JP3297881B2 - Ultrafine particle surface treatment method - Google Patents

Ultrafine particle surface treatment method

Info

Publication number
JP3297881B2
JP3297881B2 JP28903692A JP28903692A JP3297881B2 JP 3297881 B2 JP3297881 B2 JP 3297881B2 JP 28903692 A JP28903692 A JP 28903692A JP 28903692 A JP28903692 A JP 28903692A JP 3297881 B2 JP3297881 B2 JP 3297881B2
Authority
JP
Japan
Prior art keywords
container
atmospheric pressure
gas
pressure plasma
ultrafine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28903692A
Other languages
Japanese (ja)
Other versions
JPH06134296A (en
Inventor
宏 内山
康夫 澤田
Original Assignee
イーシー化学株式会社
伊藤忠ファインケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーシー化学株式会社, 伊藤忠ファインケミカル株式会社 filed Critical イーシー化学株式会社
Priority to JP28903692A priority Critical patent/JP3297881B2/en
Publication of JPH06134296A publication Critical patent/JPH06134296A/en
Application granted granted Critical
Publication of JP3297881B2 publication Critical patent/JP3297881B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、粒径がnm(ナノメ−
タ−)のオ−ダ−の微細な超微粒子の表面の大気圧プラ
ズマ処理方法に関し、また、粒径がnm(ナノメ−タ
−)のオ−ダ−の微細な超微粒子表面を連続的に大気圧
プラズマ処理する超微粒子の表面処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to an atmospheric pressure plasma treatment method for the surface of fine ultrafine particles of the order of (t), and to continuously process the surface of ultrafine fine particles of the order of nm (nanometer). The present invention relates to a method for surface treatment of ultrafine particles subjected to atmospheric pressure plasma treatment.

【0002】[0002]

【従来の技術】現在粉体の製造技術は著しく進歩し、超
微粒子と言われる粒径がnm(ナノメ−タ−)のオ−ダ
−の微細な粉体が多く生産されるようになり、また、こ
れらの超微粒子は種々の分野で使用されている。例え
ば、電子技術、特にコンピュ−タ−の高密度磁気テ−プ
やビデオテ−プに必要なコバルト−鉄を超微粒子にする
ことによって出力や周波数特性を改善することができ、
また、従来より酸化アルミナ、酸化チタンなどの超微粒
子はセラミックや焼結材料の低温処理に多用されてい
る。
2. Description of the Related Art At present, powder production technology has remarkably progressed, and many fine powders having a particle diameter of nm (nanometer) called ultrafine particles have been produced. These ultrafine particles are used in various fields. For example, it is possible to improve the output and frequency characteristics by converting cobalt-iron necessary for high-density magnetic tapes and video tapes of electronic technology, particularly computers, into ultrafine particles,
Conventionally, ultrafine particles such as alumina oxide and titanium oxide have been frequently used for low-temperature processing of ceramics and sintered materials.

【0003】これらの超微粒子は表面活性が強くなり、
種類によっては著しく親水性の高いものもあるが、逆に
2次凝集を起こしやすくなり、良好な分散が得にくいも
のもある。そして、これらの微粒子は任意に親水、親油
性がある訳でもない。
[0003] These ultrafine particles have a strong surface activity,
Some types have extremely high hydrophilicity, but conversely, secondary aggregation is apt to occur, and it is difficult to obtain good dispersion. And, these fine particles are not arbitrarily hydrophilic or lipophilic.

【0004】他方、顔料や染料などの粉体に大気圧グロ
−放電プラズマ処理を施してその表面を任意に親水性ま
たは疎水性を高めて、その濡れ特性を良好にし、或い
は、水性又は油性の溶媒中に容易に分散させることが行
われている。
On the other hand, powders such as pigments and dyes are subjected to an atmospheric pressure glow discharge plasma treatment to arbitrarily increase the hydrophilicity or hydrophobicity of the surface to improve the wettability, or to improve the aqueous or oily properties. It is easy to disperse in a solvent.

【0005】大気圧グロ−放電プラズマ処理の技術に関
連して、本発明者は、先に、粉体を、不活性気体にケト
ン類を混合した混合気体と共に、プラズマ励起中大気圧
下で連続的に通過させることによって粉体の表面を親水
性もしくは疎水性にする方法を見出した(特開平4−1
35638号公報参照)。しかし、この方法を実施する
ため具体的に開示されている装置は、円筒の外側に電極
をとりつけ、円筒内を粉体とヘリウム、アルゴン等の大
気圧プラズマを発生させるための不溶性ガスと共に電極
間を通過させるというものである。したがって、プラズ
マの処理時間は、ガスの流速に比例するため極めて短時
間となり、粉体に完全にプラズマ処理を施すことができ
ず、また、円筒内の限られた空間内で処理するために大
量の粉体が処理できないという欠点があった。
In connection with the technique of the atmospheric pressure glow discharge plasma treatment, the present inventor has first made it possible to continuously form a powder together with a mixture of an inert gas and a ketone at atmospheric pressure during plasma excitation. A method of making the surface of the powder hydrophilic or hydrophobic by allowing the powder to pass therethrough (Japanese Patent Laid-Open No. 4-1 / 1991).
No. 35638). However, the apparatus specifically disclosed for carrying out this method has an electrode attached to the outside of the cylinder, and the inside of the cylinder is mixed with a powder and an insoluble gas for generating an atmospheric pressure plasma such as helium, argon or the like. Is passed through. Therefore, the plasma processing time is extremely short because it is proportional to the gas flow rate, so that the plasma cannot be completely applied to the powder, and a large amount of plasma must be processed in a limited space inside the cylinder. However, there is a disadvantage that the powder cannot be processed.

【0006】そこで、本発明者は上記の点を改良した方
法を発明した(特願平4−163071号)。その方法
は、金属製の内筒の外側と、同軸の金属製の外筒の内側
の両方又は何れか一方に誘電体をライニングを行い、こ
れら内筒と外筒を同軸的に軸支して両者間に一定の間隙
を設け、これら内外筒を傾斜し、且つ、回転可能に設置
し、内外筒間に電圧を内外筒間に電圧をかけて両者の間
隙間に大気圧プラズマを発生させると共に該間隙間を被
処理物である粉体を移動させて連続的にプラズマ処理を
施すことを特徴とする粉体のプラズマ処理方法である。
この方法によれば大量の粉体を連続的にプラズマ処理を
行うことができる。
Accordingly, the present inventor has invented a method which improves the above points (Japanese Patent Application No. 4-163071). The method includes lining a dielectric on the outside of the metal inner cylinder and / or the inside of the coaxial metal outer cylinder, and coaxially supporting these inner and outer cylinders. A constant gap is provided between them, these inner and outer cylinders are tilted and rotatably installed, and a voltage is applied between the inner and outer cylinders to apply a voltage between the inner and outer cylinders to generate an atmospheric pressure plasma in the gap between them. A plasma processing method for powder is characterized in that the powder to be processed is moved in the gap to perform plasma processing continuously.
According to this method, a large amount of powder can be continuously subjected to plasma processing.

【0007】ところで、先に述べたように、最近粒度の
細かい超微粒子が得られ、この超微粒子が各分野で重要
視されるようになり、それに伴ってこれらの超微粒子を
良好に分散させることは極めて重要な問題である。しか
し、上述のプラズマ処理方法で超微粒子表面のプラズマ
処理方法を行なった場合、超微粒子が飛散等の問題を生
じ内外筒の間隙間を一定方向に移動せず、微粒子の表面
処理方法に必ずしも適しているとは言い難い。
[0007] As described above, recently, ultrafine particles having a fine particle size have been obtained, and these ultrafine particles have been regarded as important in various fields. Is a very important issue. However, when the plasma processing method of the ultrafine particle surface is performed by the above-described plasma processing method, the ultrafine particles cause a problem such as scattering and do not move in a fixed direction between the inner and outer cylinders and are not necessarily suitable for the fine particle surface processing method. It is hard to say that.

【0008】[0008]

【発明が解決しようとする課題】本発明者は、上記の超
微粒子表面に適したプラズマ処理方法を開発し、これに
よって、粒径が0.1ミクロン以下、nmオ−ダ−の超
微粒子を任意に親水性、親油性を付与すべく種々検討し
た結果、本発明を完成したもので、本発明の目的は超微
粒子を油、有機溶剤、樹脂、或いは、水に懸濁させたと
き、極めて良好に分散させるために超微粒子に対し大気
圧プラズマ処理方法を提供するにある。
The present inventor has developed a plasma processing method suitable for the above-mentioned ultrafine particle surface, whereby the ultrafine particles having a particle size of 0.1 μm or less and a nanometer order are obtained. As a result of various studies to impart hydrophilicity and lipophilicity arbitrarily, the present invention has been completed, and the object of the present invention is to make ultrafine particles extremely suspended when suspended in oil, organic solvent, resin, or water. It is an object of the present invention to provide an atmospheric pressure plasma treatment method for ultrafine particles for good dispersion.

【0009】[0009]

【課題を解決するための手段】本発明の要旨は、ガスの
導入口及び排出口を有する密閉容器内にプラズマ発生用
電極を設置し該電極の一方の上に誘電体よりなる容器を
載置し、該容器内に超微粒子を充填し、密閉容器内を大
気圧プラズマ発生雰囲気とし、両電極間に大気圧プラズ
マを発生させて微粒子表面を処理することを特徴とする
大気圧プラズマ処理方法であり、また、ガスの導入口及
び排出口を有する密閉容器の一方の端部近傍の上部に原
料供給口を、他方の端部近傍の下部に原料排出口を設
け、該容器を振動可能に、且つ、原料供給口をやや高く
傾斜して設置し、原料供給口より超微粒子の被処理粉体
を容器内に供給、移動させてると共に、該容器に外面に
プラズマ発生用電極を配置し、前記ガス導入口より大気
圧プラズマ発生ガスを導入して容器内を大気圧プラズマ
発生雰囲気とし、両電極間に大気圧プラズマを発生させ
て、連続的に微粒子表面を処理することを特徴とする大
気圧プラズマ処理方法である。
SUMMARY OF THE INVENTION The gist of the present invention is that a plasma generating electrode is placed in a closed container having a gas inlet and a gas outlet, and a container made of a dielectric is placed on one of the electrodes. Then, the container is filled with ultrafine particles, the inside of the closed container is set to an atmospheric pressure plasma generation atmosphere, and the atmospheric pressure plasma is generated between the two electrodes to process the surface of the fine particles. In addition, a raw material supply port is provided at an upper portion near one end of a sealed container having a gas inlet and a gas outlet, and a raw material outlet is provided at a lower portion near the other end, so that the container can be vibrated. And, the raw material supply port is installed at a slightly higher inclination, the powder to be treated of the ultrafine particles is supplied into the container from the raw material supply port and moved, and the plasma generating electrode is disposed on the outer surface of the container, Atmospheric pressure plasma generated gas from gas inlet Introduced to the container as atmospheric pressure plasma generating atmosphere, thereby generating an atmospheric pressure plasma between the electrodes, an atmospheric pressure plasma treatment method, which comprises treating the continuous fine particle surface.

【0010】すなわち、本発明は、nmオ−ダ−の超微
粒子の表面を大気圧プラズマ処理するに当たり、誘電体
よりなる容器内に超微粒子を充填して行ない、また、連
続的に処理するために、超微粒子を収納した容器を傾斜
及び振動をあたえて容器内の超微粒子を移動させて大気
圧プラズマ処理を施すのである。
That is, according to the present invention, when the surface of ultra-fine particles of the order of nm is subjected to atmospheric pressure plasma treatment, the ultra-fine particles are filled in a container made of a dielectric material and are continuously treated. Then, the container storing the ultrafine particles is subjected to the atmospheric pressure plasma treatment by moving the ultrafine particles in the container while tilting and vibrating.

【0011】更に、本発明を具体的にのべる。本発明に
おける超微粒子としては、粒径がナノメ−タのオ−ダ−
のような微細な粉体を言うのであって、超微粒子の種類
については従来プラズマ処理を施されているものであれ
ば何れでも良く、例えば、酸化チタンや酸化アルミニウ
ムなどの顔料、染料、セラミック、プラスチック、ガラ
ス等の各種の超微粒子に適用される。
Further, the present invention will be specifically described. The ultrafine particles in the present invention have an order of nanometer in particle diameter.
It refers to a fine powder such as, the type of ultra-fine particles may be any one that has been subjected to conventional plasma treatment, for example, pigments such as titanium oxide and aluminum oxide, dyes, ceramics, It is applied to various kinds of ultrafine particles such as plastic and glass.

【0012】本発明において使用する装置の一例を図1
に示す。図1において、ガス導入口2とガス排出口3を
有する容器1内に電極4,5を上下に間隙を保つように
配置する。この間隙は導入するガスの種類によって異な
るが、5〜40mm,通常は6〜15mm程度である。
この電極の少なくとも一方は予め誘電体としてセラミッ
ク溶射もしくはガラス層を全面に施す。そして、下方電
極5の上にガラスシャ−レ−6を載置する。ガラスシャ
−レ−の寸法としては、低面積が最大で電極と同じ面積
であり、また、高さは電極の間隙と同程度である。この
シャ−レの中に被処理粉体の超微粒子を入れる。
FIG. 1 shows an example of an apparatus used in the present invention.
Shown in In FIG. 1, electrodes 4 and 5 are arranged in a container 1 having a gas inlet 2 and a gas outlet 3 so as to keep a gap vertically. This gap varies depending on the type of gas to be introduced, but is about 5 to 40 mm, usually about 6 to 15 mm.
At least one of these electrodes is previously applied with a ceramic sprayed or glass layer as a dielectric over the entire surface. Then, the glass plate 6 is placed on the lower electrode 5. As for the dimensions of the glass plate, the low area is the maximum and the same area as the electrodes, and the height is about the same as the gap between the electrodes. Ultrafine particles of the powder to be treated are put in the dish.

【0013】連続的に行なう装置として図2を示す。図
2において、ガスの導入口2及び排出口3を有する密閉
容器1の一方の端部近傍の上部に原料供給口7を、他方
の端部近傍の下部に原料排出口8を設ける。この容器1
を約10度〜20度の傾斜をもって設置すると共に振動
可能にしてあり、容器内の原料を一方より他方に移動す
ることができるようになっている。この容器の外面に電
極4および5を配置する。原料はホッパ−より原料供給
口7を通して容器内に供給される。容器は傾斜して設置
されており且つ振動を与えると、容器内の原料は移動
し、原料排出口8の方向に向かう。容器のガスの導入口
2及び排出口3よりアルゴンとヘリウムとの混合ガスを
導入して容器内を大気圧プラズマ発生雰囲気とする。そ
して、両電極4および5間に5000Hz,2500V
の電圧をかけると、グロ−放電が起こり超微粒子表面は
大気圧プラズマ処理させる。処理された超微粒子は振動
によって移動し原料排出口より貯蔵槽9内に落下する。
なお、この装置を使用した場合には超微粒子は連続的に
処理されると共に、プラズマ発生用ガスを極めて少量ず
つ導入すれば作業出来、従来のように容器全体をガス置
換する必要なない。
FIG. 2 shows an apparatus for performing continuous operation. In FIG. 2, a raw material supply port 7 is provided at an upper portion near one end of a closed container 1 having a gas inlet 2 and a gas outlet 3, and a raw material outlet 8 is provided at a lower portion near the other end. This container 1
Is installed with an inclination of about 10 degrees to 20 degrees and is capable of vibrating, so that the raw material in the container can be moved from one side to the other side. The electrodes 4 and 5 are arranged on the outer surface of the container. The raw material is supplied from a hopper through a raw material supply port 7 into the container. When the container is installed at an angle and vibrates, the raw material in the container moves and moves toward the raw material discharge port 8. A mixed gas of argon and helium is introduced from the gas inlet port 2 and the gas outlet port 3 of the container to make the inside of the container an atmospheric pressure plasma generating atmosphere. 5000 Hz, 2500 V between both electrodes 4 and 5
Is applied, a glow discharge occurs and the surface of the ultrafine particles is subjected to atmospheric pressure plasma treatment. The treated ultrafine particles move by vibration and fall into the storage tank 9 from the raw material discharge port.
In addition, when this apparatus is used, ultrafine particles are continuously processed, and work can be performed by introducing a very small amount of a gas for plasma generation, and there is no need to replace the entire container with gas as in the conventional case.

【0014】大気圧グロ−放電プラズマ発生条件は、従
来の方法と異ならず、ヘリウム、アルゴンなどの不活性
ガスまたはこれらにケトン類を混合した混合ガスの雰囲
気下で、周波数は200Hz〜1,000,000H
z、電圧は2000V〜7000Vの電場を与えること
によってグロ−放電プラズマを生じる。超微粒子に親油
性を付与するためには、大気圧プラズマ発生用不活性ガ
スと共に炭化水素を存在させる。親油性を与える為に存
在させる炭化水素としてはプロパン、ブタン、ペンタ
ン、ヘキサン、トリメチルペンタン、トリメチロ−ルプ
ロパンのような脂肪族炭化水素及びその置換体、エチレ
ン、ブテン、ペンテン、ヘキセンのような不飽和脂肪族
炭化水素及びその置換体、ベンゼン、トルエン、キシレ
ン、スチレン、エチルベンゼン、クメンのような芳香族
炭化水素及びその置換体、シクロペンタン、シクロヘキ
サン、シクロヘキセンのような脂環式炭化水素及びその
置換体である。
The conditions for generating the atmospheric pressure glow discharge plasma are the same as those in the conventional method, and the frequency is 200 Hz to 1,000 in an atmosphere of an inert gas such as helium or argon or a mixed gas obtained by mixing these with ketones. 000H
z, a voltage is applied to generate an electric field of 2000 V to 7000 V to generate a glow discharge plasma. In order to impart lipophilicity to the ultrafine particles, a hydrocarbon is present together with an inert gas for generating atmospheric pressure plasma. Hydrocarbons to be provided to impart lipophilicity include aliphatic hydrocarbons such as propane, butane, pentane, hexane, trimethylpentane, and trimethylolpropane, and their substituted products, and unsaturated hydrocarbons such as ethylene, butene, pentene and hexene. Aliphatic hydrocarbons and their substituted products, aromatic hydrocarbons such as benzene, toluene, xylene, styrene, ethylbenzene and cumene and their substituted products, alicyclic hydrocarbons such as cyclopentane, cyclohexane and cyclohexene and their substituted products It is.

【0015】炭化水素の中、n−ブタンのような沸点の
低いものは、ボンベからそのまま混合すればよいが、ヘ
キサン、イソオクタンのような液体のものについては、
常温で蒸気圧を持ったものはそのまま溶液の上にガスを
通過させて分圧を利用して混合し、トリメチロ−ルプロ
パンのような高沸点のものは加熱して同様に混合すれば
良い。親油性を与える為のプラズマ処理時間は通常2秒
から10分であり処理時間が長い程重合被膜の厚みは増
加し親油効果は増す。
Among the hydrocarbons, those having a low boiling point, such as n-butane, may be mixed as they are from the cylinder, but those of liquids, such as hexane and isooctane,
Those having a vapor pressure at room temperature may be passed through the solution as it is and mixed using partial pressure, and those having a high boiling point such as trimethylolpropane may be mixed by heating. The plasma treatment time for imparting lipophilicity is usually from 2 seconds to 10 minutes, and the longer the treatment time, the greater the thickness of the polymer film and the greater the lipophilic effect.

【0016】次に親水性を与えるには、上記の反応装置
を使用し、その上下電極の間に超微粒子を位置せしめ、
例えばアルゴンガス70部、ヘリウムガス30部の混合
ガスを流入させて空気と置換せしめ、その後、グロ−放
電を起こせばよい。親水性を与える場合は多少の空気が
残存してもその効果はほとんど変わらない。
Next, in order to impart hydrophilicity, the above-described reactor is used, and ultrafine particles are positioned between the upper and lower electrodes.
For example, a mixed gas of 70 parts of argon gas and 30 parts of helium gas may be introduced to replace the air, and then a glow discharge may be generated. In the case of imparting hydrophilicity, the effect is hardly changed even if some air remains.

【0017】アルゴンガスは親水性に非常に有効である
が、アルゴンガスだけではグロ−放電が起こらないから
ヘリウムを混合するか、または微量のケトンを混合して
放電させる。ヘリウムは高価なガスなのでアルゴンガス
80部にヘリウム20部からアルゴン50部にヘリウム
50部までが好ましい。また、ケトンを混合する場合、
アルゴン中のケトンの割合は3ppm〜10ppmが好
ましく、10ppm以上では表面に有機性の薄膜を作る
ため親水性の効果がやや低下する。この場合のケトンの
役割はアルゴン中でのグロ−放電を可能にするために混
合するもので、放電を起こすケトンの限界が2〜3pp
mなので最も好ましいのは3〜5ppmである。
Although argon gas is very effective for hydrophilicity, glow discharge does not occur with argon gas alone, so helium is mixed or a small amount of ketone is mixed to discharge. Since helium is an expensive gas, it is preferable to use 20 parts of helium for 80 parts of argon gas and 50 parts of helium for 50 parts of argon. When mixing ketones,
The proportion of ketone in argon is preferably 3 ppm to 10 ppm, and if it is 10 ppm or more, an organic thin film is formed on the surface, so that the effect of hydrophilicity is slightly reduced. The role of the ketone in this case is to mix to enable a glow discharge in argon, and the limit of the ketone that causes the discharge is 2-3 pp.
m, the most preferable is 3 to 5 ppm.

【0018】使用するケトンとしてはアセトン、メチル
エチルケトン、メチルイソブチルケトン等が使用できる
が、低沸点のアセトン、メチルエチルケトンが蒸気圧も
高く混合しやすい。次に実施例をもって、具体的に本発
明を説明する。
As the ketone to be used, acetone, methyl ethyl ketone, methyl isobutyl ketone and the like can be used, but acetone and methyl ethyl ketone having a low boiling point have a high vapor pressure and are easily mixed. Next, the present invention will be specifically described with reference to examples.

【0019】[0019]

【実施例】【Example】

実施例1 図1に示すような内容積10リットルの大気圧プラズマ
処理装置において、あらかじめ誘電体としてセラミック
溶射を全面に施した上下電極1、2の間隙に超微粒子酸
化チタンの粉末を平坦に入れたガラスシャ−レを置き、
ガス入口からアルゴン60部、ヘリウム39.5部、n
−ブタン0.5部の混合ガスを3リットル/分の流量で
流入させ装置内部の空気を置換する。置換が完了したら
ガス流量を100cc/分にしぼり上下電極間に3KH
z、3800Vの高周波電圧を印加する。赤紫色のグロ
−放電が起こりプラズマ励起されn−ブタンのような炭
化水素は直ちにラジカル重合を起こし粉末の表面に極め
て薄い親油性の被膜を作る。未処理と処理したものの比
較を表1に示す。これは試験管にトルエンを入れその中
に一定量の粉末をいれて振蘯し静置して透明になるまで
の時間を測定したものであり懸濁時間が長いほど分散が
良好である。
Example 1 In an atmospheric pressure plasma processing apparatus having an internal volume of 10 liters as shown in FIG. 1, ultrafine titanium oxide powder was placed flat in the gap between upper and lower electrodes 1 and 2 which had been subjected to ceramic spraying as a dielectric beforehand. Place the glass dish,
60 parts of argon, 39.5 parts of helium from gas inlet, n
-A mixture of 0.5 parts of butane is introduced at a flow rate of 3 L / min to replace the air inside the apparatus. When the replacement is completed, the gas flow rate is reduced to 100 cc / min and 3 KH is applied between the upper and lower electrodes.
z, a high frequency voltage of 3800 V is applied. A red-purple glow discharge occurs and is excited by plasma, and hydrocarbons such as n-butane immediately undergo radical polymerization to form an extremely thin lipophilic film on the surface of the powder. Table 1 shows a comparison between untreated and treated. This is a measurement in which toluene is put in a test tube, a certain amount of powder is put therein, shaken and allowed to stand, and the time until it becomes transparent is measured. The longer the suspension time, the better the dispersion.

【0020】[0020]

【表1】 [Table 1]

【0021】実施例2 超微粒子の酸化チタン10gをガラスシャ−レ(壁の高
さ6mm)に入れ平面にねるようその表面をならす。内
容積10リットルの大気圧プラズマ反応装置の電極間に
先に述べた場合と同じように設置しアルゴン70部ヘリ
ウム30部の混合ガスを流入させて中の空気を置換す
る。流入量は2l/分、約7分でほぼ置換が終わるから
電極間に3KHz、3000Vの電圧を印加する。青紫
色のグロ−放電が起こりプラズマ励起されるから3分間
処理を行う。試験管に20ccの蒸留水を入れこの中に
処理した粉末を0.2gいれて振蘯し静置する。また、
未処理のものも同様にして比較する。この結果を表2に
示す。
Example 2 10 g of ultrafine titanium oxide particles were placed in a glass dish (wall height: 6 mm), and the surface was leveled so as to be flat. It is installed between the electrodes of an atmospheric pressure plasma reactor having an internal volume of 10 liters in the same manner as described above, and a mixed gas of 70 parts of argon and 30 parts of helium is introduced to replace air therein. The flow rate is 2 l / min, and the replacement is almost completed in about 7 minutes. Therefore, a voltage of 3 kHz and 3000 V is applied between the electrodes. Since blue-violet glow discharge occurs and plasma is excited, the treatment is performed for 3 minutes. 20 cc of distilled water is put in a test tube, 0.2 g of the treated powder is put in the test tube, and shaken and allowed to stand. Also,
Unprocessed ones are similarly compared. Table 2 shows the results.

【0022】実施例3 超微粒子の酸化チタン10gをガラスシャ−レに入れ実
施例1と全く同様の装置を使用して、同様に処理を行っ
た。但し、流入ガスはアルゴン99.9部アセトン0.
1部の混合ガスを使用した。アセトンの量をppmで換
算すれば2.6ppmである。電極間に3KHz、37
00Vの電圧を印加すると青白色のグロ−放電が起こ
る。このまま、5分間処理したものについて未処理品と
比較を行った。結果を表2に示す。
Example 3 10 g of ultrafine titanium oxide particles were placed in a glass dish and treated in the same manner as in Example 1 using the same apparatus. However, the inflowing gas was 99.9 parts of argon and 0.1 part of acetone.
One part of the gas mixture was used. When the amount of acetone is converted into ppm, it is 2.6 ppm. 3KHz between electrodes, 37
When a voltage of 00 V is applied, a blue-white glow discharge occurs. In this state, a sample treated for 5 minutes was compared with an untreated product. Table 2 shows the results.

【0023】実施例4 超微粒子の酸化アルミニウム5gをガラスシャ−レに入
れ実施例1と全く同様の装置を使用して親油化の処理を
行った。混合ガスとしてアルゴン60部ヘリウム40.
5部、キシレン0.5部の混合物を使用した。キシレン
の混合方法は常温でキシレン中に上記アルゴンガスを吹
き込みキシレンを飽和させて混合した。電極間に5KH
z、2900Vの電圧を印加した。赤紫色のグロ−放電
が起こり、この中で3分間プラズマ処理を行った。未処
理品のものと比較した結果は表2の通りである。
Example 4 5 g of ultrafine aluminum oxide was placed in a glass dish and subjected to lipophilic treatment using the same apparatus as in Example 1. 60 parts of argon as a mixed gas
A mixture of 5 parts and 0.5 part of xylene was used. The mixing method of xylene was such that the above-mentioned argon gas was blown into xylene at room temperature to saturate and mix xylene. 5KH between electrodes
z, a voltage of 2900 V was applied. A red-purple glow discharge occurred, in which plasma treatment was performed for 3 minutes. Table 2 shows the result of comparison with the untreated product.

【0024】実施例5 超微粒子の酸化アルミニウム5gをガラスシャ−レに入
れ実施例1と全く同様にして電極の間に置く。次に混合
ガスとしてアルゴン70部、ヘリウム29.7部にスチ
レン0.3部を混合して空気と置換させる。スチレンは
沸点が150℃と蒸気圧が低いので100℃に加温し蒸
気圧を高め液面にヘリウムを通過させてその蒸気を導入
した。1KHz、3200Vの電圧を印加するとグロ−
放電が起こり粉末の表面に薄いスチレンの重合膜を作
る。この粉末は極めて疎水性が強く親油性である。次に
未処理品のものと比較した結果は表2の通りである。
Example 5 5 g of ultrafine aluminum oxide was placed in a glass dish and placed between the electrodes in exactly the same manner as in Example 1. Next, as a mixed gas, 70 parts of argon and 29.7 parts of helium are mixed with 0.3 part of styrene to be replaced with air. Since styrene has a low boiling point of 150 ° C. and a low vapor pressure, it was heated to 100 ° C. to increase the vapor pressure and helium was passed through the liquid surface to introduce the vapor. When a voltage of 1 KHz and a voltage of 3200 V are applied, glow occurs.
Discharge occurs and a thin styrene polymer film is formed on the surface of the powder. This powder is very hydrophobic and lipophilic. Next, the result of comparison with the untreated product is shown in Table 2.

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【発明の効果】以上、述べたように、本発明は超微粒子
がプラズマ処理中に飛散等の問題を生じることなく、表
面処理出来、殊に連続的に行なう場合には容器内のガス
置換等を操作をすることなく、プラズマ処理することが
できる。
As described above, according to the present invention, ultrafine particles can be subjected to surface treatment without causing problems such as scattering during plasma processing. The plasma treatment can be performed without operating the.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法を実施するための装置の説明図で
ある。
FIG. 1 is an explanatory diagram of an apparatus for performing a method of the present invention.

【図2】本発明の方法を連続的に行なう実施するための
装置の説明図である。
FIG. 2 is an explanatory view of an apparatus for carrying out the method of the present invention continuously.

【図3】図2で示した装置の断面図である。FIG. 3 is a sectional view of the device shown in FIG. 2;

【符号の説明】[Explanation of symbols]

1 容器 2 ガス導入口 3 ガス排出口 4 上方電極 5 下方電極 6 ガラスシャ−レ− 7 原料供給口 8 原料排出口 9 貯蔵槽 DESCRIPTION OF SYMBOLS 1 Container 2 Gas inlet 3 Gas outlet 4 Upper electrode 5 Lower electrode 6 Glass tray 7 Raw material supply port 8 Raw material discharge port 9 Storage tank

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B01J 19/00 - 19/34 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) B01J 19/00-19/34

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ガスの導入口及び排出口を有する密閉容器
内にプラズマ発生用電極を設置し該電極の一方の上に誘
電体よりなる容器を載置し、該容器内にナノメーターオ
ーダーの超微粒子を充填し、密閉容器内を大気圧プラズ
マ発生雰囲気とし、両電極間に大気圧プラズマを発生さ
せて前記超微粒子表面を処理することを特徴とする大気
圧プラズマ処理方法。
1. A placing one container made of a dielectric material on top of the plasma generating electrode in a sealed container and placed the electrode having the inlet and outlet of the gas, nanometer O within the vessel
An atmospheric pressure plasma generating atmosphere in a closed vessel, and an atmospheric pressure plasma is generated between both electrodes to treat the surface of the ultrafine particles.
【請求項2】ガスの導入口及び排出口を有する密閉容器
内の一方の端部近傍の上部に原料供給口を、他方の端部
近傍に原料排出口を設け、該容器を振動可能に、且つ、
原料供給口をやや高く傾斜して設置し、原料供給口より
ナノメーターオーダーの超微粒子の被処理粉体を容器内
に供給、移動させると共に、該容器に外面にプラズマ発
生用電極を配置し、前記ガス導入口より大気圧プラズマ
発生ガスを導入して容器内を大気圧発生雰囲気とし、両
電極間に大気圧プラズマを発生させて、連続的に前記超
微粒子表面を処理することを特徴とする大気圧プラズマ
処理方法。
2. A closed container having a gas inlet and a gas outlet, a raw material supply port is provided at an upper portion near one end and a raw material discharge port is provided near the other end, and the container can be vibrated. and,
The raw material supply port is installed at a slightly higher inclination, and
Along with supplying and moving the powder to be treated of nanometer-order ultrafine particles into the container, an electrode for plasma generation is arranged on the outer surface of the container, and an atmospheric pressure plasma generating gas is introduced from the gas introduction port into the container. was atmospheric pressure generated atmosphere, by generating an atmospheric pressure plasma between the electrodes, an atmospheric pressure plasma treatment method, which comprises treating the continuously the ultrasonic <br/> fine particle surface.
JP28903692A 1992-10-27 1992-10-27 Ultrafine particle surface treatment method Expired - Fee Related JP3297881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28903692A JP3297881B2 (en) 1992-10-27 1992-10-27 Ultrafine particle surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28903692A JP3297881B2 (en) 1992-10-27 1992-10-27 Ultrafine particle surface treatment method

Publications (2)

Publication Number Publication Date
JPH06134296A JPH06134296A (en) 1994-05-17
JP3297881B2 true JP3297881B2 (en) 2002-07-02

Family

ID=17738001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28903692A Expired - Fee Related JP3297881B2 (en) 1992-10-27 1992-10-27 Ultrafine particle surface treatment method

Country Status (1)

Country Link
JP (1) JP3297881B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2737728B1 (en) * 1995-08-09 1997-10-03 Oreal PROCESS FOR THE PASSIVATION OF A PHOTOREACTIVE MINERAL PIGMENT BY TREATMENT WITH A COLD PLASMA OF A GAS AND COSMETIC OR PHARMACEUTICAL COMPOSITION, STABLE IN LIGHT, CONTAINING AT LEAST ONE PIGMENT THUS PASSIVE
BR0208242A (en) * 2001-03-27 2004-04-13 Apit Corp S A Plasma surface treatment processes for the treatment of an object or particles and powder formation and apparatus for carrying out a surface treatment process
WO2011010620A1 (en) * 2009-07-23 2011-01-27 株式会社魁半導体 Powder surface treatment apparatus and powder surface treatment method
EP2559806A1 (en) 2011-08-17 2013-02-20 Center of Excellence Polymer Materials and Technologies (Polimat) Method for increasing the hydrophilicity of polymeric materials
CN104968719B (en) 2013-01-03 2018-11-06 信越化学工业株式会社 The organic silicon granule and manufacturing method of hydrophiling
WO2015037877A1 (en) * 2013-09-10 2015-03-19 가천대학교 산학협력단 Surface treatment apparatus and surface treatment method
KR101603787B1 (en) * 2013-09-10 2016-03-18 가천대학교 산학협력단 Apparatus and method for surface treatment
JP2021130105A (en) * 2020-02-21 2021-09-09 リンテック株式会社 Method for producing organic particle, organic particle, composition, coating film, and laminate

Also Published As

Publication number Publication date
JPH06134296A (en) 1994-05-17

Similar Documents

Publication Publication Date Title
Bulychev et al. Ceramic nanostructures obtained by acoustoplasma technique
US5176938A (en) Process for surface treatment of pulverulent material
JP3297881B2 (en) Ultrafine particle surface treatment method
US7658340B2 (en) System and method for nanoparticle and nanoagglomerate fluidization
KR101157144B1 (en) A Dispersing Apparatus for Nano Powders Using Intensity Focused Ultrasonics Wave and A Dispersing Method Using Thereof
Ioni Synthesis of Metal Oxide Nanoparticles and Formation of Nanostructured Layers on Surfaces under Ultrasonic Vibrations.
Profili et al. Influence of the voltage waveform during nanocomposite layer deposition by aerosol-assisted atmospheric pressure Townsend discharge
JP3806847B2 (en) Powder processing method and apparatus using atmospheric pressure glow discharge plasma
US20130236727A1 (en) Method for attaching nanoparticles to substrate particles
KR101814103B1 (en) Dispersionizer for nano particle by using ultrasonic streaming and shockwave
Baissac et al. Synthesis of sub-micronic and nanometric PMMA particles via emulsion polymerization assisted by ultrasound: Process flow sheet and characterization
Vasilev et al. Dispersion of carbon nanotubes clusters in pulsating and vortex in-line apparatuses
Htet et al. Prospects for the development of ultra-jet dispersion technology for nanocontaining suspensions
Leroy et al. Treatment of a polyethylene powder using a remote nitrogen plasma reactor coupled with a fluidized bed: influence on wettability and flowability
Scicolone et al. Fluidization and mixing of nanoparticle agglomerates assisted via magnetic impaction
Scicolone et al. Environmentally benign dry mechanical mixing of nano-particles using magnetically assisted impaction mixing process
Jones et al. Plasma enhanced vortex fluidic device manipulation of graphene oxide
JPH04269721A (en) Polymer beads having modified surface and its production
JPH04269720A (en) Polymer bead having modified surface and its production
Vacková et al. Plasma Treatment of Powders and Fibers
Halapi et al. Ultrasonic Powder Atomization for Additive Manufacturing
Htet et al. To the Question of Efficiency of Different Methods of Dispersion of Nanosecuring Suspensions
JPH06145212A (en) Method for improving surface of powder
JP2004503615A (en) Apparatus and method for plasma treatment of particulate matter
JP3117489B2 (en) Surface-modified plastic fine particles and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees