉体と比較して低いことを示すもの
である。
This shows that the powders of Comparative Examples 1 and 2 have a small spinel compound production rate by the heat treatment at 700 ° C. and do not exhibit magnetism, and the powders of Comparative Examples 1 and 2 have surface activity. It is shown to be lower than that of the powder of Example 1.

【0035】又、α−FeOOH粉体表面に過酸化物を
担持固定した実施例1と、酸化鉄(Fe2 3 )粉体表
面に過酸化物を担持固定した比較例2とを比較すると、
比較例2の場合は、酸化鉄の反応性が悪いためスピネル
化反応が起こりにくく、磁性の発現温度が実施例1の場
合よりも100℃高い800℃以上となっている。
Further, comparing Example 1 in which a peroxide is carried and fixed on the surface of α-FeOOH powder and Comparative Example 2 in which a peroxide is carried and fixed on the surface of iron oxide (Fe 2 O 3 ) powder, are compared. ,
In the case of Comparative Example 2, the reactivity of iron oxide is poor, so that the spinelization reaction is unlikely to occur, and the temperature for developing magnetism is 800 ° C. or higher, which is 100 ° C. higher than in the case of Example 1.

【0036】以上の実施例1及び比較例1、2から明ら
かなように、α−FeOOH粉体表面上に、Fe以外の
磁性酸化物を構成するMn及びZn金属の過酸化物を担
持固定した前駆体を用いることで、スピネル化温度の低
温化を図ることができる。
As is clear from Example 1 and Comparative Examples 1 and 2 described above, the Mn and Zn metal peroxides constituting the magnetic oxide other than Fe are supported and fixed on the surface of the α-FeOOH powder. By using the precursor, the spinelization temperature can be lowered.

【0037】次に、本発明の磁性酸化物粉体の製造方法
について、Ni−Zn系フェライトを例としてその実施
の形態を説明する。
Next, an embodiment of the method for producing the magnetic oxide powder of the present invention will be described by taking Ni-Zn ferrite as an example.

【0038】(実施例2)表3に示す組成になるよう
に、水溶性の金属化合物である硝酸ニッケル及び硝酸亜
鉛を正確に秤量分取して純水に溶解し、NaOHを加え
て溶液のpHを5〜6に調整した後、正確に秤量分取し
たα−FeOOH粉体を高速攪拌しながら加えて懸濁液
を作製した。その後、NaOHを加え懸濁液のpHを9
以上に保ちながら、過酸化物を生成させるのに必要な過
酸化水素水をゆっくりと加えてNi及びZnを構成金属
元素とする過酸化物をα−FeOOH粉体表面に沈着さ
せて前駆体沈殿物を作製した。
Example 2 Water-soluble metallic compounds, nickel nitrate and zinc nitrate, were accurately weighed out and dissolved in pure water so that the composition shown in Table 3 was obtained, and NaOH was added to the solution. After adjusting the pH to 5 to 6, accurately weighed and collected α-FeOOH powder was added with high-speed stirring to prepare a suspension. Then add NaOH to adjust the pH of the suspension to 9
While keeping the above, the hydrogen peroxide solution necessary to generate the peroxide is slowly added to deposit a peroxide containing Ni and Zn as constituent metal elements on the α-FeOOH powder surface to form a precursor precipitate. The thing was made.

【0039】その後、得られた前駆体沈殿物の洗浄を繰
り返してNa+ を除去し、熱風乾燥器内で乾燥させた
後、310〜700℃で熱処理を行ないNi−Znフェ
ライトの粉体を得た。
Thereafter, the obtained precursor precipitate was repeatedly washed to remove Na + , dried in a hot air drier, and then heat-treated at 310 to 700 ° C. to obtain Ni—Zn ferrite powder. It was

【0040】[0040]

【表3】 [Table 3]

【0041】次に、これら熱処理済み粉体について、X
線回折(XRD)分析、マグネットによる磁性化の有無
の定性確認を行なった。その結果を表4に示す。
Next, regarding these heat-treated powders, X
Line diffraction (XRD) analysis and qualitative confirmation of the presence or absence of magnetization by a magnet were performed. Table 4 shows the results.

【0042】(比較例3)表3に示す組成になるよう
に、酸化鉄(Fe2 3 )、酸化ニッケル及び酸化亜鉛
の粉体を正確に秤量分取し、混合粉砕した後600〜7
00℃で熱処理を行ないNi−Znフェライトの粉体を
得た。以下、実施例2と同様にX線回折(XRD)分
析、マグネットによる磁性化の有無の定性確認を行なっ
た。その結果を表4に示す。
COMPARATIVE EXAMPLE 3 Iron oxide (Fe 2 O 3 ), nickel oxide and zinc oxide powders were accurately weighed out so as to have the composition shown in Table 3, mixed and pulverized, and then 600 to 7
Heat treatment was performed at 00 ° C. to obtain Ni—Zn ferrite powder. Thereafter, as in Example 2, X-ray diffraction (XRD) analysis and qualitative confirmation of the presence or absence of magnetization by a magnet were performed. Table 4 shows the results.

【0043】(比較例4)表3に示す組成になるよう
に、硝酸ニッケル及び硝酸亜鉛を正確に秤量分取して純
水に溶解し、NaOHを加えて溶液のpHを5〜6に調
整した後、正確に秤量分取した酸化鉄(Fe2 3 )粉
体を高速攪拌しながら加えて懸濁液を作製した。その
後、NaOHを加え懸濁液のpHを9以上に保ちなが
ら、過酸化物を生成させるのに必要な過酸化水素水をゆ
っくりと加えてNi及びZnを構成金属元素とする過酸
化物をFe2 3 粉体表面に沈着させて前駆体沈殿物を
作製した。
Comparative Example 4 Nickel nitrate and zinc nitrate were accurately weighed out and dissolved in pure water so that the composition shown in Table 3 was obtained, and NaOH was added to adjust the pH of the solution to 5-6. After that, an iron oxide (Fe 2 O 3 ) powder that was accurately weighed out was added with high speed stirring to prepare a suspension. Thereafter, while adding NaOH to maintain the pH of the suspension at 9 or more, the hydrogen peroxide solution necessary for producing peroxide is slowly added to convert the peroxide containing Ni and Zn as constituent metal elements to Fe. A precursor precipitate was prepared by depositing it on the surface of 2 O 3 powder.

【0044】その後、得られた前駆体沈殿物の洗浄を繰
り返してNa+ を除去し、熱風乾燥器内で乾燥させた
後、310〜700℃で熱処理を行ないNi−Znフェ
ライトの粉体を得た。以下、実施例2と同様にX線回折
(XRD)分析、マグネットによる磁性化の有無の定性
確認を行なった。その結果を表4に示す。
Thereafter, the obtained precursor precipitate was repeatedly washed to remove Na + , dried in a hot air drier, and then heat-treated at 310 to 700 ° C. to obtain Ni—Zn ferrite powder. It was Thereafter, as in Example 2, X-ray diffraction (XRD) analysis and qualitative confirmation of the presence or absence of magnetization by a magnet were performed. Table 4 shows the results.

【0045】[0045]

【表4】 [Table 4]

【0046】表4に示す通り、実施例2の粉体は、31
0℃の熱処理でスピネル化合物が生成し、450℃の熱
処理で磁性の発現がマグネットにより認められている。
これに対し、比較例3の粉体は、700℃以上で熱処理
しないとスピネル化合物が生成せず、磁性の発現もマグ
ネットにより認められない。又、比較例4の粉体は、4
50℃以上で熱処理しないとスピネル化合物が生成せ
ず、600℃以上で熱処理しないと磁性の発現が認めら
れない。
As shown in Table 4, the powder of Example 2 was 31
It is recognized that the spinel compound is generated by the heat treatment at 0 ° C. and the magnetism is expressed by the heat treatment at 450 ° C.
On the other hand, in the powder of Comparative Example 3, a spinel compound is not formed unless heat treatment is performed at 700 ° C. or higher, and magnetism is not recognized by the magnet. Further, the powder of Comparative Example 4 is 4
The spinel compound is not formed unless heat-treated at 50 ° C. or higher, and the magnetism is not recognized unless heat-treated at 600 ° C. or higher.

【0047】以上の実施例2及び比較例3、4から明ら
かなように、α−FeOOH粉体表面上に、Fe以外の
磁性酸化物を構成するNi及びZn金属の過酸化物を担
持固定した前駆体を用いることで、スピネル化温度の低
温化を図ることができる。
As is clear from Example 2 and Comparative Examples 3 and 4 described above, the peroxides of Ni and Zn metals constituting the magnetic oxides other than Fe are supported and fixed on the surface of the α-FeOOH powder. By using the precursor, the spinelization temperature can be lowered.

【0048】なお、上記発明の実施の形態において、M
e金属イオン源として硝酸マンガン、硝酸ニッケル及び
硝酸亜鉛を用いているが、本発明はこれのみに限定され
るものではない。即ち、MeとしてはFe以外のフェラ
イトを構成する元素であるMn、Ni、Zn、Cu、C
oのうち少なくとも1種類以上を適宜用いることができ
る。又、その化合物の形態としては、硝酸塩などの水溶
性化合物以外に、硝酸、塩酸、硫酸、酢酸などの酸に可
溶なMe化合物を適宜用いることができる。
In the embodiment of the invention described above, M
Although manganese nitrate, nickel nitrate and zinc nitrate are used as the metal ion source, the present invention is not limited thereto. That is, as Me, Mn, Ni, Zn, Cu, and C, which are elements other than Fe, which constitute ferrite
At least one kind of o can be appropriately used. Further, as the form of the compound, in addition to water-soluble compounds such as nitrates, Me compounds soluble in acids such as nitric acid, hydrochloric acid, sulfuric acid and acetic acid can be appropriately used.

【0049】そして、上記発明の実施の形態に示すよう
に、Mn−Zn系フェライトの場合には、700〜90
0℃で熱処理することにより磁性酸化物粉体を得ること
ができ、Ni−Zn系フェライトの場合には、450〜
700℃で磁性酸化物粉体を得ることができる。
Then, as shown in the above embodiment of the present invention, in the case of Mn-Zn type ferrite, it is 700 to 90.
Magnetic oxide powder can be obtained by heat treatment at 0 ° C., and in the case of Ni—Zn type ferrite, 450 to
A magnetic oxide powder can be obtained at 700 ° C.

【0050】又、アルカリ源としてNaOHを用いてい
るが、これのみに限定されるものではない。即ち、KO
H又はLiOHを用いることができる。さらに、Me金
属イオンが可溶性アンミン錯体を形成しない場合には、
NH4 OHを用いることもできる。
Although NaOH is used as the alkali source, it is not limited to this. That is, KO
H or LiOH can be used. Further, if the Me metal ion does not form a soluble ammine complex,
NH 4 OH can also be used.

【0051】[0051]

【発明の効果】以上の説明から明らかなように、本発明
のα−FeOOH粒子表面にFe以外の磁性酸化物を構
成する金属元素の過酸化物を担持固定した前駆体粉体を
熱処理する方法によれば、従来よりも低い熱処理温度で
スピネル化することができる。
As is apparent from the above description, the method of heat-treating the precursor powder in which the peroxide of the metal element constituting the magnetic oxide other than Fe is immobilized on the surface of the α-FeOOH particles of the present invention. According to the method, spinel can be formed at a heat treatment temperature lower than that of the conventional one.

【0052】したがって、熱処理による粉体の凝集を抑
えた、粒径が小さく表面活性が高く易焼結性の磁性酸化
物粉体を得ることができる。
Therefore, it is possible to obtain a magnetic oxide powder having a small particle size, high surface activity, and easy sinterability, in which agglomeration of the powder due to heat treatment is suppressed.

【0053】又、本発明の方法は、金属アルコキシドや
アセチルアセトネート化合物のような高価な原料を用い
ないため、安価に磁性酸化物粉体を得ることができる。
Further, since the method of the present invention does not use expensive raw materials such as metal alkoxides and acetylacetonate compounds, magnetic oxide powder can be obtained at low cost.

【0054】さらに、廃液処理として、従来の蓚酸塩法
の場合に必要であったBODを下げるための曝気処理や
酸性排水の中和処理が必要ない。
Further, as the waste liquid treatment, the aeration treatment for lowering the BOD and the neutralization treatment of the acidic waste water which are required in the conventional oxalate method are not required.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一般式MeFe2 4 (但し、MeはM
n、Ni、Zn、Cu、Coのうち少なくとも1種類の
2価の金属元素)で示される磁性酸化物粉体の製造にお
いて、 α−FeOOH粉体表面に前記Me金属元素の過酸化物
を担持固定した後、熱処理することを特徴とする磁性酸
化物粉体の製造方法。
1. The general formula MeFe 2 O 4 (where Me is M
In manufacturing a magnetic oxide powder represented by at least one divalent metal element of n, Ni, Zn, Cu, and Co), a peroxide of the Me metal element is supported on the surface of the α-FeOOH powder. A method for producing a magnetic oxide powder, which comprises heat-treating after fixing.
【請求項2】 前記熱処理温度は、磁性酸化物粉体がM
n−Zn系フェライトであるときは700〜900℃で
あり、磁性酸化物粉体がNi−Zn系フェライトである
ときは450〜700℃であることを特徴とする請求項
1記載の磁性酸化物粉体の製造方法。
2. The heat treatment temperature is M for the magnetic oxide powder.
The magnetic oxide according to claim 1, wherein the temperature is 700 to 900 ° C. when it is an n-Zn ferrite, and the temperature is 450 to 700 ° C. when the magnetic oxide powder is a Ni-Zn ferrite. Powder manufacturing method.
【請求項3】 Me金属イオンを含む溶液にα−FeO
OH粉体を分散させたスラリー中に、アルカリ及び過酸
化水素を加えて前記Me金属の過酸化物を生成させ、該
過酸化物を前記α−FeOOH粉体表面に担持固定させ
ることを特徴とする請求項1記載の磁性酸化物粉体の製
造方法。
3. A solution containing Me metal ions is provided with α-FeO 2.
In a slurry in which OH powder is dispersed, alkali and hydrogen peroxide are added to generate a peroxide of the Me metal, and the peroxide is supported and fixed on the surface of the α-FeOOH powder. The method for producing a magnetic oxide powder according to claim 1.
【請求項4】 前記Me金属イオン源は、水溶性のMe
金属化合物又は硝酸、塩酸、硫酸及び酢酸のうちいずれ
かに可溶なMe金属化合物であることを特徴とする請求
項3記載の磁性酸化物粉体の製造方法。
4. The Me metal ion source is water-soluble Me.
4. The method for producing magnetic oxide powder according to claim 3, wherein the metal compound is a metal compound soluble in any one of nitric acid, hydrochloric acid, sulfuric acid and acetic acid.
【請求項5】 前記アルカリ源は、NaOH、KOH及
びLiOHのうち少なくとも1種類であることを特徴と
する請求項3記載の磁性酸化物粉体の製造方法。
5. The method for producing a magnetic oxide powder according to claim 3, wherein the alkali source is at least one of NaOH, KOH, and LiOH.
JP7295635A 1995-11-14 1995-11-14 Production of magnetic oxide powder Pending JPH09142848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7295635A JPH09142848A (en) 1995-11-14 1995-11-14 Production of magnetic oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7295635A JPH09142848A (en) 1995-11-14 1995-11-14 Production of magnetic oxide powder

Publications (1)

Publication Number Publication Date
JPH09142848A true JPH09142848A (en) 1997-06-03

Family

ID=17823207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7295635A Pending JPH09142848A (en) 1995-11-14 1995-11-14 Production of magnetic oxide powder

Country Status (1)

Country Link
JP (1) JPH09142848A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104743611A (en) * 2015-03-20 2015-07-01 沈阳化工大学 Method for preparing magnetic magnesium ferrite nanorods by taking basic iron oxide nanorods as templates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104743611A (en) * 2015-03-20 2015-07-01 沈阳化工大学 Method for preparing magnetic magnesium ferrite nanorods by taking basic iron oxide nanorods as templates

Similar Documents

Publication Publication Date Title
JP5105503B2 (en) ε Iron oxide production method
JP4992003B2 (en) Method for producing metal oxide fine particles
EP0361349B1 (en) Magnetic fine particles of epsilon' iron carbide
JP4737161B2 (en) Rare earth-iron-nitrogen based magnetic powder and method for producing the same
EP0127427A2 (en) Production of microcrystralline ferrimagnetic spinels
JPS59182235A (en) Manufacture of fine ferrimagnetic spinel
JPH09142848A (en) Production of magnetic oxide powder
US5626788A (en) Production of magnetic oxide powder
JP3289358B2 (en) Method for producing magnetic oxide powder
JP2547007B2 (en) Method for producing perovskite type oxide fine powder
JP3638654B2 (en) Method for producing ferrite powder
Sanad et al. Cost-effective integrated strategy for the fabrication of hard-magnet barium hexaferrite powders from low-grade barite ore
JP4780856B2 (en) Granular magnetite particles and method for producing the same
KR100295204B1 (en) Method for producing magnesium-ferrite composite powder using hydrothermal synthesis
JP2008247618A (en) Method for manufacturing ferrite powder and ferrite powder
JPH0722230A (en) Production of magnetic oxide powder
RU2801852C1 (en) Method for producing supermagnetic nickel ferrite nanoparticles
CN116692951B (en) Preparation method of spinel metal oxide magnetic material
JP6946873B2 (en) Manufacturing method of magnetoplumbite type ferrite
JPH06654B2 (en) M DOWN 3 ▼ O DOWN 4 ▼ Manufacturing method of powder
JPH10144513A (en) Manufacture of oriented ferrite sintered body
JPH06215924A (en) Manufacture of magnetic oxide fine particles
JPH0366255B2 (en)
JP3282264B2 (en) Method for producing magnetic oxide powder
KR20020083651A (en) Preparation of ZnO Powder by Pyrophoric Synthesis Method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060815