JPH09142572A - Fiber reinforced resin container - Google Patents

Fiber reinforced resin container

Info

Publication number
JPH09142572A
JPH09142572A JP7319666A JP31966695A JPH09142572A JP H09142572 A JPH09142572 A JP H09142572A JP 7319666 A JP7319666 A JP 7319666A JP 31966695 A JP31966695 A JP 31966695A JP H09142572 A JPH09142572 A JP H09142572A
Authority
JP
Japan
Prior art keywords
container
liquid
fiber
sensor
inner layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7319666A
Other languages
Japanese (ja)
Other versions
JP3647528B2 (en
Inventor
Hiroshi Hagiwara
洋 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP31966695A priority Critical patent/JP3647528B2/en
Publication of JPH09142572A publication Critical patent/JPH09142572A/en
Application granted granted Critical
Publication of JP3647528B2 publication Critical patent/JP3647528B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PROBLEM TO BE SOLVED: To dispense with the change of an ancillary electric circuit and reduce the container cost and meet the replacing demand against existing containers, by achieving the light weight container by use of electric conductive reinforcing fiber like carbon fiber and at the same time, keeping the linear characteristic of an electrostatic capacity type liquid volume sensor. SOLUTION: This container is provided with an inner layer container 1 and a liquid volume sensor 20 constituted of a sensor electrode plate 3 fitted to the outer peripheral side of the inner container 1 and sensor terminal 10A getting in contact with the liquid in the container. And the container is reinforced by winding up carbon fiber 5, 6, 8, 9 on the outer periphery. The liquid volume in the inside can be informed on the basis of the electrostatic capacity corresponding to the liquid volume between the liquid 10 contained in the inner layer container 1 and the sensor electrode plate 3. The sensor terminal 10A and the innermost carbon fiber 5 are connected to each other in short circuit.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、主として航空機や
船舶にて液体等の貯蔵用容器として利用される軽量で高
強度の容器、特に繊維強化合成樹脂を用いた容器の改良
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lightweight and high-strength container mainly used as a container for storing liquids in aircrafts and ships, and more particularly to an improvement in a container using a fiber reinforced synthetic resin.

【0002】[0002]

【従来の技術】航空機や船舶において液体等貯蔵のため
の容器としては、軽量・高強度の要求を満たすべく、従
来より合成樹脂製の容器が利用されている。例えば特開
昭57-114479 号公報には熱可塑性合成樹脂の内層をハニ
カムコアを補強層として一体に接着した構造の容器が開
示されている。また、強度を更に高めるため補強繊維を
外周に巻回することも行われており、例えば特開昭61-1
30036 号公報や特開昭64-35174号公報にも強化のためワ
インディングが施された容器が開示されている。こうし
た構造については後に例示する。
2. Description of the Related Art As containers for storing liquids and the like in aircrafts and ships, containers made of synthetic resin have hitherto been used in order to satisfy the requirements of light weight and high strength. For example, JP-A-57-114479 discloses a container having a structure in which an inner layer of a thermoplastic synthetic resin is integrally bonded with a honeycomb core as a reinforcing layer. Further, in order to further increase the strength, it is also possible to wind a reinforcing fiber around the outer periphery, for example, JP-A-61-1.
Japanese Patent Laid-Open No. 30036 and Japanese Patent Laid-Open No. 64-35174 also disclose a container which is wound for strengthening. This structure will be exemplified later.

【0003】ところで、こうした容器内の貯蔵液体(多
くの場合飲料水)の残量を知るための手段が各種こうじ
られているが、こうした方法の一つに、ある程度の導電
度(一般の飲料水程度で可)を持った貯蔵液体の場合に
適用される静電容量式のものがある。例えば、特開平6-
26907 号公報には、対向して固定された2枚の長尺状の
電極板を流体中に垂下・保持して、流体量の増減に応じ
て両電極板間に介在する流体層の増減に応じて変化する
前記両電極板間の静電容量から流体量を知るようにした
「レベル検出装置」が開示されている。図5は該提案に
て開示されている電気回路のブロック図で(説明省
略)、同図中で(6´) が上述の変動する静電容量に相当
する。なお、この例のように、一定周波数、一定振幅の
交流信号波を印加し、応答レベルから静電容量(従っ
て、液量)を知る回路の他にも、静電容量を発振回路の
発振条件として回路に接続し発振周波数変化より液量を
知る回路構成も一般に知られている。
By the way, there are various means for knowing the remaining amount of the stored liquid (in most cases, drinking water) in such a container, and one of such methods is to obtain a certain degree of conductivity (general drinking water). There is a capacitance type that is applied in the case of a stored liquid having a certain degree. For example, Japanese Patent Laid-Open No. 6-
In Japanese Patent No. 26907, two long electrode plates fixed so as to face each other are suspended and held in a fluid to increase or decrease the fluid layer interposed between the two electrode plates according to the increase or decrease of the fluid amount. A "level detection device" is disclosed in which the amount of fluid is known from the electrostatic capacitance between the two electrode plates that changes accordingly. FIG. 5 is a block diagram of the electric circuit disclosed in the proposal (the explanation is omitted), and (6 ′) in the figure corresponds to the above-mentioned fluctuating capacitance. Note that, as in this example, in addition to a circuit in which an AC signal wave having a constant frequency and a constant amplitude is applied and the capacitance (hence, the amount of liquid) is known from the response level, the capacitance can be determined by the oscillation condition of the oscillation circuit. A circuit configuration in which the liquid amount is known from the change in the oscillation frequency by connecting to the circuit is generally known.

【0004】残液量を静電容量変化として取り出す液量
センサ部の構成としては、図2〜図4に示すような構
成、即ち、当該液体を一方の電極とし、容器外周側にて
液体の外表面に対向配置された電極板とで形成されるキ
ャパシタの静電容量を監視し、液体量の増減に応じて増
減する対向面積の変化を静電容量の変化として検出し液
体の残量を知るようにした構成が知られており、横置き
使用の円筒状容器には広く適用されている。本発明も、
このような形態の液量センサ部を備えた容器構造の改良
に関するもので、特に液体残量検出精度の向上を目的と
している。
The structure of the liquid amount sensor unit for taking out the remaining liquid amount as a change in capacitance is as shown in FIGS. 2 to 4, that is, the liquid is used as one electrode and the liquid on the outer peripheral side of the container is The capacitance of the capacitor formed by the electrode plate facing the outer surface is monitored, and the change in the facing area that increases or decreases according to the increase or decrease in the amount of liquid is detected as a change in the capacitance to determine the remaining amount of liquid. Known configurations are known and are widely applied to cylindrical containers for horizontal use. The present invention also
The present invention relates to an improvement in a container structure provided with a liquid amount sensor unit having such a form, and is particularly aimed at improving the liquid remaining amount detection accuracy.

【0005】以下、図2〜図4に示す従来のこの種容器
についてその構成を説明する。図において、符号(1)
は、熱可塑性合成樹脂をインフレ−ト成形した厚み0.5
程度の薄膜中空の内層容器(インナーライナー)であ
る。この内層容器(1) の外周には繊維強化合成樹脂(例
えば、エポキシ含浸ガラス繊維布)でなる補強層(4) が
設けられている。ここで、両者の間で所定部位には液量
センサ部(20)を構成している網状で所定形状の電極層
(3) (メッシュ)が両面に絶縁フィルム(2,2) を配して
介在させてありキャパシタ(C1)を構成する一方の電極と
している。
The structure of the conventional container of this type shown in FIGS. 2 to 4 will be described below. In the figure, reference numeral (1)
Is a thermoplastic synthetic resin inflation molded thickness 0.5
It is a thin film hollow inner layer container (inner liner). A reinforcing layer (4) made of fiber reinforced synthetic resin (eg, epoxy impregnated glass fiber cloth) is provided on the outer periphery of the inner layer container (1). Here, an electrode layer having a predetermined mesh shape that constitutes a liquid quantity sensor unit (20) at a predetermined portion between the two.
(3) The (mesh) has insulating films (2, 2) on both sides and is interposed to serve as one electrode forming the capacitor (C1).

【0006】即ち、図2の側面図に示すように容器の側
筒面片側に高さ方向に中央部では幅が広く上下に向かっ
て幅が狭くなった木の葉状の形状をした電極層(3) が設
けられていて、電極(3) の形状は容器内部の液容積と液
面以下になる電極面積が比例する様に形成されている。
上記電極層(3) を外部と接続するために一端を該電極層
(3) に接続固定した棒状のセンサ端子(3A)が他端を外方
に突出して設けられている。(2A)は、センサ端子(3A)用
の絶縁チューブである。
That is, as shown in the side view of FIG. 2, a leaf-shaped electrode layer (3) is formed on one side of the side cylindrical surface of the container in which the width is wide in the center in the height direction and narrows in the vertical direction. ) Is provided, and the shape of the electrode (3) is formed so that the liquid volume inside the container and the electrode area below the liquid surface are proportional.
In order to connect the electrode layer (3) to the outside, one end of the electrode layer (3) is
A rod-shaped sensor terminal (3A) connected and fixed to (3) is provided with the other end protruding outward. (2A) is an insulating tube for the sensor terminal (3A).

【0007】キャパシタ(C1)の他方の電極に相当するの
は、容器内部に貯留される飲料水等の液体であってこの
内部液体を外部に電気的に接続するため、容器底面には
センサ端子(10A) が設けられている。このセンサ端子(1
0A) は導電材料でなり、一端が内層容器(1) 内部に収容
される液体(10)に接触可能に容器底部から内方に突出
し、また他端が容器外部に突出した状態で容器に固着さ
れている。上述構成により、キャパシタ(C1)の静電容量
(c1)は、内部液体の収容時高さに応じて増減し、しかも
図4(b) のグラフに示すように残液量に正比例する。
The other electrode of the capacitor (C1) corresponds to a liquid such as drinking water stored inside the container. Since this internal liquid is electrically connected to the outside, a sensor terminal is provided on the bottom of the container. (10A) is provided. This sensor terminal (1
(0A) is made of a conductive material and is fixed to the container with one end protruding inward from the bottom of the container so that it can contact the liquid (10) contained in the inner container (1) and the other end protruding outside the container. Has been done. With the above configuration, the capacitance of the capacitor (C1)
(c1) increases or decreases according to the height of the contained internal liquid, and is directly proportional to the residual liquid amount as shown in the graph of FIG. 4 (b).

【0008】こうして電極層(3) を介在させて巻回され
た補強層(4) の外周には、更に容器の剛性を高めるため
にフィラメント(5:補強繊維)がフープ巻きに、またフ
ィラメント(6) がヘリカル巻きに連続的に密に巻回され
ており、更にFRP等の厚さ4mm程度の非金属薄板を用
いた多数の中空六角柱を接着して蜂の巣状に形成したハ
ニカムコア(7) が巻装され、更にフィラメント(8)をヘ
リカル巻きに、またフィラメント(9) をフープ巻きに巻
回した後、全体を加熱・冷却することにより各部を固化
させて例示の繊維補強樹脂製容器が完成する。
A filament (5: reinforcing fiber) is wound around the outer circumference of the reinforcing layer (4) with the electrode layer (3) interposed therebetween in order to further enhance the rigidity of the container, and a filament (5: reinforcing fiber) 6) is continuously and densely wound in a helical winding, and a honeycomb core (7) formed by bonding a number of hollow hexagonal columns using a non-metallic thin plate with a thickness of about 4 mm such as FRP to form a honeycomb shape (7 ) Is further wound, the filament (8) is wound in a helical winding, and the filament (9) is wound in a hoop winding, and then the whole is heated and cooled to solidify each part, and the fiber-reinforced resin container shown as an example. Is completed.

【0009】ウォータータンク等に用いる上述のフィラ
メントワインド製法による容器においては、従来は補強
用のフィラメントにガラス繊維等の導電性が低いものが
使われており、前述した液量センサ部の静電容量(c1)を
例えば図5に示した回路その他の適宜回路(21)にて電圧
に変換するのみで内部液量に対応した直線的電気出力が
得られていた。
In the above-mentioned filament winding method used for a water tank or the like, conventionally, a reinforcing filament having a low conductivity such as glass fiber is used. A linear electric output corresponding to the amount of internal liquid was obtained only by converting (c1) into a voltage by the circuit shown in FIG. 5 or other appropriate circuit (21).

【0010】[0010]

【発明が解決しようとする課題】ところで、上述した補
強用フィラメントとしてより軽量で強度の高いカーボン
繊維を使用することが考えられるがこの場合には既述し
た液量センサ部の機能に支障が生じてしまう。即ち、カ
ーボン繊維は、導電性が良好なため巻回されたカーボン
繊維層自体が一種の電極板として機能し、内部の液体と
の間に新たにキャパシタ要素が形成されてしまう。図4
(a) では、破線で示したように内側のカーボン繊維(フ
ィラメント(5) )と内部の液体(10)の最外表面との間で
キャパシタ(C2)が形成され、またカーボン繊維(5) と前
出の電極層(3) の間にもキャパシタ(C3)が形成される。
結局、両キャパシタ(C2,C3) の直列接続されたものが、
前述した容量測定用に設定さられたキャパシタ(C1)に並
列に接続されてしまう。
By the way, it is conceivable to use a lighter and stronger carbon fiber as the above-mentioned reinforcing filament, but in this case, the function of the liquid amount sensor portion described above is hindered. Will end up. That is, since the carbon fiber has good conductivity, the wound carbon fiber layer itself functions as a kind of electrode plate, and a new capacitor element is formed between the carbon fiber and the liquid inside. FIG.
In (a), a capacitor (C2) is formed between the inner carbon fiber (filament (5)) and the outermost surface of the inner liquid (10) as shown by the broken line, and the carbon fiber (5) A capacitor (C3) is also formed between the electrode layer (3) and the electrode layer (3).
After all, what connected both capacitors (C2, C3) in series is
It will be connected in parallel with the capacitor (C1) that has been set up for capacitance measurement.

【0011】ここで前記両キャパシタ(C2,C3) の合成静
電容量値(c2・c3/(c2+c3))も、内部液体の増加に
対して変化するが、その変化は図4(c) のグラフに例示
する如くに直線的な変化では無い。カーボン繊維をフィ
ラメント(5) に用いた場合には上述の全キャパシタ要素
を合成した総合静電容量値(ct´) も図4(d) のグラフ
に示すように直線性が無いものとなってしまう。このこ
とは、従来通りの後続回路をそのまま接続した場合に
は、真の液体残量と測定手段の指示値がずれてしまい正
確な残液量を知ることが出来ないことを意味する。
Here, the combined capacitance value (c2 / c3 / (c2 + c3)) of both capacitors (C2, C3) also changes with the increase of the internal liquid, but the change is as shown in FIG. 4 (c). It is not a linear change as illustrated in the graph. When carbon fiber is used for the filament (5), the total capacitance value (ct ') obtained by combining all the above capacitor elements also has no linearity as shown in the graph of Fig. 4 (d). I will end up. This means that if the conventional subsequent circuit is connected as it is, the true residual liquid amount and the indicated value of the measuring means are deviated from each other, and the accurate residual liquid amount cannot be known.

【0012】この対応として、上述の静電容量(ct´)
の不規則な変化曲線を電気的に補正する補正回路を設け
ることも考えられるが、回路が格段に複雑になりコスト
が増加してしまい好ましくない。また、従前の繊維補強
樹脂製容器との交換用途には付帯電気回路も同時に替え
ねばならなくなるため用い難い。更に、補正回路は繊維
補強樹脂製容器の容量や形状毎に違った補正特性を付加
しなければならず製造工程も複雑化してしまう。
As a countermeasure, the above-mentioned capacitance (ct ')
Although it is conceivable to provide a correction circuit for electrically correcting the irregular change curve of 1), it is not preferable because the circuit becomes significantly complicated and the cost increases. In addition, it is difficult to use for replacing the conventional fiber-reinforced resin container because the incidental electric circuit must be changed at the same time. Furthermore, the correction circuit must add different correction characteristics depending on the volume and shape of the fiber-reinforced resin container, which complicates the manufacturing process.

【0013】本発明は、以上の実状を考慮してなされた
もので、導電性の高いカーボン繊維等を補強用フィラメ
ントとして用いながらも、静電容量形の従来の液体容量
検出用の回路をそのまま用いることができるように巧妙
に対処した繊維補強樹脂製容器を新規に提案することを
目的としてなされたもので、これにより付帯回路の変更
無しにいっそうの軽量化と高剛性化を図った繊維補強樹
脂製容器が提供可能になる。
The present invention has been made in consideration of the above circumstances, and the conventional capacitance type circuit for detecting liquid capacity is used as it is, while using highly conductive carbon fiber or the like as a reinforcing filament. The purpose was to propose a new fiber-reinforced resin container that has been carefully handled so that it can be used.This enables fiber-reinforced plastics to be made even lighter and more rigid without changing the accessory circuit. A resin container can be provided.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するた
め、本発明では内層容器(1) と、該内層容器(1) の外周
側に設けられたセンサ極板(3) と、容器内部の液体に接
するセンサ端子(10A) で構成される液量センサ部(20)を
具備し、外周にカーボン繊維(5,6,8,9) を巻回して補強
され、内層容器(1) の内部に貯蔵される液体(10)と前記
センサ極板(3) 間の液量に対応する静電容量に基づき内
部の液体容量を知るようにした繊維補強樹脂性液体容器
において、前記センサ端子(10A) と前記カーボン繊維中
で最内方のカーボン繊維(5) とを短絡させた構成とす
る。
In order to achieve the above object, in the present invention, an inner layer container (1), a sensor electrode plate (3) provided on the outer peripheral side of the inner layer container (1), and It is equipped with a liquid volume sensor part (20) consisting of a sensor terminal (10A) that comes into contact with liquid, and is reinforced by winding carbon fiber (5,6,8,9) around the outer periphery of the inner container (1) In the fiber-reinforced resin liquid container in which the internal liquid volume is known based on the electrostatic capacitance corresponding to the liquid volume between the liquid stored in (10) and the sensor electrode plate (3), the sensor terminal (10A ) And the innermost carbon fiber (5) among the carbon fibers are short-circuited.

【0015】また、熱可塑性合成樹脂からなる薄膜中空
体の内層容器(1) と、該内層容器(1) 内部に収容される
液体(10)に一端が接触可能に配置され他端は外部まで引
き出された導電材料でなるセンサ端子(10A) と,前記内
層容器(1) の外周の所定部位に絶縁体(2,2) に挟んで介
在させた所定形状の導体でなる液量測定用のセンサ極板
(3) と、更に外方に導電性の補強繊維(5,6,8,9) を巻回
して形成した強化合成樹脂からなる補強層を配し、加熱
・冷却により全体を固化させてなる繊維補強樹脂製容器
において、上記補強繊維(5,6) の巻回過程中に短絡端子
(11)を介在させて補強繊維(6) を巻回することで前記短
絡端子(11)と最内方の補強繊維(5) とを接触させ且つ前
記短絡端子(11)の先端部(11a) を外部に突出させて固定
保持し、前記短絡端子(11)と前記センサ端子(10A) とを
導電接続した構成とする。
Further, one end of the inner layer container (1) of a thin film hollow body made of a thermoplastic synthetic resin and the liquid (10) contained in the inner layer container (1) are arranged so as to be in contact with the other end to the outside. A sensor terminal (10A) made of a conductive material that is drawn out and a conductor of a predetermined shape that is sandwiched between insulators (2, 2) at a predetermined location on the outer periphery of the inner layer container (1) for measuring liquid volume. Sensor plate
(3) and a reinforcing layer made of reinforced synthetic resin formed by winding conductive reinforcing fibers (5, 6, 8, 9) on the outside, and solidifying the whole by heating and cooling. In a fiber-reinforced resin container, short-circuit terminals may be placed during the winding process of the above-mentioned reinforcing fibers (5,6).
By winding the reinforcing fiber (6) with the interposition of (11), the short-circuit terminal (11) is brought into contact with the innermost reinforcing fiber (5) and the tip portion (11a) of the short-circuit terminal (11) is ) Is projected to the outside and fixedly held, and the short-circuit terminal (11) and the sensor terminal (10A) are conductively connected.

【0016】[0016]

【実施例】以下、本発明の繊維補強樹脂製容器について
実施例に基づき添付図面を用いて更に詳しく説明する。
図1の(a) 〜(e) の各図は、本発明の一実施例に係る図
で、(a) は実施例容器(30A) の側面図、(b) はカーボン
繊維(6) を外部と電気接続(短絡)するための短絡端子
(11)の取り付け部分の拡大断面図、(c) は、液体容量測
定回路各部の接続を示す図、(d) はその等価回路図、
(e) は実施例における静電容量変化及び電気出力を示す
グラフである。
EXAMPLES The fiber-reinforced resin container of the present invention will be described below in more detail with reference to the accompanying drawings based on examples.
1 (a) to 1 (e) are views according to an embodiment of the present invention, in which (a) is a side view of an embodiment container (30A) and (b) is a carbon fiber (6). Short-circuit terminal for electrical connection (short-circuit) with the outside
(11) Enlarged cross-sectional view of the mounting part, (c) is a diagram showing the connection of each part of the liquid capacity measurement circuit, (d) is its equivalent circuit diagram,
(e) is a graph showing capacitance change and electric output in Examples.

【0017】実施例の主要構成は既に図2及び図3で示
した繊維補強樹脂製容器(30)と同一であり、短絡端子(1
1)が付加されている点のみが異なっている。以下では、
重複部分の説明は省略もしくは簡略に留める。図におい
て、符号(1) は内層容器(インナーライナー)で、その
外周に設けられた(4) は繊維強化合成樹脂製の補強層、
(3) は両者の間に設けられ静電容量式の液量センサ部(2
0)を構成する一方の電極となる網状で所定形状の電極層
で両面には絶縁フィルム(2,2) を配してある。電極層
(3) の形状は、既述したと全く同様に容器の側筒面片側
に高さ方向に中央部では幅が広く上下に向かって幅が狭
くなった木の葉状の形状をしていて、電極(3) の形状は
容器内部の液容積と液面以下になる電極面積が比例する
様に形成されている。
The main construction of the embodiment is the same as that of the fiber-reinforced resin container (30) shown in FIGS. 2 and 3, and the short-circuit terminal (1
The only difference is that 1) is added. Below,
The description of the overlapping parts will be omitted or briefly described. In the figure, reference numeral (1) is an inner layer container (inner liner), and (4) provided on the outer periphery thereof is a reinforcing layer made of fiber reinforced synthetic resin,
(3) is a capacitance type liquid volume sensor section (2
The insulating film (2, 2) is arranged on both sides of the mesh-shaped electrode layer having a predetermined shape which serves as one of the electrodes constituting (0). Electrode layer
The shape of (3) is exactly the same as that described above, and it has a leaf-like shape with one side of the container on one side of the side wall that is wide in the center in the height direction and narrows in the vertical direction. The shape of (3) is formed so that the liquid volume inside the container is proportional to the electrode area below the liquid surface.

【0018】符号(3A)は、上記電極層(3) を外部と接続
するための棒状のセンサ端子で、一端は電極層(3) に接
続固定され他端は外方まで突出して設けられている。(2
A)は、センサ端子(3A)用の絶縁チューブである。容器下
面の(10A) は、キャパシタ(C1)の他方の電極(相当)と
なる容器内部に貯留される飲料水等の内部液体を電気的
に外部に接続するためのセンサ端子で導電材料でなり、
一端は内層容器(1) 内部に収容される液体(10)に接触可
能に内方に突出し、他端は容器外部に突出して固着され
ている。これらの構成は、従来のものと同一でキャパシ
タ(C1)の静電容量(c1)は、内部の液量と直線関係になる
(図1(e) 参照)。
Reference numeral (3A) is a rod-shaped sensor terminal for connecting the electrode layer (3) to the outside, one end of which is connected and fixed to the electrode layer (3) and the other end of which is provided so as to project outward. There is. (2
A) is an insulating tube for the sensor terminal (3A). (10A) on the bottom surface of the container is a sensor terminal for electrically connecting the internal liquid such as drinking water stored inside the container, which is the other electrode (equivalent) of the capacitor (C1) to the outside, and is made of a conductive material. ,
One end projects inward so that it can contact the liquid (10) contained in the inner layer container (1), and the other end projects and is fixed to the outside of the container. These configurations are the same as the conventional ones, and the capacitance (c1) of the capacitor (C1) has a linear relationship with the internal liquid amount (see FIG. 1 (e)).

【0019】こうして、電極層(3) を部分的に介在させ
て巻回された補強層(4) の外周には、容器の剛性を高め
るためにフィラメントとしてのカーボン繊維(5) が巻回
(フープ巻き)されその上からカーボン繊維(6) が短絡
端子(11)の基部を巻き込んで巻回されている。この短絡
端子(11)は、銅その他の導電材料でなり一端は基部とし
て円板状の台座に形成され中央部からはスタッドが突出
した形状であり、カーボン繊維(6) のフィラメントワイ
ンド(巻回)過程では台座底面をカーボン繊維(5) に着
けたままカーボン繊維(6) が台座上面を通るように巻回
がされる。カーボン繊維(6) の巻回はヘリカル巻きによ
る。
In this way, the carbon fiber (5) as a filament is wound around the outer periphery of the reinforcing layer (4) wound with the electrode layer (3) partially interposed (in order to increase the rigidity of the container). The carbon fiber (6) is wound around the base of the short-circuit terminal (11) from above. This short-circuit terminal (11) is made of copper or other conductive material and has one end formed on a disk-shaped pedestal with a stud protruding from the center, and a carbon fiber (6) filament wind (winding). In the process), the carbon fiber (6) is wound so that the carbon fiber (6) passes through the upper surface of the base while the bottom surface of the base is attached to the carbon fiber (5). The carbon fiber (6) is wound by helical winding.

【0020】このカーボン繊維(6) は、容器を補強する
と共に容器中央部に位置させた短絡端子(11)を固定する
役目も兼ねさせており短絡端子(11)の台座部を巻き込む
ことで強固に固定すると同時に互いを確実に電気的に接
続する。このように短絡端子(11)を内側に巻き込む製法
により従来と略同様の工程で短絡端子(11)の配置固定が
行え、フィラメント(6) は分断されることも無いので容
器の剛性低下も無く、短絡端子(11)の取り付けは強固で
あり電気接続は確実になされる。
This carbon fiber (6) not only reinforces the container, but also serves to fix the short-circuit terminal (11) located in the center of the container. Secure to each other and at the same time securely connect to each other. By this method of winding the short-circuit terminal (11) inside, the short-circuit terminal (11) can be arranged and fixed in the same process as in the past, and since the filament (6) is not divided, there is no decrease in the rigidity of the container. , The mounting of the short-circuit terminal (11) is firm and the electric connection is surely made.

【0021】以降の工程については、従来と同様で、更
にFRP製のハニカムコア(7) を巻装し、再度カーボン
繊維(8) (ヘリカル巻き) 及びカーボン繊維(9) (フー
プ巻き)を巻回した後、全体を加熱・冷却することによ
り各部を固化させた後、上記短絡端子(11)と前記センサ
端子(3A)とをハーネス等で短絡して繊維補強樹脂製容器
(30A) が完成する。この容器では図1(d) の等価回路図
にて示すように、先の説明においては容器内液体量に応
じて変化していた静電容量値(C2)が、短絡により無効と
なり、センサ端子(3A)とセンサ端子(10A) から見た(合
成)静電容量(Ct)は、常に一定値の静電容量(C3)と液体
残量に応じて直線的に変化する静電容量値(C1)の並列回
路となり、図1(e) に示されるように直線性が保たれる
から補正は定数の減算のみとなり補正回路は極めて簡単
なもので良い。指針式の読み取り回路であれば、単に目
盛り標記の変更のみで済む。
The subsequent steps are the same as in the conventional method, and the honeycomb core (7) made of FRP is further wound, and the carbon fiber (8) (helical winding) and the carbon fiber (9) (hoop winding) are wound again. After turning, after solidifying each part by heating and cooling the whole, the short-circuit terminal (11) and the sensor terminal (3A) are short-circuited with a harness or the like to make a fiber-reinforced resin container
(30A) is completed. In this container, as shown in the equivalent circuit diagram of Fig. 1 (d), the capacitance value (C2), which had changed according to the liquid amount in the container in the previous explanation, became invalid due to a short circuit, and the sensor terminal The (combined) capacitance (Ct) seen from (3A) and the sensor terminal (10A) is always a constant capacitance (C3) and a capacitance value (linearly changing according to the remaining amount of liquid ( Since it is a parallel circuit of C1) and the linearity is maintained as shown in FIG. 1 (e), the correction is only a subtraction of a constant, and the correction circuit can be very simple. If it is a pointer type reading circuit, it is only necessary to change the scale marking.

【0022】上述のように、実施例の繊維補強樹脂製容
器(30A) は、導電性の強化用フィラメント(炭素繊維)
を巻回しているが、内部液体残量を検出するための液量
センサ部の静電容量値が残液量に対応し直線的に変化す
るから、補正回路は不要若しくは極めて簡単なもので済
む。従って、ガラス繊維等の絶縁性の強化用フィラメン
トを用いた容器に置き替えて軽量化を図っても付帯回路
の変更が不要もしくは軽微で済み低価格化につながる。
また、絶縁性フィラメントを用いた既存容器の補修・代
替え需要にもそのまま使うことができるという利点もあ
る。
As described above, the fiber-reinforced resin container (30A) of the embodiment is a conductive reinforcing filament (carbon fiber).
However, since the capacitance value of the liquid amount sensor unit for detecting the remaining amount of internal liquid changes linearly corresponding to the remaining amount of liquid, a correction circuit is unnecessary or extremely simple. . Therefore, even if the container is replaced with a container using an insulating reinforcing filament such as glass fiber to reduce the weight, the incidental circuit does not need to be changed or is slight, resulting in cost reduction.
In addition, there is an advantage that it can be used as it is for the repair / replacement demand of the existing container using the insulating filament.

【0023】なお、実施例においては、短絡端子(11)は
側面中央部に設けたが、最内層のカーボン繊維により巻
き込み・接触が可能であれば容器のどの部位に設けても
良い。本発明にては、要は、容器内部の液体に接するセ
ンサ端子(10A) と、内層容器(1) の外周に設けられたセ
ンサ極板(3) より更に外周側に最初に巻回されたカーボ
ン繊維等の導電性の容器補強用フィラメント(5) とを短
絡させた構造となっていれば足りる。補強繊維の巻き方
等は、問わず容器が必要とされる性能に応じて適宜採用
すれば良い。なお、導電性のある容器補強用フィラメン
トとしてはカーボン繊維が好適なものとして挙げられる
が、その他の複合材料でも導電性が高く既述液量センサ
部の静電容量に一定以上の影響を与えるものに対しては
本発明は同様に有効である。なお、一部の粉体について
は上述容器に収容してその残量を静電容量式で知ること
ができる。
In the embodiment, the short-circuit terminal (11) is provided at the center of the side surface, but it may be provided at any part of the container as long as the innermost layer of carbon fiber allows winding and contact. In the present invention, the point is that the sensor terminal (10A) in contact with the liquid inside the container and the sensor electrode plate (3) provided on the outer periphery of the inner layer container (1) are first wound further on the outer peripheral side. It is sufficient if the structure is such that the conductive container reinforcing filament (5) such as carbon fiber is short-circuited. Regardless of how the reinforcing fiber is wound, it may be appropriately adopted depending on the required performance of the container. Carbon fiber is preferably used as the conductive container reinforcing filament, but other composite materials are also highly conductive and have a certain degree or more of influence on the capacitance of the liquid amount sensor section. The present invention is similarly effective for the above. It should be noted that some powders can be stored in the above-mentioned container and the remaining amount can be known by a capacitance type.

【0024】[0024]

【発明の効果】本発明によれば、内層容器と、該内層容
器の外周側に設けられたセンサ極板と、容器内部の液体
に接するセンサ端子で構成される液量センサ部を具備し
て外周にカーボン繊維を巻回して補強され、内層容器の
内部に貯蔵される液体と前記センサ極板間の液量に対応
する静電容量に基づき内部の液体容量を知るようにした
繊維補強樹脂性液体容器において、前記センサ端子と前
記カーボン繊維中で最内方のカーボン繊維とを短絡させ
た構成としたので、導電性のカーボン繊維を補強用に用
いて軽量化を達成しながら、同時に本来なら新たに形成
され液量センサ部の特性に悪影響を与えるキャパシタを
無効化させてセンサ部の直線性を保つことができる。こ
れは、付帯電気回路の変更を無用にし、容器の低価格化
を可能とし、また、従来の容器との置き換え需要も可能
となる顕著な効果を奏する。
According to the present invention, an inner layer container, a sensor electrode plate provided on the outer peripheral side of the inner layer container, and a liquid amount sensor section composed of a sensor terminal in contact with the liquid inside the container are provided. Fiber reinforced resin that is reinforced by winding carbon fiber around the outer circumference and that knows the internal liquid volume based on the electrostatic capacity corresponding to the liquid volume between the liquid stored inside the inner layer container and the sensor electrode plate. In the liquid container, since the sensor terminal and the innermost carbon fiber among the carbon fibers are short-circuited, conductive carbon fibers are used for reinforcement to achieve weight reduction, and at the same time, originally The linearity of the sensor unit can be maintained by invalidating the newly formed capacitor that adversely affects the characteristics of the liquid amount sensor unit. This has the remarkable effect that it is not necessary to change the accessory electric circuit, the cost of the container can be reduced, and the demand for replacement with the conventional container is also possible.

【0025】また、熱可塑性合成樹脂からなる薄膜中空
体の内層容器と、該内層容器内部に収容される液体に一
端が接触可能に配置され他端は外部まで引き出された導
電材料でなるセンサ端子と,前記内層容器の外周の所定
部位に絶縁体に挟んで介在させた所定形状の導体でなる
液量測定用のセンサ極板と、更に外方に導電性の補強繊
維を巻回して形成した強化合成樹脂からなる補強層を配
し、加熱・冷却により全体を固化させてなる繊維補強樹
脂製容器において、上記補強繊維の巻回過程中に短絡端
子を介在させて繊維を巻回することで前記短絡端子と最
内方の繊維とを接触させ且つ前記短絡端子の先端を外部
に突出させて固定保持し、前記短絡端子と前記センサ端
子とを導電接続して繊維補強樹脂製容器構成すれば、上
述発明と同一の効果が得られるのは当然ながら、更に加
えて前記短絡端子を強固に固定し確実な接続ができ、し
かも容器の剛性低下を招くこともない。製造工程の増加
も殆ど無く低価格化に寄与する。
Further, the inner layer container of a thin film hollow body made of a thermoplastic synthetic resin, and the sensor terminal made of a conductive material, one end of which is arranged to be in contact with the liquid contained in the inner layer container and the other end of which is drawn out to the outside. And a sensor electrode plate for measuring the amount of liquid, which is made of a conductor of a predetermined shape and is sandwiched between insulators at a predetermined portion on the outer periphery of the inner layer container, and further, a conductive reinforcing fiber is wound on the outside. In a fiber-reinforced resin container in which a reinforcing layer made of a reinforced synthetic resin is arranged, and the whole is solidified by heating and cooling, by winding a fiber by interposing a short-circuit terminal during the winding process of the reinforcing fiber, If the short-circuit terminal and the innermost fiber are brought into contact with each other and the tip of the short-circuit terminal is projected to the outside and fixedly held, the short-circuit terminal and the sensor terminal are conductively connected to each other to form a fiber-reinforced resin container. , The same effect as the above invention Of course the obtained further adding the shorting terminal can firmly fixed to reliable connections, yet nor lead to decrease in rigidity of the container. There is almost no increase in the manufacturing process and it contributes to the price reduction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】各図は夫々、本発明一実施例である繊維補強樹
脂製容器の側面図(a) 、同じくその要部断面図(b) 、内
部液量検出を説明する回路図(c) 、同じくその等価回路
(d) 及び検出回路の出力等を示すグラフ(e) である。
FIG. 1 is a side view (a) of a fiber-reinforced resin container which is an embodiment of the present invention, a sectional view (b) of the same, and a circuit diagram (c) for explaining internal liquid volume detection. , Its equivalent circuit
6D is a graph (e) showing the output of the detection circuit and the like.

【図2】(a) 図は従来の繊維補強樹脂製容器の一例を示
す側面図である。
FIG. 2 (a) is a side view showing an example of a conventional fiber-reinforced resin container.

【図3】図2の容器の要部拡大断面図(a) 、及び内部液
量検出を説明する模式回路図(b) である。
FIG. 3 is an enlarged cross-sectional view (a) of a main part of the container of FIG. 2 and a schematic circuit diagram (b) illustrating detection of an internal liquid amount.

【図4】従来の繊維補強樹脂製容器の電気的等価回路図
(a) 、測定用電極板−内部液体間の静電容量変化を示す
グラフ(b) 、導電フィラメント使用により生じる静電容
量の液量による変化を示すグラフ(c) 、及びセンサ端子
での合成静電容量の変化を示すグラフ(d) である。
FIG. 4 is an electrical equivalent circuit diagram of a conventional fiber-reinforced resin container.
(a), a graph showing a change in capacitance between the electrode plate for measurement and the internal liquid (b), a graph showing a change in capacitance caused by the use of a conductive filament depending on the amount of the liquid (c), and a composite at the sensor terminal It is a graph (d) showing a change in capacitance.

【図5】静電容量式液量検出用の既知回路の一例を示す
回路ブロック図である。
FIG. 5 is a circuit block diagram showing an example of a known circuit for capacitance type liquid amount detection.

【符号の説明】[Explanation of symbols]

(1) …内層容器、 (2,2) …絶縁体、 (3) …センサ極板、 (5,6,8,9) …補強繊維(カーボン繊維)、 (10)…液体、 (10A) …センサ端子、 (11)…短絡端子、 (11a) …先端部、 (20)…液量センサ部。 (1)… Inner container, (2,2)… Insulator, (3)… Sensor plate, (5,6,8,9)… Reinforcing fiber (carbon fiber), (10)… Liquid, (10A) … Sensor terminal, (11)… Short circuit terminal, (11a)… Tip, (20)… Liquid amount sensor section.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年3月4日[Submission date] March 4, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図2[Correction target item name] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図2】 従来の繊維補強樹脂製容器の一例を示
す側面図である。
FIG. 2 is a side view showing an example of a conventional fiber-reinforced resin container.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図1[Correction target item name] Fig. 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // B29L 22:00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical indication // B29L 22:00

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 内層容器(1) と、該内層容器(1) の外周
側に設けられたセンサ極板(3) と、容器内部の液体に接
するセンサ端子(10A) で構成される液量センサ部(20)を
具備し、外周にカーボン繊維(5,6,8,9) を巻回して補強
され、内層容器(1) の内部に貯蔵される液体(10)と前記
センサ極板(3) 間の液量に対応する静電容量に基づき内
部の液体容量を知るようにした繊維補強樹脂性液体容器
において、 前記センサ端子(10A) と前記カーボン繊維中で最内方の
カーボン繊維(5) とを短絡させたことを特徴とする繊維
補強樹脂製容器。
1. A liquid amount comprising an inner layer container (1), a sensor electrode plate (3) provided on the outer peripheral side of the inner layer container (1), and a sensor terminal (10A) in contact with the liquid inside the container. It is equipped with a sensor part (20) and is reinforced by winding carbon fiber (5,6,8,9) around the outer periphery, and the liquid (10) stored inside the inner layer container (1) and the sensor electrode plate ( 3) In the fiber-reinforced resin liquid container in which the internal liquid volume is known based on the electrostatic capacity corresponding to the liquid volume between, the sensor terminal (10A) and the innermost carbon fiber ( 5) A fiber-reinforced resin container characterized in that and are short-circuited.
【請求項2】 熱可塑性合成樹脂からなる薄膜中空体の
内層容器(1) と、該内層容器(1) 内部に収容される液体
(10)に一端が接触可能に配置され他端は外部まで引き出
された導電材料でなるセンサ端子(10A) と,前記内層容
器(1) の外周の所定部位に絶縁体(2,2) に挟んで介在さ
せた所定形状の導体でなる液量測定用のセンサ極板(3)
と、更に外方に導電性の補強繊維(5,6,8,9) を巻回して
形成した強化合成樹脂からなる補強層を配し、加熱・冷
却により全体を固化させてなる繊維補強樹脂製容器にお
いて、 上記補強繊維(5,6) の巻回過程中に短絡端子(11)を介在
させて補強繊維(6) を巻回することで前記短絡端子(11)
と最内方の補強繊維(5) とを接触させ且つ前記短絡端子
(11)の先端部(11a) を外部に突出させて固定保持し、前
記短絡端子(11)と前記センサ端子(10A) とを導電接続し
てなる繊維補強樹脂製容器。
2. An inner layer container (1) of a thin film hollow body made of a thermoplastic synthetic resin, and a liquid contained in the inner layer container (1).
A sensor terminal (10A) made of a conductive material, one end of which is arranged so that it can come into contact with the other end and the other end of which is pulled out to the outside, and an insulator (2, 2) is attached to a predetermined portion of the outer circumference of the inner layer container (1) A sensor electrode plate (3) consisting of a conductor of a predetermined shape sandwiched in between for measuring the liquid amount
And a reinforcing layer made of reinforced synthetic resin formed by winding conductive reinforcing fibers (5,6,8,9) on the outside, and the whole is solidified by heating and cooling. In the container, by winding the reinforcing fiber (6) with the short-circuit terminal (11) interposed during the winding process of the reinforcing fiber (5, 6), the short-circuit terminal (11)
And the innermost reinforcing fiber (5) are in contact with each other and the short-circuit terminal
A fiber-reinforced resin container in which a tip portion (11a) of (11) is projected outward and fixedly held, and the short-circuit terminal (11) and the sensor terminal (10A) are conductively connected.
JP31966695A 1995-11-14 1995-11-14 Fiber reinforced plastic container Expired - Fee Related JP3647528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31966695A JP3647528B2 (en) 1995-11-14 1995-11-14 Fiber reinforced plastic container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31966695A JP3647528B2 (en) 1995-11-14 1995-11-14 Fiber reinforced plastic container

Publications (2)

Publication Number Publication Date
JPH09142572A true JPH09142572A (en) 1997-06-03
JP3647528B2 JP3647528B2 (en) 2005-05-11

Family

ID=18112847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31966695A Expired - Fee Related JP3647528B2 (en) 1995-11-14 1995-11-14 Fiber reinforced plastic container

Country Status (1)

Country Link
JP (1) JP3647528B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031165A (en) * 2005-07-22 2007-02-08 Yokohama Rubber Co Ltd:The Electrical bonding structure of carbon fiber-reinforced plastic product, and its production method
JP2009063500A (en) * 2007-09-07 2009-03-26 Yamamoto Electric Industrial Co Ltd Level gauge sensor
JP2013209110A (en) * 2012-03-30 2013-10-10 Kyoraku Co Ltd Frp container
WO2015060309A1 (en) * 2013-10-25 2015-04-30 横浜ゴム株式会社 Aircraft water tank
CN112378964A (en) * 2020-11-13 2021-02-19 苏州森斯微电子技术有限公司 Method for non-invasively measuring LPG residual quantity of FRP container
US11796374B2 (en) 2020-04-17 2023-10-24 Goodrich Corporation Composite water tank level sensor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031165A (en) * 2005-07-22 2007-02-08 Yokohama Rubber Co Ltd:The Electrical bonding structure of carbon fiber-reinforced plastic product, and its production method
JP4552794B2 (en) * 2005-07-22 2010-09-29 横浜ゴム株式会社 Electrical bonding structure of carbon fiber reinforced plastic product and manufacturing method thereof
JP2009063500A (en) * 2007-09-07 2009-03-26 Yamamoto Electric Industrial Co Ltd Level gauge sensor
JP2013209110A (en) * 2012-03-30 2013-10-10 Kyoraku Co Ltd Frp container
WO2015060309A1 (en) * 2013-10-25 2015-04-30 横浜ゴム株式会社 Aircraft water tank
JP2015083479A (en) * 2013-10-25 2015-04-30 横浜ゴム株式会社 Water tank for aircraft
US10040624B2 (en) 2013-10-25 2018-08-07 The Yokohama Rubber Co., Ltd. Aircraft water tank
US11796374B2 (en) 2020-04-17 2023-10-24 Goodrich Corporation Composite water tank level sensor
CN112378964A (en) * 2020-11-13 2021-02-19 苏州森斯微电子技术有限公司 Method for non-invasively measuring LPG residual quantity of FRP container

Also Published As

Publication number Publication date
JP3647528B2 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
US6819120B2 (en) Non-contact surface conductivity measurement probe
US4299126A (en) Device for measuring the level of a liquid in a container
US4114428A (en) Radio-frequency tuned-circuit microdisplacement transducer
US4434657A (en) Liquid quantity measuring apparatus
US4676101A (en) Capacitance-type material level indicator
US2375084A (en) Liquid level measuring apparatus
US6335690B1 (en) Fluid sensing system
US8434350B2 (en) Apparatus for determining and/or monitoring a process variable of a medium
US4841227A (en) Apparatus for the ratiometric measurement of a quantity of liquid in a tank
US20040070408A1 (en) Method and device for measuring levels
US7441455B2 (en) Apparatus for measuring and indicating the level and/or volume of a liquid stored in a container
JP3757984B2 (en) Stabilized pressure sensor
EP2515090B1 (en) In-line fuel properties measurement unit
JP3647528B2 (en) Fiber reinforced plastic container
CN113446928A (en) Pressure vessel inspection device and monitoring sensor for same
JP2007303982A (en) Sensor device
US3441893A (en) Resistance temperature detector
CN113108734B (en) Two-wire vibrating wire sensor with temperature detection function and working method thereof
US4845986A (en) Liquid level indication device
EP0341675A2 (en) Alcohol sensor
JPS63292022A (en) Liquid level gage
US5121631A (en) Shielded level sensing system
US7893603B2 (en) Apparatus for determining and/or monitoring a process variable
US4922182A (en) Auto reactance compensated non-contacting resistivity measuring device
EP2330393B1 (en) In-line Fuel Properties Measurement Unit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees