JPH09141087A - Treatment of powder by atmospheric pressure glow discharge plasma and device therefor - Google Patents

Treatment of powder by atmospheric pressure glow discharge plasma and device therefor

Info

Publication number
JPH09141087A
JPH09141087A JP7305690A JP30569095A JPH09141087A JP H09141087 A JPH09141087 A JP H09141087A JP 7305690 A JP7305690 A JP 7305690A JP 30569095 A JP30569095 A JP 30569095A JP H09141087 A JPH09141087 A JP H09141087A
Authority
JP
Japan
Prior art keywords
powder
glow discharge
electrodes
plasma
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7305690A
Other languages
Japanese (ja)
Other versions
JP3806847B2 (en
Inventor
Hiroshi Uchiyama
宏 内山
Giichi Akamatsu
義一 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
II C KAGAKU KK
Original Assignee
II C KAGAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by II C KAGAKU KK filed Critical II C KAGAKU KK
Priority to JP30569095A priority Critical patent/JP3806847B2/en
Publication of JPH09141087A publication Critical patent/JPH09141087A/en
Application granted granted Critical
Publication of JP3806847B2 publication Critical patent/JP3806847B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the hydrophilicity of hydrophobic powder having poor dispersibility by supplying the powder between disk-shaped electrodes which face each other and at least one of which rotate, imparting centrifugal force to the powder and impressing a high-frequency voltage between the electrodes, thereby generating atm. glow discharge plasma. SOLUTION: Dielectric substances 3, 3 are stuck to the electrodes 2, 2 arranged in a reaction vessel 2. These dielectric substances 3, 3 are disposed to face each other at a specified spacing. The air in this reaction vessel 1 is replaced with a gaseous mixture and the high-frequency voltage is impressed between the electrodes 2 and 2 from a high-frequency power source 11 to generate the glow discharge. The upper part of the reaction vessel 1 is provided with a powder tank 5 and the powder material to be treated is dropped from the lower part of this tank through a rotary metering valve 6 into the raw material supplying port of the upper electrode 2 so as to be supplied into the glow discharge atmosphere. As a result, the powder is moved by imparting the kinetic energy to the powder and is simultaneously subjected to the plasma treatment, by which the surfaces of the powder are uniformly treated and the hydrophilicity thereof is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は分散性の悪い疎水性の粉
体を大気圧グロー放電プラズマ処理によって親水性とす
る処理方法とその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a treatment method and apparatus for rendering hydrophobic powder having poor dispersibility hydrophilic by atmospheric pressure glow discharge plasma treatment.

【0002】[0002]

【従来の技術】大気圧グロー放電によるプラズマ励起で
フィルムや繊維を処理し、これによって被処理物の表面
を親水化して表面の濡れを向上し接着効果を高める事は
最近知られるようになって来た。そして、本発明者等は
このプラズマ処理を粉体にも適用し、粉体の表面をプラ
ズマ処理によって親水性もしくは疎水性とし、水、油ま
たは溶剤に対して分散性を向上させることを見出し、先
に出願した(特開平4−135638号参照)。続い
て、本発明者等は粉体のプラズマ処理について、更に向
上した方法及び装置を提案した(特開平4−13563
8号、特開平6−365号又は特開平6−134296
号)。そして、これらの方法及び装置を使用することに
よって、粉体表面のプラズマ処理は一応の成果を上げた
が、処理する粉体の種類によっては、なお均一な処理が
出来なかったり、或いは、電極間隙に微細な粉体が詰ま
り、常に電極間の間隙を掃除し清浄に保たなければ作業
が困難な場合があった。
2. Description of the Related Art Recently, it has become known that a film or a fiber is treated by plasma excitation by an atmospheric pressure glow discharge so that the surface of an object to be treated is made hydrophilic to improve the wetting of the surface and enhance the adhesive effect. I came. Then, the present inventors have found that the plasma treatment is also applied to powder, and the surface of the powder is made hydrophilic or hydrophobic by plasma treatment to improve dispersibility in water, oil or solvent, The application was filed earlier (see JP-A-4-135638). Subsequently, the present inventors proposed a further improved method and apparatus for plasma processing of powder (Japanese Patent Laid-Open No. 4-13563).
No. 8, JP-A-6-365 or JP-A-6-134296.
issue). And, by using these methods and devices, the plasma treatment of the powder surface has achieved some results, but depending on the type of powder to be treated, uniform treatment may not be possible or the electrode gap may not be uniform. In some cases, fine powder was clogged, and the work was difficult if the gap between the electrodes was not always cleaned and kept clean.

【0003】即ち、グロー放電の中は高いエネルギー場
であり、粉体に対しては電場の周囲に発生した障壁(バ
リアー)が壁のような作用をするため、微細な粉体はカ
サ比重が小さく、軽いためにプラズマ中に入らず、粉体
の自重だけでは処理する事が出来ないことがあった。そ
のためにまず粉体微粒子をプラズマ中に入れるためかな
りの力を必要とした。また一部プラズマ中に入ったもの
も粉体によっては著しく帯電する為、静電的な付着が起
こり、取り出す事も困難な場合が生じる。粉体表面積は
フィルム等の表面積に比較して極めて大きく、数百倍に
なる為に全面を均一に処理するためには粉体の全面に対
し一様にプラズマが作用しなければならない。その為、
処理ガスと共に高速で粉体をプラズマ中に送り込むガス
の気流を利用する方法があるが、この方法は処理ガスの
量が膨大なものとなり、経済性がない。
That is, since a high energy field is present in the glow discharge and a barrier generated around the electric field acts on the powder like a wall, the fine powder has a bulk specific gravity. Since it was small and light, it did not enter the plasma and could not be processed only by the weight of the powder itself. For that reason, first, a considerable amount of force was required to put the powder fine particles into the plasma. Also, some of the particles that have entered the plasma are significantly charged depending on the powder, so electrostatic adhesion occurs and it may be difficult to take them out. The surface area of the powder is extremely large compared to the surface area of a film or the like, and is several hundred times larger. Therefore, plasma must act uniformly on the entire surface of the powder in order to uniformly process the entire surface. For that reason,
Although there is a method of using a gas flow for feeding powder into plasma at a high speed together with the processing gas, this method has a huge amount of processing gas and is not economical.

【0004】また上記特開平6−134296号記載の
方法は、粉体を皿のような容器に薄く入れ、これを電極
の間に位置せしめてグロー放電を行い励起されたプラズ
マで処理する方法であるが、この場合も振動をあたえて
粉体を流動させながら処理しないと粉体層の表面しか処
理されず、全面の処理は出来ない。そのために振動によ
って流動した粉体が飛散して反応容器中に漂い未処理の
粉体と処理された粉体が混合されて効果が充分発揮され
ず、また粉体が1種の誘電体として作用するために、厚
い誘電体を電極に取り付けたのと同様の結果となる。し
たがって電圧を上げなければグロー放電が起こりにく
い。これも経済性と安全面から工業的に使用する事は困
難である。
The method described in JP-A-6-134296 is a method in which powder is placed thinly in a container such as a dish, and the powder is placed between electrodes, glow discharge is performed, and the plasma is treated with excited plasma. However, even in this case, if the powder is not treated while being made to flow while being vibrated, only the surface of the powder layer is treated and the entire surface cannot be treated. As a result, the powder flowing due to vibration scatters and drifts into the reaction vessel, mixing unprocessed powder and treated powder, and the effect is not sufficiently exerted, and the powder acts as one type of dielectric. To achieve this, the result is similar to attaching a thick dielectric to the electrodes. Therefore, glow discharge is unlikely to occur unless the voltage is increased. This is also difficult to use industrially in terms of economy and safety.

【0005】[0005]

【発明が解決しようとする課題】本発明者は上記の様々
な問題点を解決すべく研究を重ねた結果、両方又はその
一方が回転する円盤状の上下電極間の中央部に粉体を送
入し、遠心力によって粉体に運動のエネルギーを与え、
プラズマ中を移動させる事により、連続的に粉体表面の
全面を完全に処理しうることを見出し、本発明を完成し
たもので、本発明の目的は、高収率で粉体の表面を大気
圧グロー放電プラズマ処理する方法とその装置を提供す
るにある。
As a result of repeated research to solve the above-mentioned various problems, the present inventor has sent the powder to the central portion between the disk-shaped upper and lower electrodes in which both or one of them rotates. Put in, give kinetic energy to the powder by centrifugal force,
The present invention has been completed by finding that the entire surface of the powder can be continuously and completely processed by moving in the plasma, and the object of the present invention is to increase the surface of the powder with high yield. A method and an apparatus for performing atmospheric pressure glow discharge plasma treatment are provided.

【0006】[0006]

【課題を解決するための手段】本発明の要旨は、少なく
とも一方の電極が回転している円盤状の相対する電極間
に、一方の電極の中心部に設けた原料供給口より粉体を
前記電極間に供給し、粉体に回転電極に基づく遠心力を
与えると共に電極間に高周波高電圧を印加して大気圧グ
ロー放電プラズマを発生せしめ、該大気圧グロー放電プ
ラズマにより粉体表面を処理することを特徴とする大気
圧グロー放電プラズマによる粉体の処理方法、及び、ガ
スの導入口と排出口とを有するプラズマ反応容器内に配
置した少なくとも一方の電極の中心部に粉体供給口を設
けた円盤状の相対する一対の電極と、該電極間に大気圧
グロー放電プラズマを発生せしめるグロー放電プラズマ
発生装置及び電極を回転させるための回転装置とからな
る大気圧グロー放電プラズマによる粉体の処理装置であ
る。
Means for Solving the Problems The gist of the present invention is to provide a powder from a raw material supply port provided at the center of one electrode between at least one of the rotating disc-shaped opposing electrodes. It is supplied between the electrodes, and a centrifugal force based on the rotating electrode is applied to the powder, and a high frequency high voltage is applied between the electrodes to generate an atmospheric pressure glow discharge plasma, and the powder surface is treated by the atmospheric pressure glow discharge plasma. A method for treating powder by atmospheric pressure glow discharge plasma, characterized in that a powder supply port is provided at the center of at least one electrode arranged in a plasma reaction container having a gas inlet and a gas outlet. And a disk-shaped pair of opposing electrodes, a glow discharge plasma generator for generating an atmospheric pressure glow discharge plasma between the electrodes, and a rotating device for rotating the electrodes. A processing apparatus of the powder by the plasma.

【0007】本発明におけるプラズマ反応容器は従来よ
り大気圧グロー放電プラズマ発生装置として使用されて
いるもので、ガスの導入口と排出口を有し、プラズマ発
生用電極を設置したものである。プラズマ発生用電極と
しては金属電極の少なくとも一方の電極を誘電体でカバ
ーしたものであり、誘電体は固くて、平面を維持できる
合成樹脂またはセラミックが好ましい。また耐熱性とし
て100℃以上の熱でも変形しないものがよく、熱硬化
性樹脂のメラミン、尿素、ベークライト等、熱可塑性樹
脂ではメタアクリル、ポリカーボネート、ポリエステ
ル、ポリイミド等が好ましい。電極間に印加される高周
波電圧としては高周波の波長は別に制限はない。約1K
Hz〜100KHzであり、現在真空の低圧プラズマ処
理で用いられている13.56MHzの高周波も使用で
きるが、大気圧グロー放電では熱の発生を押さえるため
に1KHzから100KHz位が好ましい。1KHz以
下では高出力ではトランスが大きくなり、100KHz
以上では効率はよいが熱が発生しまた周波数が高くなる
につれて出力トランスのマッチングが難しい。電圧約2
000〜7000V程度であり、反応容器内に導入され
るガスの種類によって異なる。また電極間の間隙として
は5〜40mm程度であり、この間隙も導入されるガス
の種類によって異なる。
The plasma reactor of the present invention has been conventionally used as an atmospheric pressure glow discharge plasma generator, and has a gas inlet and outlet and a plasma generating electrode. As the plasma generating electrode, at least one of the metal electrodes is covered with a dielectric, and the dielectric is preferably a hard synthetic resin or ceramic capable of maintaining a flat surface. The heat resistance is preferably such that it does not deform even when heated to 100 ° C. or higher, and thermosetting resins such as melamine, urea and bakelite, and thermoplastic resins such as methacryl, polycarbonate, polyester and polyimide are preferable. The high-frequency wavelength applied to the electrodes is not particularly limited. About 1K
Although a high frequency of 13.56 MHz, which is used in vacuum low-pressure plasma processing, can be used, it is preferably about 1 KHz to 100 KHz in order to suppress heat generation in atmospheric pressure glow discharge. At 1 KHz or less, the transformer becomes large at high output, 100 KHz
Above, the efficiency is good, but it becomes more difficult to match the output transformer as heat is generated and the frequency becomes higher. Voltage about 2
It is about 000 to 7,000 V, and varies depending on the type of gas introduced into the reaction vessel. The gap between the electrodes is about 5 to 40 mm, and this gap also differs depending on the type of gas introduced.

【0008】また、反応容器内にはプラズマ発生用不活
性ガスと共に粒子表面に親油性を付与する場合には導入
されるガスの種類は、例えばプロパン、ブタンペンタ
ン、ヘキサン、エチレン、ブテン、トリメチルペンタ
ン、トリメチロールプロパン脂肪族炭化水素及びその誘
導体、或いはベンゼン、トルエン、キシレン、スチレン
エチルベンベン、クメン等の芳香族炭化水素及びその置
換体又はシクロペンテン、シクロヘキセン等の脂環式炭
化水素及びその置換体であり、また、粒子表面に親水性
を付与する場合はアルゴンとヘリウムの混合ガス、アセ
トン、メチルエチルケトン等のケトン類化合物、エタノ
ール、プロパノール等のアルコール類、1,4−ジオキ
サン、メチルセルソルブ等のエーテル類、テトラメチル
シラン、トリメチルクロロシラン等のシラン化合物あっ
て、これらの条件は従来の大気圧グロー放電プラズマ発
生条件と異ならない(特開平4−135638号及び特
開平6−134296号参照)。
Further, in the case of imparting lipophilicity to the particle surface together with the inert gas for plasma generation in the reaction vessel, the kinds of gas introduced are, for example, propane, butanepentane, hexane, ethylene, butene, trimethylpentane. , Trimethylolpropane aliphatic hydrocarbons and their derivatives, or aromatic hydrocarbons such as benzene, toluene, xylene, styreneethylbenben, cumene and their substituted products, or alicyclic hydrocarbons such as cyclopentene and cyclohexene and their substituted products. In the case of imparting hydrophilicity to the particle surface, a mixed gas of argon and helium, a ketone compound such as acetone and methyl ethyl ketone, an alcohol such as ethanol and propanol, an ether such as 1,4-dioxane and methyl cellosolve. , Tetramethylsilane, trimethyl chloride There silane compounds such Roshiran, these conditions are not different from conventional atmospheric pressure glow discharge plasma generating conditions (see JP-A-4-135638 and JP-A-6-134296).

【0009】次に処理ガスであるが、既に大気圧グロー
放電でプラズマを励起するガスとしてヘリウムガス又は
ヘリウムとアルゴンの混合ガスまたはアルゴンガスにケ
トンの蒸気を微量混合したものが発明者等の発明により
知られている。通常、粉体の処理は分散性能を向上させ
る目的が主体であり、その為に水中または極性溶媒中に
細かく分散するように親水性を高める処理を行う。それ
には上記不活性ガスのプラズマ中を通過させて表面を僅
かエッチングするか、またはCF3のようなガスを微量
不活性ガスに混合したガスのプラズマ中を通せば著しい
親水性が得られる。特に本発明の場合はガスは単に大気
圧の雰囲気を作る為に必要なだけであり、不活性ガスだ
けで処理する場合は漏れを補充し、または粉体にまだ付
着している空気の影響が出ない程度の少ない流入量でも
構わない。すなわちグロー放電が安定に発生するように
流入させれば良い。処理される粉体としては特に限定さ
れないが、例えばカーボン、酸化アルミ、酸化チタン、
亜鉛華等であり、その粒径は通常の粉体から超微粒子の
範囲の何れでもよい。
Next, as the processing gas, as the gas for exciting plasma in the atmospheric pressure glow discharge, helium gas, a mixed gas of helium and argon, or a mixture of argon gas and a slight amount of ketone vapor has been invented by the inventors. Known by. Usually, the treatment of the powder is mainly intended to improve the dispersion performance, and therefore, the treatment for increasing the hydrophilicity is performed so that the powder is finely dispersed in water or a polar solvent. If the surface is slightly etched by passing it through the plasma of the above-mentioned inert gas, or if it is passed through the plasma of a gas in which a gas such as CF 3 is mixed with a trace amount of the inert gas, a remarkable hydrophilic property is obtained. Especially in the case of the present invention, the gas is only necessary to create an atmosphere of atmospheric pressure, and when treating with only inert gas, the leak is replenished or the effect of air still adhering to the powder is A small amount of inflow that does not come out is acceptable. That is, it suffices to allow the glow discharge to flow in a stable manner. The powder to be treated is not particularly limited, but for example, carbon, aluminum oxide, titanium oxide,
Zinc white or the like, and the particle size thereof may be any of the range from ordinary powder to ultrafine particles.

【0010】本発明においては、回転する電極間の中央
部に粉体を供給するものであり、粉体は回転電極の回転
力によって遠心力により運動エネルギーが付与される。
遠心力は粉体の重量(W)と回転する円盤の半径(γ)
更に回転の角速度(ω)の二乗の積、すなわちf=Wγ
ω2で表されるから回転速度が上がると粉体の重量は軽
くても極めて大きな遠心力エネルギーでグロー放電の中
を処理されながら移動し円盤の外に飛ばされる。そのた
めにロスもなくすべての粉体が全表面を均一に処理され
て放出されるのである。処理される粉体の比重によっ
て、回転数を変える必要があるからモーターの回転数は
可変のものが良い。したがって誘導モーターの場合はイ
ンバーターを使用するか、無段変速機を介して行いまた
は直捲モーターでスライダックを使用して回転数を自由
に変えられるものが好ましい。
In the present invention, the powder is supplied to the central portion between the rotating electrodes, and the powder is given kinetic energy by the centrifugal force by the rotating force of the rotating electrode.
Centrifugal force is the weight of powder (W) and radius of rotating disk (γ)
Furthermore, the product of the squares of the angular velocities (ω) of rotation, that is, f = Wγ
Since it is represented by ω 2 , even if the rotation speed is increased, the weight of the powder is light, but the powder moves while being processed in the glow discharge with extremely large centrifugal energy, and is blown out of the disk. Therefore, all powders are uniformly processed and released on all surfaces without loss. Since it is necessary to change the rotation speed depending on the specific gravity of the powder to be processed, it is preferable that the rotation speed of the motor be variable. Therefore, in the case of an induction motor, it is preferable to use an inverter, or to use a continuously variable transmission, or a direct winding motor that can freely change the number of rotations by using a sliderac.

【0011】次に図をもって本発明にかかる装置を説明
する。図1は本は発明にかかる大気圧グロー放電プラズ
マ発生装置の説明図であり、図2は金属電極の斜視図、
図3は上下電極を同時に回転する場合の1例の側面図、
図4は他の電極の側面図及び平面図であり、図5は電極
に設けた放熱板の側面図である。図1において、プラズ
マ反応容器1にはプラズマ処理用のガスが導入パイプ7
を通して導入口より導入され、また、反応容器1に設け
られた排出口を通して排出パイプ8より反応容器外に排
出される。反応容器1内に上下に配置された円盤状の金
属電極2、2’に誘電体3、3’が張り付けられてお
り、誘電体3、3’が一定の間隔を保って相対してい
る。この電極は図2に示されているように、中心に原料
供給口4を有する上部金属電極2と回転軸9に直結され
ている下部金属電極2’とよりなり、それぞれの金属電
極には誘電体3、3’でカバーされ、誘電体3、3’が
一定の間隙をもって相対している。回転軸9は回転装置
10に連結し、回転装置10によって下部電極は回転す
る。上部電極としては誘電体の表面に、下部電極として
は誘電体の裏面にそれぞれ電極となる金属膜を張り合わ
せてもよい。これは接着剤で金属箔を張り合わせても、
またメッキや真空蒸着、スパッターによって行ってもか
まわない。しかしこのような平面電極では金属箔は誘電
体よりも半径の小さいものが必要であり、これは高電圧
をかけた場合火花やアークが直接金属間に回りこむのを
防ぐためである。
Next, the apparatus according to the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view of an atmospheric pressure glow discharge plasma generator according to the present invention, and FIG. 2 is a perspective view of a metal electrode,
FIG. 3 is a side view of an example in which the upper and lower electrodes are simultaneously rotated,
FIG. 4 is a side view and a plan view of another electrode, and FIG. 5 is a side view of a heat dissipation plate provided on the electrode. In FIG. 1, a plasma reaction gas is introduced into a plasma reaction vessel 1 through an introduction pipe 7
Through a discharge port provided in the reaction vessel 1 and discharged to the outside of the reaction vessel through a discharge pipe 8. The dielectrics 3 and 3'are attached to the disk-shaped metal electrodes 2 and 2'arranged vertically in the reaction vessel 1, and the dielectrics 3 and 3'are opposed to each other with a constant interval. As shown in FIG. 2, this electrode is composed of an upper metal electrode 2 having a raw material supply port 4 in the center and a lower metal electrode 2 ′ directly connected to a rotating shaft 9, and each metal electrode has a dielectric layer. Covered by bodies 3, 3 ', dielectrics 3, 3'oppose each other with a constant gap. The rotating shaft 9 is connected to a rotating device 10, and the rotating device 10 rotates the lower electrode. A metal film to be an electrode may be attached to the front surface of the dielectric as the upper electrode and a back surface of the dielectric as the lower electrode. Even if you stick metal foil with adhesive,
Alternatively, plating, vacuum deposition, or sputtering may be used. However, in such a planar electrode, the metal foil needs to have a radius smaller than that of the dielectric, and this is to prevent sparks and arcs from directly flowing between the metals when a high voltage is applied.

【0012】また上下電極を図3に示すように、エポキ
シ樹脂のような電気絶縁性のネジまたはボルト、ナット
11で連結し上下電極共回転させれば中の処理ガスも遠
心力により移動するから更に効果的である。大量の粉体
を長時間処理する場合は電力も大きく、その結果発熱量
も大きくなるため合成樹脂よりなる誘電体では変形を起
こす場合がある。このような場合は円盤状の金属電極に
誘電体としてガラスまたは琺瑯加工したものを使用す
る。また熱を逃がすためには、放電用のスリットを設け
たヒートシンク(放熱板)を電極にすればよい。これは
大電力用のパワートランジスターに使用されているもの
と同じであるが回転させる為に特別な配慮が必要であ
る。
Further, as shown in FIG. 3, if the upper and lower electrodes are connected with an electrically insulating screw or bolt or nut 11 such as epoxy resin and the upper and lower electrodes are rotated together, the processing gas therein also moves due to centrifugal force. It is even more effective. When a large amount of powder is processed for a long period of time, electric power is large, and as a result, a large amount of heat is generated, and therefore a dielectric made of synthetic resin may be deformed. In such a case, a disk-shaped metal electrode made of glass or enamel is used as a dielectric. Further, in order to dissipate heat, a heat sink (radiating plate) provided with a discharge slit may be used as an electrode. This is the same as the one used for power transistors for high power, but it requires special consideration for rotation.

【0013】図4に特殊電極の側面図と上面図である。
図において2は電極となる金属であり、3はその表面に
設けられた誘電体の琺瑯である。周辺と中心部は火花放
電が生じないように縁を設け、グロー放電を起こす間隙
より広くとってある。電極には同心円のスリット隆起部
を設け流入ガスによって発生した熱が奪い去られるよう
にしてある。電極をヒートシンクにする事は上部電極だ
けでも良く、回転させない時はどのような形のヒートシ
ンクを使用してもよいが、下部電極とともに回転させる
場合はスムースな回転が出来るようバランスをとったも
のが必要である。また隆起部にはさらにこまかく溝をつ
くり(図5 部分図)出来るだけ放熱面積を大きくす
る。
FIG. 4 is a side view and a top view of the special electrode.
In the figure, 2 is a metal to be an electrode, and 3 is a dielectric enamel provided on the surface thereof. The periphery and the center are provided with edges so that spark discharge does not occur, and are wider than the gap where glow discharge occurs. The electrodes are provided with concentric slit ridges so that the heat generated by the inflowing gas can be taken away. The electrode can be used as a heat sink only with the upper electrode, and any shape of heat sink may be used when it is not rotated, but if it is rotated together with the lower electrode, a well-balanced one can be used for smooth rotation. is necessary. In addition, grooves are made more finely in the raised portion (partial view in Fig. 5) to maximize the heat radiation area.

【0014】次にこのような装置を使用してプラズマ処
理方法について述べる。処理ガスは図1の矢印のように
少しずつ流入されるが、粉体は遠心力で移動しガス流で
運ぶ必要がないから導入される処理ガスの流量は非常に
少なくてすみ、上記のように予め粉体タンクを処理ガス
で置換すれば空気の流入もなく常に変わらぬ条件で処理
する事ができる。反応容器1内の空気をヘリウムかヘリ
ウムとアルゴンの混合ガスで置換し高周波電源11から
例えば10KHz、2500Vの高周波電圧を上下電極
間に印加すると誘電体の間隙でグロー放電が起こり、こ
のグロー放電は下部電極2’を回転軸9を介して回転し
ても持続する。反応容器1の上部に粉体タンク5を設
け、粉体タンク5の下部より回転定量バルブ6を通して
粉体タンク5より一定量ずつ被処理粉体を反応容器1内
の上部電極に設けた原料供給口4に落下させ、グロー放
電雰囲気中に供給するようにする。被処理粉体は、予め
粉体タンク5内に入れるが、この粉体タンク5は勿論の
事、粉体内も多くの空気を抱き込んでいるから、ヘリウ
ムかヘリウムとアルゴンの混合ガスで先に置換しておく
方が好ましく、必要ならば粉体タンク5を真空にして空
気を除去し、その後ヘリウム等のガスで置換すれば更に
好結果が得られるので、プラズマ処理ガスを粉体タンク
内に供給できるようにしておくことが好ましい。
Next, a plasma processing method using such an apparatus will be described. The processing gas is introduced little by little as shown by the arrow in FIG. 1, but the powder moves by centrifugal force and does not need to be carried in the gas flow, so the flow rate of the processing gas introduced is very small. In addition, if the powder tank is replaced with the processing gas in advance, there is no inflow of air and the processing can always be performed under the same conditions. When the air in the reaction vessel 1 is replaced with helium or a mixed gas of helium and argon, and a high frequency voltage of, for example, 10 KHz and 2500 V is applied between the upper and lower electrodes from the high frequency power source 11, glow discharge occurs in the gap between the dielectrics, and this glow discharge is It continues even if the lower electrode 2 ′ is rotated via the rotation shaft 9. A powder tank 5 is provided on the upper part of the reaction vessel 1, and a powder to be treated is supplied from the lower part of the powder tank 5 through a rotary metering valve 6 to the upper electrode in the reaction vessel 1 by a fixed amount. It is dropped into the mouth 4 and supplied into the glow discharge atmosphere. The powder to be treated is put into the powder tank 5 in advance. Since not only the powder tank 5 but also the powder contains a lot of air, helium or a mixed gas of helium and argon is used first. It is preferable to replace the plasma treatment gas. If necessary, the powder tank 5 is evacuated to remove air and then replaced with a gas such as helium to obtain a better result. It is preferable to be able to supply.

【0015】大気圧グロー放電で処理する場合は真空の
低圧プラズマ処理と異なり100℃までの常温処理が特
徴であり、またガスを常時流すために処理ガスが冷却用
ガスを兼ねヒートシンクによる冷却も効率良く行う事が
出来る。また融点の低い有機物粉体を処理する場合、放
熱冷却で足らなければ半導体を使用し電流で冷却するペ
ルチェ効果による方法も可能である。このような条件の
もとで粉体を上部電極2の原料供給部4から回転する下
部電極2’の中央に落下させるとそれぞれの粉体粒子は
遠心力により強い運動エネルギーを与えられる。反応容
器から排出されるガスは再使用が可能であり経済性も極
めて大きい。次に実施によりその効果を説明する。
In the case of processing by atmospheric pressure glow discharge, unlike vacuum low-pressure plasma processing, it is characterized by room temperature processing up to 100 ° C. Further, since the gas always flows, the processing gas also serves as a cooling gas and cooling by a heat sink is also efficient. You can do well. Further, when treating organic powder having a low melting point, a method using a Peltier effect in which a semiconductor is used and cooling is performed with an electric current is also possible if heat radiation cooling is not sufficient. Under such conditions, when the powder is dropped from the raw material supply part 4 of the upper electrode 2 to the center of the rotating lower electrode 2 ', each powder particle is given a strong kinetic energy by centrifugal force. The gas discharged from the reaction vessel can be reused and is extremely economical. Next, the effect will be described by implementation.

【0016】[0016]

【実施例及び比較例】[Examples and Comparative Examples]

実施例1 図の装置において円盤電極は直径30cmのものを使用
し円盤には誘電体として合成マイカの厚み1.5mmに
電極としてステンレスの薄板の直径26cmのものを張
り合わせた。したがって誘電体の方が半径で20mm大
きくなり火花の廻り込みは起こらない。上部の円盤電極
は固定し、下部電極の中心に小型直捲モーターのシャフ
トを接続してダイレクトドライブとし、回転数はスライ
ダックにより電圧を変化して変化させた。上部電極の中
央には粉末を入れる開口部がありこれらはすべて反応容
器の中におさめられている。上部電極と下部電極はそれ
ぞれ高周波の電源に接続されており下部電極は安全のた
め接地を行う。電極間の間隔は10mmである。親水化
を行う粉末として東洋炭素製造所のB−2カーボンを選
び、予め水の中で粉末が分散せず浮く事を確かめておい
た。次に反応容器中の空気をアルゴン60、ヘリウム3
9.5、四フッ化炭素0.5容量部の混合ガスで置換
し、電極間に5KHz、3500Vの電圧を印加する。
美しいオレンジ色のグロー放電が発生する。次に下部電
極を回転させてもグロー放電は安定して維持される。回
転数は100回/分である。次に上部電極の開口部から
少しずつカーボン粉末を入れていくと回転する下部電極
の中心部に小さなピラミッドを作り、回転数を上げるに
従いピラミッドの下辺が崩れグロー放電の中に飛ばされ
る。この時の回転数は1500回/分であった。回転数
が1500回を越えると、ピラミッドは小さくなり直ぐ
にグロー放電中に飛ばされグロー放電で励起されたプラ
ズマで連続的に処理され容器の壁に当たり底に溜まる。
処理されたカーボン粉末は未処理のものは、全く水に分
散せず水上に浮いてしまうのに対して処理されたカーボ
ン粉末は水中に良好に分散し、浮くものは極めて少な
く、親水性向上に大きな効果があった。
Example 1 In the apparatus shown in the figure, a disc electrode having a diameter of 30 cm was used, and a synthetic mica having a thickness of 1.5 mm as a dielectric and a stainless steel thin plate having a diameter of 26 cm as an electrode were attached to the disc. Therefore, the radius of the dielectric is increased by 20 mm and sparks do not wrap around. The upper disk electrode was fixed, the shaft of a small direct-winding motor was connected to the center of the lower electrode for direct drive, and the rotation speed was changed by changing the voltage with a slidac. At the center of the upper electrode there is an opening for the powder, all of which are contained in the reaction vessel. The upper electrode and the lower electrode are each connected to a high frequency power source, and the lower electrode is grounded for safety. The distance between the electrodes is 10 mm. B-2 carbon manufactured by Toyo Tanso Co., Ltd. was selected as the powder to be hydrophilized, and it was confirmed in advance that the powder floated in water without being dispersed. Next, the air in the reaction vessel is replaced with argon 60 and helium 3
The gas is replaced with a mixed gas of 9.5 and 0.5 parts by volume of carbon tetrafluoride, and a voltage of 5 KHz and 3500 V is applied between the electrodes.
A beautiful orange glow discharge occurs. Next, the glow discharge is stably maintained even if the lower electrode is rotated. The rotation speed is 100 times / minute. Next, by gradually adding carbon powder from the opening of the upper electrode, a small pyramid is formed in the center of the rotating lower electrode, and the lower side of the pyramid collapses as the number of revolutions increases, and is blown into the glow discharge. The rotation speed at this time was 1500 times / minute. When the number of revolutions exceeds 1500 times, the pyramid becomes small and is immediately blown during the glow discharge, continuously treated with the plasma excited by the glow discharge, and hits the wall of the container to accumulate at the bottom.
The untreated carbon powder that has been treated does not disperse in water at all and floats on water, whereas the treated carbon powder disperses well in water and very few floats, improving hydrophilicity. It had a great effect.

【0017】実施例2 実施例1と全く同様の装置に粉末としてルチル型酸化チ
タンを使用した。反応容器中にアルゴン:ヘリウム=5
0:50容量比の混合ガスを入れて空気を置換し10m
m間隔の電極に3KHz 4000Vの高周波電圧を印
加してグロー放電を行い下部回転電極の回転数を150
0回/分として上部電極の開口部から酸化チタンの粉末
を入れ、実施例1と同様に処理した。処理された酸化チ
タン粉末は親水性が向上し未処理のものと比較して分散
性が著しく良好になった。比較試験の結果を次に示す。
未処理の酸化チタンとプラズマ処理を行った酸化チタン
をそれぞれ各1gを別々の試験管に入れ更に蒸留水20
ccを加えて良く振蕩する。次にこの試験管を立てて静
置し、分散した酸化チタンの粉末が沈降して上が透明に
なるまでの時間を測定した。未処理のものは23秒で完
全に沈降したが、実施例2の処理を行ったものは微細な
粉末が浮遊して沈降が遅く、完全に沈降するまで3分以
上を要した。したがってプラズマによって親水化された
2次粒子の形成を防いでいる事は明らかであり、大きな
効果が認められた。
Example 2 Rutile titanium oxide was used as powder in the same apparatus as in Example 1. Argon: helium = 5 in the reaction vessel
10m when mixed gas of 0:50 volume ratio was added to replace air
A high-frequency voltage of 3 KHz 4000 V was applied to the electrodes at m intervals to perform glow discharge, and the rotation number of the lower rotating electrode was 150.
Titanium oxide powder was added from the opening of the upper electrode at 0 times / minute, and the same treatment as in Example 1 was performed. The treated titanium oxide powder has improved hydrophilicity and has significantly better dispersibility than untreated titanium oxide powder. The results of the comparative test are shown below.
1 g of untreated titanium oxide and 1 g of plasma-treated titanium oxide were placed in separate test tubes, respectively, and distilled water was added.
Add cc and shake well. Next, this test tube was stood upright and allowed to stand, and the time required for the dispersed titanium oxide powder to settle and the top to become transparent was measured. The untreated sample completely settled in 23 seconds, while the sample treated in Example 2 had a fine powder floating and slowed to settle, and it took 3 minutes or more to completely settle. Therefore, it is clear that the formation of secondary particles hydrophilized by plasma is prevented, and a great effect was recognized.

【0018】[0018]

【発明の効果】以上述べたように本発明では粉体を回転
する大気圧グロー放電プラズマ発生電極の中心部に供給
し、粉体に遠心力に基づく運動エネルギーを付与し、こ
れによって粉体を移動させると共にプラズマ処理を行う
ため粉体の京面を均一に処理することが出来、従来の粉
体の大気圧グロー放電プラズマ処理の場合に比してその
作業性が大いに向上させることが出来た。
As described above, according to the present invention, the powder is supplied to the central portion of the rotating atmospheric pressure glow discharge plasma generating electrode, and kinetic energy based on the centrifugal force is applied to the powder. Since the plasma treatment is carried out while moving, the surface of the powder can be uniformly treated, and the workability can be greatly improved compared to the conventional atmospheric pressure glow discharge plasma treatment of the powder. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかるプラズマ処理反応装置の説明図FIG. 1 is an explanatory diagram of a plasma processing reactor according to the present invention.

【図2】本発明で使用する電極の斜視図FIG. 2 is a perspective view of an electrode used in the present invention.

【図3】上下電極を同時に回転する場合の1例の側面図FIG. 3 is a side view of an example in which the upper and lower electrodes are simultaneously rotated.

【図4】他の特殊電極の側面図及び平面図FIG. 4 is a side view and a plan view of another special electrode.

【図5】電極に設けた放熱板の側面図FIG. 5 is a side view of a heat dissipation plate provided on an electrode.

【符号の説明】[Explanation of symbols]

1 プラズマ反応容器 2 金属電極 3 誘
電体 4 原料供給口 5 粉体タンク 6 回転定
量バルブ 7 ガス導入口 8 ガス排出口 9 回転軸 10 回転装置 11 電極連結用ボルト、ナット
DESCRIPTION OF SYMBOLS 1 Plasma reaction container 2 Metal electrode 3 Dielectric 4 Raw material supply port 5 Powder tank 6 Rotating metering valve 7 Gas inlet port 8 Gas discharge port 9 Rotating shaft 10 Rotating device 11 Electrode connecting bolts and nuts

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一方の電極が回転している円
盤状の相対する電極間に、一方の電極の中心部に設けた
原料供給口より粉体を前記電極間に供給し、粉体に回転
電極に基づく遠心力を与えると共に電極間に高周波高電
圧を印加して大気圧グロー放電プラズマを発生せしめ、
該大気圧グロー放電プラズマにより粉体表面を処理する
ことを特徴とする大気圧グロー放電プラズマによる粉体
の処理方法。
1. At least one electrode is rotated between disk-shaped opposing electrodes, and powder is supplied between the electrodes through a raw material supply port provided at the center of one electrode to rotate the powder. Applying a centrifugal force based on the electrodes and applying a high frequency high voltage between the electrodes to generate atmospheric pressure glow discharge plasma,
A method for treating powder with atmospheric pressure glow discharge plasma, comprising treating the surface of the powder with the atmospheric pressure glow discharge plasma.
【請求項2】 ガスの導入口と排出口とを有するプラズ
マ反応容器内に配置した少なくとも一方の電極の中心部
に粉体供給口を設けた円盤状の相対する一対の電極と、
該電極間に大気圧グロー放電プラズマを発生せしめるグ
ロー放電プラズマ発生装置及び電極を回転させるための
回転装置とからなる大気圧グロー放電プラズマによる粉
体の処理装置。
2. A pair of disc-shaped opposing electrodes provided with a powder supply port at the center of at least one electrode arranged in a plasma reaction container having a gas inlet and a gas outlet.
An apparatus for treating powder with atmospheric pressure glow discharge plasma, comprising: a glow discharge plasma generator for generating atmospheric pressure glow discharge plasma between the electrodes; and a rotating device for rotating the electrodes.
JP30569095A 1995-11-24 1995-11-24 Powder processing method and apparatus using atmospheric pressure glow discharge plasma Expired - Fee Related JP3806847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30569095A JP3806847B2 (en) 1995-11-24 1995-11-24 Powder processing method and apparatus using atmospheric pressure glow discharge plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30569095A JP3806847B2 (en) 1995-11-24 1995-11-24 Powder processing method and apparatus using atmospheric pressure glow discharge plasma

Publications (2)

Publication Number Publication Date
JPH09141087A true JPH09141087A (en) 1997-06-03
JP3806847B2 JP3806847B2 (en) 2006-08-09

Family

ID=17948193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30569095A Expired - Fee Related JP3806847B2 (en) 1995-11-24 1995-11-24 Powder processing method and apparatus using atmospheric pressure glow discharge plasma

Country Status (1)

Country Link
JP (1) JP3806847B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004527077A (en) * 2001-03-27 2004-09-02 アピト コープ.エス.アー. Plasma surface treatment method and apparatus for implementing the method
JPWO2004112964A1 (en) * 2003-06-20 2006-07-27 株式会社ホソカワ粉体技術研究所 Powder processing method, powder processing apparatus, and method for producing porous granulated product
US7892611B2 (en) 2003-01-31 2011-02-22 Dow Corning Ireland Limited Plasma generating electrode assembly
US8097217B2 (en) * 2007-07-06 2012-01-17 Uion Co., Ltd Atmospheric pressure plasma generating apparatus by induction electrode
EP2559806A1 (en) 2011-08-17 2013-02-20 Center of Excellence Polymer Materials and Technologies (Polimat) Method for increasing the hydrophilicity of polymeric materials
JP2014000571A (en) * 2007-05-11 2014-01-09 Sdc Materials Inc Gas supply system and gas supply method
US9089840B2 (en) 2007-10-15 2015-07-28 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9216406B2 (en) 2011-02-23 2015-12-22 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
JPWO2016190436A1 (en) * 2015-05-28 2018-03-15 国立大学法人佐賀大学 Plasma sterilizer
JP2021130105A (en) * 2020-02-21 2021-09-09 リンテック株式会社 Method for producing organic particle, organic particle, composition, coating film, and laminate

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004527077A (en) * 2001-03-27 2004-09-02 アピト コープ.エス.アー. Plasma surface treatment method and apparatus for implementing the method
US7892611B2 (en) 2003-01-31 2011-02-22 Dow Corning Ireland Limited Plasma generating electrode assembly
JPWO2004112964A1 (en) * 2003-06-20 2006-07-27 株式会社ホソカワ粉体技術研究所 Powder processing method, powder processing apparatus, and method for producing porous granulated product
JP4580339B2 (en) * 2003-06-20 2010-11-10 ホソカワミクロン株式会社 Powder processing method and powder processing apparatus
US9180423B2 (en) 2005-04-19 2015-11-10 SDCmaterials, Inc. Highly turbulent quench chamber
US9216398B2 (en) 2005-04-19 2015-12-22 SDCmaterials, Inc. Method and apparatus for making uniform and ultrasmall nanoparticles
US9023754B2 (en) 2005-04-19 2015-05-05 SDCmaterials, Inc. Nano-skeletal catalyst
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US9132404B2 (en) 2005-04-19 2015-09-15 SDCmaterials, Inc. Gas delivery system with constant overpressure relative to ambient to system with varying vacuum suction
US9719727B2 (en) 2005-04-19 2017-08-01 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
JP2015231626A (en) * 2007-05-11 2015-12-24 エスディーシーマテリアルズ, インコーポレイテッド Gas supply system and gas supply method
JP2014000571A (en) * 2007-05-11 2014-01-09 Sdc Materials Inc Gas supply system and gas supply method
US8097217B2 (en) * 2007-07-06 2012-01-17 Uion Co., Ltd Atmospheric pressure plasma generating apparatus by induction electrode
US9186663B2 (en) 2007-10-15 2015-11-17 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9089840B2 (en) 2007-10-15 2015-07-28 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9737878B2 (en) 2007-10-15 2017-08-22 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9302260B2 (en) 2007-10-15 2016-04-05 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9597662B2 (en) 2007-10-15 2017-03-21 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9533289B2 (en) 2009-12-15 2017-01-03 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9216406B2 (en) 2011-02-23 2015-12-22 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
EP2559806A1 (en) 2011-08-17 2013-02-20 Center of Excellence Polymer Materials and Technologies (Polimat) Method for increasing the hydrophilicity of polymeric materials
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9566568B2 (en) 2013-10-22 2017-02-14 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9950316B2 (en) 2013-10-22 2018-04-24 Umicore Ag & Co. Kg Catalyst design for heavy-duty diesel combustion engines
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10086356B2 (en) 2014-03-21 2018-10-02 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10413880B2 (en) 2014-03-21 2019-09-17 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
JPWO2016190436A1 (en) * 2015-05-28 2018-03-15 国立大学法人佐賀大学 Plasma sterilizer
JP2021130105A (en) * 2020-02-21 2021-09-09 リンテック株式会社 Method for producing organic particle, organic particle, composition, coating film, and laminate

Also Published As

Publication number Publication date
JP3806847B2 (en) 2006-08-09

Similar Documents

Publication Publication Date Title
JP3806847B2 (en) Powder processing method and apparatus using atmospheric pressure glow discharge plasma
US3342621A (en) Electrostatic precipitation process
US4810524A (en) Inorganic powders with improved dispersibility
EP0839930B1 (en) Apparatus for vacuum line cleaning in substrate processing equipment
KR100278232B1 (en) Apparatus and method for plasma processing in which a uniform electric field is induced by a dielectric window
US4863756A (en) Method and equipment for coating substrates by means of a plasma discharge using a system of magnets to confine the plasma
US8399795B2 (en) Enhancing plasma surface modification using high intensity and high power ultrasonic acoustic waves
EP0781599A2 (en) Method and apparatus for reducing perfluorocompound gases from substrate processing equipment emissions
JP2002532621A (en) Plasma enhanced chemical deposition for high and / or low index polymers
KR20010032454A (en) Method and Apparatus for Coating Diamond-like Carbon onto Particles
CN1191174A (en) Method of enhancing releasing effect of mold using low temperature plasma processes
EP0270656A1 (en) Vapour deposition of monomer fluids.
JP2005503250A (en) Method for producing powder comprising composite particles and apparatus for carrying out the method
US5749973A (en) Apparatus for spraying particulate material in an evaporatable dispersion having elecrical potential
WO2017204441A1 (en) Nanoparticle dispersing apparatus using ultrasonic streaming and shock waves
JP3064182B2 (en) Atmospheric pressure plasma powder processing method and apparatus
US5278384A (en) Apparatus and process for the treatment of powder particles for modifying the surface properties of the individual particles
US4685419A (en) Method and apparatus for powder surface treating
Bauckhage et al. Production of fine powders by ultrasonic standing wave atomization
JP3297881B2 (en) Ultrafine particle surface treatment method
US20150307776A1 (en) Method of preparing a composite article and composite article
JP5627560B2 (en) Fine particle production coating apparatus and fine particle coating method
JP2015086238A (en) Polishing agent, polishing article, polishing agent aerosol, polishing member and method for producing polishing agent
Danilaev et al. Structure of carbon dendrites obtained in an atmospheric-pressure gas discharge
JP2872925B2 (en) Nozzle for ultra-fine particle lamination

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees