JPH09141058A - Refining membrane for semiconductor wafer treating liquid and method therefor - Google Patents

Refining membrane for semiconductor wafer treating liquid and method therefor

Info

Publication number
JPH09141058A
JPH09141058A JP31976495A JP31976495A JPH09141058A JP H09141058 A JPH09141058 A JP H09141058A JP 31976495 A JP31976495 A JP 31976495A JP 31976495 A JP31976495 A JP 31976495A JP H09141058 A JPH09141058 A JP H09141058A
Authority
JP
Japan
Prior art keywords
semiconductor wafer
wafer
membrane
treating
metal ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31976495A
Other languages
Japanese (ja)
Other versions
JP3734545B2 (en
Inventor
Koichi Ohira
幸一 大平
Mutsuhiro Amari
睦浩 甘利
Eriko Usui
恵理子 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Millipore KK
Original Assignee
Nihon Millipore KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Millipore KK filed Critical Nihon Millipore KK
Priority to JP31976495A priority Critical patent/JP3734545B2/en
Publication of JPH09141058A publication Critical patent/JPH09141058A/en
Application granted granted Critical
Publication of JP3734545B2 publication Critical patent/JP3734545B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a porous membrane having a function to selectively capture trace metal ions simultaneously with filtration in particular in the stage of refining a positive type resist treating soln. of semiconductor wafer and wafer washing liquid. SOLUTION: This process for producing a filter membrane comprises coating a functional group having a wire cylindrical structure, a functional group having a silotherm structure regenerated with hot water and a functional group forming a complex and this method for treating the semiconductor wafer comprises using the same. When the method is applied to the refining of the semiconductor wafer treating liquid, not only the filtration is effected but metal ions are extremely selectively removed. The loss of org. alkalis is lessened in an org. alkaline liquid. The purity of the washing water is thus improved. An HBMF 2 in particular has an effect of removing a slight amt. of metals from the inside of pure water and has further the particle removal performance equal to or better than that of a general filter. Then, the minority carrier recombination life time when the wafer is subjected to treating and washing by using the ultrapure water treated by the filter membrane is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は有機酸とのイオン交
換反応で微量の金属イオンを除去することにより、半導
体ウエハのポジ型レジスト処理溶液やウエハ洗浄水の品
質を高く保持する精製に関し、特に濾過と同時に微量金
属イオンを選択的に捕捉する機能を有する多孔質膜に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to purification for maintaining high quality of a positive resist processing solution for semiconductor wafers and wafer cleaning water by removing a trace amount of metal ions by an ion exchange reaction with an organic acid, The present invention relates to a porous membrane having a function of selectively capturing trace metal ions simultaneously with filtration.

【0002】[0002]

【従来の技術】従来より、ポジ型レジストを処理する有
機アルカリ現像液中に含まれる微量の金属イオンの除去
はウエハの電気特性を保持するために重要課題となって
いた。またウエハそのもの、特に取扱量の甚大なシリコ
ンウエハは、鏡面研磨後の洗浄工程は不可欠でできるだ
け金属イオンの少ない純水によることが所望されてき
た。このような観点から例えば、特開昭57−1390
42号にはポリアクリルゲル系の弱酸性イオン交換樹脂
を有機アルカリ溶液中に投入し有機アルカリ溶液中に溶
存する微量の金属イオンを選択的に除去することが提案
されている。またウエハ洗浄水に関してもイオン交換の
ために必要に応じて繰り返しイオン交換設備を設けるこ
とは大がかりになるので、界面活性剤の使用に種々工夫
がなされ、例えば特開平4−7830号には高分子界面
活性剤の使用がその後の洗浄水によるリンスを容易にす
るとして提案されている。
2. Description of the Related Art Conventionally, the removal of a trace amount of metal ions contained in an organic alkaline developer for treating a positive resist has been an important issue for maintaining the electrical characteristics of a wafer. Further, for the wafer itself, especially for a silicon wafer that requires a large amount of handling, a cleaning step after mirror polishing is indispensable, and it has been desired to use pure water containing as few metal ions as possible. From this point of view, for example, JP-A-57-1390
No. 42 proposes that a polyacrylic gel-based weakly acidic ion exchange resin is introduced into an organic alkaline solution to selectively remove a trace amount of metal ions dissolved in the organic alkaline solution. Further, with respect to the wafer cleaning water, it is a large scale to repeatedly install ion exchange equipment for ion exchange as necessary, so that various measures have been taken in using a surfactant. For example, JP-A-4-7830 discloses a polymer. The use of surfactants has been proposed as facilitating subsequent rinse with rinse water.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
た有機アルカリ溶液の処理方法においてはアルカリイオ
ンの若干の消失は回避出来ず、金属イオンも相当程度溶
液に残存してしまう欠点があった。また、前記高分子界
面活性剤の使用においても有機カルボン酸のイオン交換
能だけを利用しているので金属イオンの除去に於て性能
上なお改善が求められていた。更に、一旦調製した超純
水をユースポイントにおいて使用するに当たり、途中の
ラインからの微量不純物の混入や溶出による純度低下を
回避するために、現行のイオン交換装置をその都度ユー
スポイントに設置することはプロセス上の制約もあり必
ずしも容易ではなかった。これらの不便を容易に解決す
ることを課題にした。
However, in the above-mentioned method for treating an organic alkaline solution, it is unavoidable that some of the alkali ions are lost, and metal ions also remain in the solution to a considerable extent. Further, even when the above-mentioned polymer surfactant is used, only the ion-exchange ability of the organic carboxylic acid is utilized, and therefore there is a demand for further improvement in performance in removing metal ions. Furthermore, when using ultrapure water once prepared at the point of use, install the current ion exchange device at the point of use each time in order to avoid deterioration of purity due to the mixing and elution of trace impurities from the line in the middle. Was not always easy due to process restrictions. The task was to solve these inconveniences easily.

【0004】[0004]

【課題を解決するための手段】このような背景のもと
に、種々の半導体ウエハの処理液を精製して途中に含有
されている金属イオンを選択的に、また有機アルカリは
そのまま液中にとどめ金属イオンのみを選択的に除去す
るために、種々検討した。まず第一に有機アルカリが金
属イオンに比較して構造的に大きいこと、一方多くの金
属イオンが有機アルカリカチオンとは異なって錯体形成
能を有することに注目した。更にこれらの課題が発生す
る工程はもともと含有される金属イオンの少なくなった
最終工程に近い工程中の課題であるのでその中でも半導
体処理液のユースポイント直前に設置される濾過工程に
改善を加え目的を達成することとして検討を重ねた。そ
の結果、イオン交換の前後に直接間接に結合する有機酸
と有機塩基を有する重合体を既存の多孔質膜上にその濾
過性能を失わないように例えば特公平4−75051号
に開示してあるように被覆した膜を作成し、これを半導
体ウエハ処理液の精製に適用したところ濾過はもとよ
り、金属イオンはきわめて選択的に除去され、有機アル
カリ液においては有機アルカリの損失が減少し、洗浄水
においては純度が極めて向上することを見いだし本願発
明を完成するに至った。
Against this background, processing liquids for various semiconductor wafers are purified to selectively select metal ions contained in the processing liquid, and organic alkali is directly added to the liquid. Various studies were conducted to selectively remove only the retained metal ions. First, it was noted that organic alkalis are structurally larger than metal ions, while many metal ions have complex-forming ability unlike organic alkali cations. Furthermore, the process in which these problems occur is originally a process in the process close to the final process in which the amount of metal ions contained is small, so the objective is to improve the filtration process installed immediately before the point of use of the semiconductor processing liquid. We repeated examination to achieve. As a result, a polymer having an organic acid and an organic base, which are directly and indirectly bonded before and after ion exchange, is disclosed on, for example, Japanese Patent Publication No. 4-75051 so that the filtration performance is not lost on the existing porous membrane. A film coated in this manner was applied to the purification of the semiconductor wafer processing solution, and metal ions were extremely selectively removed not only by filtration, but the loss of organic alkali in the organic alkaline solution was reduced. Then, they found that the purity was extremely improved, and completed the present invention.

【0005】[0005]

【発明の実施の形態】ここに、イオン交換の前後に直接
間接に結合する有機酸と有機塩基を有する重合体とは、
イオン交換前に有機酸と有機塩基が中和反応により結合
している重合体であり蛇かご構造を有する重合体やベン
ゾイン誘導体のモノマーと有機酸モノマーならびに有機
塩基モノマーから形成される重合体いわゆるサイロサー
ム構造を意味し、さらにイオン交換後に有機酸と結合し
た金属イオンが有機塩基に配位結合する重合即ち金属イ
オンを介して有機酸と有機塩基が間接的に結合する重合
体を意味する。以下には簡単のためこれら重合体をハイ
ブリッド構造を形成する有機酸および有機塩基からなる
重合体と称する。有機塩基とはアミン、スルフィドおよ
びホスフィンを意味するとともにそれぞれの第四級アン
モニウム塩基、第三級スルホニウム塩基および第四級ホ
スホニウム塩基をも指す。以下には簡単のため窒素化合
物である各種アミンと第四級アンモニウム塩基で説明す
るが限定を意味しているものではない。
BEST MODE FOR CARRYING OUT THE INVENTION Here, a polymer having an organic acid and an organic base which are directly and indirectly bonded before and after ion exchange is:
A polymer in which an organic acid and an organic base are bound by a neutralization reaction before ion exchange, a polymer having a serpentine cage structure, a polymer formed from a benzoin derivative monomer, an organic acid monomer, and an organic base monomer, so-called silotherm The structure means a polymer in which a metal ion bonded to an organic acid after ion exchange is coordinate-bonded to an organic base, that is, a polymer in which an organic acid and an organic base are indirectly bonded via a metal ion. Hereinafter, for the sake of simplicity, these polymers are referred to as a polymer composed of an organic acid and an organic base forming a hybrid structure. Organic bases mean amines, sulfides and phosphines as well as their respective quaternary ammonium bases, tertiary sulfonium bases and quaternary phosphonium bases. For the sake of simplicity, various amines which are nitrogen compounds and a quaternary ammonium salt group will be described below, but they are not meant to be limiting.

【0006】蛇かご構造を有する被覆は、予め多孔質膜
を被覆した重合体を修飾してえられた第四級アンモニウ
ムヒドロキサイドと重合性有機酸とを中和反応により結
合しこの有機酸を多孔質膜上で重合して得る事ができ
る。これらの第四級アンモニウムヒドロキサイドの合成
法は既に知られており例えばスチレンとジビニルベンゼ
ン数%の共重合用混合物もしくは共重合体に対して、被
覆前後に例えばモノクロルメチルメチルエーテルをフリ
ーデル−クラフト触媒の存在下、ベンゼン核に側鎖のモ
ノハロゲン化メチルを導入し三級アミンを付加させれば
容易に得られ、アルカリ金属の水酸化物で処理して合成
される。重合性有機酸とはアクリル酸、メタアクリル
酸、ビニル酢酸、アリル酢酸、マレイン酸、イタコン酸
などの不飽和有機酸が好適である。
The coating having a snake-cage structure is formed by modifying a polymer coated with a porous film in advance to bind a quaternary ammonium hydroxide and a polymerizable organic acid by a neutralization reaction to bind this organic acid. It can be obtained by polymerization on a porous membrane. Methods for synthesizing these quaternary ammonium hydroxides are already known, and for example, a mixture or copolymer for copolymerization of styrene and a few% of divinylbenzene is mixed with, for example, monochloromethyl methyl ether before and after coating by Friedel-Crafts. In the presence of a catalyst, a side chain monohalogenated methyl halide is introduced into a benzene nucleus and a tertiary amine is added to the benzene nucleus to easily obtain the compound, which is then synthesized by treating with an alkali metal hydroxide. The polymerizable organic acid is preferably an unsaturated organic acid such as acrylic acid, methacrylic acid, vinylacetic acid, allylacetic acid, maleic acid or itaconic acid.

【0007】このようにして得られた多孔質膜を適用す
ると、精製すべきウエハ処理の有機アルカリ溶液中の有
機アルカリカチオンは蛇かご構造を通過し難く、一方金
属イオンは抵抗なく蛇かご構造の内部に移動して前記原
料有機酸のカルボキシル基に接近して結合され除去され
ると推定し得る。即ち、有機アルカリカチオンのイオン
交換は抑止され相対的に金属イオンが除かれ所期の目標
を達成するところとなる。
When the porous film thus obtained is applied, the organic alkali cations in the organic alkali solution for wafer processing to be purified are less likely to pass through the snake cage structure, while the metal ions are resistant to the snake cage structure. It can be presumed that it moves inside and approaches the carboxyl group of the starting organic acid to be bound and removed. That is, the ion exchange of the organic alkali cations is suppressed and the metal ions are relatively removed, so that the intended target is achieved.

【0008】サイロサーム構造を有する重合体は、その
製法を開示した特開昭51−148683から明らかな
ようにアミンとしてトリアリルアミン、メチルジアリル
アミン、エチルジアリルアミン、1,4−ビス(N,N
−ジアリルアミノメチル)ベンゼン、2,4,6−トリ
ス(N,N−ジアリルアミノメチル)トルエン、1,
2,4−トリス(N,N−ジアリルアミノメチル)ベン
ゼン、1,6−ビス(N,N−ジアリルアミノ)ヘキサ
ン、n−プロピルジアリルアミン、ベンジルジアリルア
ミンから選択したアミンを使用し、さらに前記重合性有
機酸と不飽和ベンゾインあるいはそのエーテル誘導体か
らなるモノマーを用いて重合体を多孔質膜上に形成して
得られる。このようにして得られた多孔質膜を適用する
とイオン交換はもとより加熱温水での逆洗により濾過膜
としてもイオン交換膜としても再生される特徴を有す
る。
The polymer having a silotherm structure has triallylamine, methyldiallylamine, ethyldiallylamine and 1,4-bis (N, N) as amines, as is apparent from JP-A-51-148683, which discloses the production method.
-Diallylaminomethyl) benzene, 2,4,6-tris (N, N-diallylaminomethyl) toluene, 1,
An amine selected from 2,4-tris (N, N-diallylaminomethyl) benzene, 1,6-bis (N, N-diallylamino) hexane, n-propyldiallylamine, and benzyldiallylamine is used. It is obtained by forming a polymer on a porous film using an organic acid and a monomer composed of unsaturated benzoin or its ether derivative. When the porous membrane thus obtained is applied, it has a feature that it is regenerated as a filtration membrane and an ion exchange membrane by backwashing with heated hot water as well as ion exchange.

【0009】錯形成をなす構造を有する重合体について
は、配位子となる元素とカルボキシル基との位置関係が
重要で、イミノ二酢酸で代表されるように一定の距離関
係が分子構造内に求められるのでアミンと有機酸が所定
の構造を持つように不飽和アルキルアミンと不飽和脂肪
酸の交互共重合体を形成するような関係が望ましい。ア
ミンの導入は前記した三級アミンを一、二級アミンに置
き換えて脱ハロゲン化水素反応を行い容易になされる。
有機酸は前述した不飽和脂肪族有機酸以外にイミノ二酢
酸を前記一、二級アミン導入と同様に脱ハロゲン化水素
反応により側鎖アルキルに導入し得、前記の導入されて
できた一、二級アミン部にハロ置換の各種脂肪族有機酸
を反応し導入しても構わない。このようにして得られた
多孔質膜を適用するとイオン交換は錯形成をともない前
記有機アルカリ溶液中のイオン除去の場合などは相対的
に選択的金属イオン除去が可能となった。
For a polymer having a structure forming a complex, the positional relationship between the element serving as a ligand and the carboxyl group is important, and a certain distance relationship within the molecular structure is represented by iminodiacetic acid. Since it is required, it is preferable that the amine and the organic acid have a predetermined structure so that an alternating copolymer of unsaturated alkylamine and unsaturated fatty acid is formed. The introduction of amine is facilitated by replacing the above-mentioned tertiary amine with primary and secondary amines and performing a dehydrohalogenation reaction.
In addition to the unsaturated aliphatic organic acid described above, the organic acid may be iminodiacetic acid introduced into the side chain alkyl by dehydrohalogenation reaction in the same manner as the introduction of a secondary amine, and one obtained by the introduction described above, A halo-substituted various aliphatic organic acid may be reacted and introduced into the secondary amine portion. When the porous membrane obtained in this manner is applied, ion exchange is accompanied by complex formation, thereby enabling relatively selective removal of metal ions in the case of removing ions in the organic alkaline solution.

【0010】また、上記の構造を合わせて保有する被覆
多孔質膜の形成も汎用性、適用性が高まり有為な特徴を
有する事が判った。ところで、上述した各種の有機酸は
前記各種の反応を容易、確実に進めるためにエステル体
や有機ニトリルなどの有機酸に変換し得るモノマー例え
ば、メチルアクリレート、メチルメタアクリレート、ア
クリルニトリルやメタアクリロニトリルなどに置き換え
て被覆して以下有機酸に導いても構わない。
Further, it has been found that the formation of the coated porous film having the above-mentioned structure together also has an important feature because the versatility and applicability are increased. By the way, the above-mentioned various organic acids are monomers that can be converted into organic acids such as ester and organic nitrile in order to easily and surely proceed the various reactions, for example, methyl acrylate, methyl methacrylate, acrylonitrile and methacrylonitrile. It is also possible to replace it with and coat it to lead to an organic acid.

【0011】重合体形成について詳述すると、多孔質膜
との関連で言えば多孔質膜の官能基を利用して、無けれ
ばアルカリ処理や各種の放射線を利用して活性点を形成
してグラフト重合するのが好ましいが、物理的に膜を取
り囲むように被覆して膜面の表から裏面まで孔内を延伸
する強固な構造をもたせてもよい。被膜となる重合体は
一挙に表面で重合させても、例えば先に記述した蛇かご
構造をもたせる為に初めに窒素含有の重合体を被覆し、
更に四級化処理を行い不飽和有機酸を結合した後に再度
重合反応を行ってもよい。最初の重合の後の反応は必ず
しも重合反応だけを意味するものではなく活性なハロゲ
ン原子とイミノ二酢酸との反応のように後で重合体を修
飾する置換反応や付加反応をすすめることをも意味す
る。
The polymer formation will be described in detail. In the context of the porous membrane, the functional groups of the porous membrane are used, and if not, alkali treatment or various kinds of radiation is used to form active sites to graft. It is preferable to polymerize, but it is also possible to cover the membrane so as to physically surround the membrane so as to have a strong structure in which the inside of the hole extends from the front side to the back side of the membrane. Even if the polymer to be a film is polymerized on the surface all at once, for example, a nitrogen-containing polymer is first coated to have the above-described snake cage structure,
Further, a quaternization treatment may be performed to bond an unsaturated organic acid, and then the polymerization reaction may be performed again. The reaction after the first polymerization does not necessarily mean only the polymerization reaction, but also means that a substitution reaction or an addition reaction that modifies the polymer later such as a reaction between an active halogen atom and iminodiacetic acid is promoted. To do.

【0012】既存の多孔質膜とは、各種のポリオレフィ
ンあるいはそのハロゲン置換体、ポリエーテルスルホ
ン、ポリカーボネート、ポリアミド、その他の材質で作
られた0.02μmから数μmの公称孔径を持つ物が対
象である。濾過性能を失わないとは元来多孔質膜が有す
る孔径を縮小することがあってもその影響が使用目的の
篩効果、流液速度が事前に設定した許容できる範囲なら
構わなく、事前に大きめの孔径の多孔質膜を処理して所
定の孔径とするなどの当然の対応を前提としたものであ
る。被覆においては前記した孔径に対する影響の大きい
因子としては、特に膜面上での重合体形成の際は、重合
中の粘度が重要である。あまり長い連鎖長は粘度を高く
するので孔径制御が困難となるため、重合開始剤使用の
際は常法の数倍程度用いる事が肝要である。以下に実施
例で本願発明の具体例を記載する。
The existing porous membrane is intended to be made of various polyolefins or halogen-substituted products thereof, polyether sulfone, polycarbonate, polyamide, and other materials having a nominal pore diameter of 0.02 μm to several μm. is there. If the filtration performance is not lost, the pore size originally possessed by the porous membrane may be reduced, but the effect does not matter if the intended sieve effect and the flow rate are within the preset allowable range. It is assumed that the porous membrane having the above-mentioned pore diameter is processed to have a predetermined pore diameter, and that it is naturally taken. As a factor having a large influence on the pore size in the coating, the viscosity during the polymerization is important particularly when the polymer is formed on the film surface. If the chain length is too long, the viscosity becomes so high that it becomes difficult to control the pore size. Therefore, when using a polymerization initiator, it is important to use the polymerization initiator in several times the usual method. Hereinafter, specific examples of the present invention will be described in Examples.

【0013】[0013]

【実施例】【Example】

実施例1 ハイブリッド構造を有する有機酸および塩基からなる重
合体を被覆してなる多孔質膜の製造 500mlのフラスコに100mlのジメチルスルホキ
サイドを供し撹拌し、α−アリル−α−ベンゾイルベン
ジルメチルエーテル1.33g、トリアリルアミン塩酸
塩6.94g、カセイカリの10.0wt%メタノール
溶液(カセイカリ40.0mmol相当)、4−クロロ
メチルビニルベンゼン7.63g、アクリル酸メチル
8.60gおよび4,4’−アゾビス(4−シアノバレ
リアン酸)0.500gをジメチルスルホキシドとメタ
ノールの等量混合物に溶解した100mlの溶液を24
時間かけて供給した。この間フラスコ内温は室温から7
0.0℃まで直線的に昇温するように制御した。室温ま
でフラスコを冷却し内容液を、超高分子のポリエチレン
(分子量100万)からなる直径47.0mm、厚さ1
00μ、孔径0.2μ、開孔率60.0%の円形状の多
孔質膜20枚を互いに接触しないように配置した円筒形
の容器に静かにデカンテーションした。ついで、円筒形
容器の低部バルブを開き前記内容液を抜き去り、湿潤状
態の多孔質膜を円筒容器に収納したまま80.0℃の乾
燥器内にて一夜熱処理した。乾燥器より円筒容器を取り
出し、ジメチルスルホキサイドと水で多孔質膜を洗浄し
て溶出物が無くなることを確認後、多孔質膜を500m
lのオートクレーブに移し替え300mlのジメチルス
ルホキサイドを供し多孔質膜を浸漬し振動を与えながら
120℃まで昇温保持し、トリメチルアミン塩酸塩0.
955g、イミノジアセトニトリル0.950gおよび
カセイカリの10.0wt%メタノール溶液(カセイカ
リ50.0mmol相当)からなる100mlのジメチ
ルスルホキサイド溶液を2.00時間かけて加圧ポンプ
で添加しさらに3.00時間反応を継続する。常温まで
冷却後濾過膜を取り出し10.0wt%アクリル酸水溶
液で繰り返し洗浄しアクリル酸の消費が無くなるまで継
続する。洗浄終了後濾過膜を取り出しアクリル酸メチル
5.00wt%のジメチルスルホキサイド溶液に浸漬し
70℃にて1時間処理し、続いてカセイカリ10.0w
t%のメタノール溶液中で3.00時間更に水中で1.
00時間リフラックス処理した。冷却後濾過膜を取り出
し10.0wt%のアクリル酸水溶液で繰り返し洗浄し
アクリル酸の消費が無くなるまで継続し、水洗後減圧乾
燥してハイブリッド構造を有する有機酸および塩基から
なる重合体を被覆してなる多孔質膜(以下同様にして製
造した多孔質膜をHBMF2と略記する)を得た。
Example 1 Production of Porous Membrane Coated with Polymer Consisting of Organic Acid and Base Having Hybrid Structure 100 ml of dimethyl sulfoxide was put into a 500 ml flask and stirred to obtain α-allyl-α-benzoylbenzyl methyl ether. 1.33 g, triallylamine hydrochloride 6.94 g, 10.0 wt% methanol solution of causticum (corresponding to causticum 40.0 mmol), 4-chloromethylvinylbenzene 7.63 g, methyl acrylate 8.60 g and 4,4′- 24 of 100 ml of a solution of 0.500 g of azobis (4-cyanovalerianic acid) in an equal mixture of dimethyl sulfoxide and methanol
Supplied over time. During this time, the temperature inside the flask is from room temperature to 7
The temperature was controlled so as to linearly increase to 0.0 ° C. The flask was cooled to room temperature, and the content liquid was made of ultra-high molecular weight polyethylene (molecular weight: 1,000,000), the diameter was 47.0 mm, and the thickness was 1
20 circular porous membranes having a diameter of 00μ, a pore diameter of 0.2μ, and an opening ratio of 60.0% were decanted gently into a cylindrical container arranged so as not to contact each other. Then, the lower valve of the cylindrical container was opened to remove the liquid content, and the porous membrane in a wet state was stored in the cylindrical container and heat-treated overnight in a dryer at 80.0 ° C. Remove the cylindrical container from the dryer, wash the porous membrane with dimethyl sulfoxide and water, and confirm that the eluate is gone.
It was transferred to an autoclave of 1 l and 300 ml of dimethyl sulfoxide was provided, and the porous membrane was dipped and kept at a temperature of 120 ° C. while being vibrated, and trimethylamine hydrochloride was added.
100 ml of a dimethylsulfoxide solution consisting of 955 g, 0.950 g of iminodiacetonitrile and 10.0 wt% methanol solution (corresponding to 50.0 mmol of potassium hydroxide) was added by a pressure pump over 2.00 hours and further 3.00. Continue to react for hours. After cooling to room temperature, the filter membrane is taken out and repeatedly washed with a 10.0 wt% acrylic acid aqueous solution, and the process is continued until the consumption of acrylic acid is exhausted. After the completion of washing, the filter membrane is taken out, immersed in a dimethylsulfoxide solution of 5.00 wt% of methyl acrylate, treated at 70 ° C. for 1 hour, and then 10.0 w
in a t% methanol solution for 3.00 hours and further in water for 1.
Reflux treatment was performed for 00 hours. After cooling, the filtration membrane was taken out and washed repeatedly with a 10.0 wt% aqueous solution of acrylic acid until the consumption of acrylic acid was exhausted, followed by washing with water and drying under reduced pressure to coat a polymer having a hybrid structure with an organic acid and a base. To obtain a porous membrane (hereinafter, a porous membrane produced in the same manner is abbreviated as HBMF2).

【0014】実施例2 HBMF2による純水中の微量金属の除去及びこの純水
を用いるウエハ洗浄によるウエハキャリアライフタイム
の向上 図1に示すような石英からなる洗浄槽(20リット
ル)、ポンプおよびHBMF2使用のカートリッジフィ
ルタを配管に連結したシステムを組み立てた。このHB
MF2使用のカートリッジフィルタは有効濾過面積60
00cm2 の取り付け自在の構造を有する。ポンプを運
転し充分にラインを洗浄しそのラインからの金属溶出の
ないことを確認した後、石英洗浄槽に超純水供給元から
超純水を満たし、6インチウエハ(P型)12枚を浸漬
し、カートリッジフィルタの替わりに短管で接続し、2
4時間、毎分20リットルの循環速度で処理した。次い
でウエハを取りだし、1000℃で1時間ドライ酸素で
酸化し、μ−PCD法(詳細は次の文献参照:J.Atsum
i, S.Otsuka, S.Munehira and K.Kajiyama: Pro-ceedin
gs of the 1st Int. Symp. on Cleaning Tech. in Semi
conductor Device Manufacturing, The Electrochem. S
oc., Pro-ceedings Vol. 90-9,p.59(1989))にてキャリ
アライフタイムを測定し参照値とした。引き続いて、H
BMF2をとりつけ同一ロットの別のウエハをこの槽に
同一枚数浸漬し前記同様24時間循環しながら浸漬処理
し、前記同様キャリアライフタイムを測定した。この2
種のウエハについてそれぞれ2枚を採取し各ウエハの4
カ所で測定したキャリアライフタイムの平均値を図2に
示した。この結果よりHBMF2で処理された超純水の
循環によりキャリアライフタイムが十分に長くなってい
ることが明らかである。また上記2種のウエハそれぞれ
2枚づつを対象にウエハ上の金属を塩酸水溶液で抽出し
質量分析計ICP−MSによりその含有量を測定した。
図3に各金属の測定結果を示した。この図からも明らか
なようにHBMF2により金属イオンが取り除かれてい
ることがわかる。
Example 2 Improvement of wafer carrier lifetime by removing trace metals in pure water with HBMF2 and cleaning wafers with this pure water A cleaning tank (20 liters) made of quartz as shown in FIG. 1, a pump and HBMF2 A system was assembled in which the cartridge filter used was connected to the piping. This HB
Cartridge filter using MF2 has an effective filtration area of 60
It has an attachable structure of 00 cm 2 . After operating the pump to thoroughly clean the line and confirming that there is no metal elution from the line, fill the quartz cleaning tank with ultrapure water from the ultrapure water supply source, and place 12 6-inch wafers (P-type). Immerse and connect with a short tube instead of the cartridge filter.
It was processed for 4 hours at a circulation rate of 20 liters per minute. Then, the wafer is taken out and oxidized with dry oxygen at 1000 ° C. for 1 hour, and the μ-PCD method (for details, refer to the following literature: J. Atsum.
i, S. Otsuka, S. Munehira and K. Kajiyama: Pro-ceedin
gs of the 1st Int. Symp. on Cleaning Tech. in Semi
conductor Device Manufacturing, The Electrochem. S
oc., Pro-ceedings Vol. 90-9, p.59 (1989)) and measured the carrier lifetime as a reference value. Then, H
BMF2 was attached, another wafer of the same lot was immersed in the same number of wafers in the same tank, and immersion treatment was performed while circulating for 24 hours, and the carrier lifetime was measured as described above. This 2
Seed wafers of 2 for each seed wafer
The average value of the carrier lifetime measured at each location is shown in FIG. From this result, it is clear that the circulation of the ultrapure water treated with HBMF2 makes the carrier lifetime sufficiently long. Further, the metal on each wafer was extracted with an aqueous solution of hydrochloric acid for each two wafers of the above-mentioned two kinds, and the content thereof was measured by a mass spectrometer ICP-MS.
The measurement result of each metal is shown in FIG. As is clear from this figure, it is understood that the metal ions have been removed by HBMF2.

【0015】実施例3 実施例2のシステムを用いて同様の測定をおこなった。
ただし本実施例に於いては、石英槽内に純水を供給後N
a、Al、Fe、Cr、Ni、Cu、Znの各金属を添
加して約0.1ppbの濃度とし6インチウエハ12枚
を1時間浸漬し、キャリアライフタイムを測定した。次
いで槽内の液をHBMF2のカートリッジフィルターを
取り付け実施例2と同一循環速度で24時間処理してか
ら新たに別のウエハ12枚を1時間浸漬し同様にキャリ
アライフタイムを測定した。図4に示すようにHBMF
2を用いることによりウエハキャリアライフタイムは格
段に向上することがわかった。これら両液中の各金属濃
度を測定した結果を表1に示した。HBMF2により金
属イオンが除去されていることが明らかである。
Example 3 The same measurement was performed using the system of Example 2.
However, in this embodiment, after supplying pure water into the quartz tank, N
Metals of a, Al, Fe, Cr, Ni, Cu and Zn were added to have a concentration of about 0.1 ppb, and 12 6-inch wafers were immersed for 1 hour, and the carrier lifetime was measured. Then, the liquid in the tank was attached with a cartridge filter of HBMF2, treated at the same circulation speed as in Example 2 for 24 hours, and then another 12 wafers were newly immersed for 1 hour, and the carrier lifetime was measured in the same manner. As shown in FIG. 4, HBMF
It was found that the wafer carrier lifetime was remarkably improved by using 2. Table 1 shows the results of measuring the respective metal concentrations in these two solutions. It is clear that the metal ions have been removed by HBMF2.

【0016】[0016]

【表1】 [Table 1]

【0017】実施例4 HBMF2のディスク形状サンプルによるAl3+、Fe
3+の除去容量の測定直径47mmの大きさに切り抜いた
サンプルを用いて純水中に添加しFe3+とAl3+の除去
容量を測定した。また、リファレンスとしてHBMF2
と同じ孔径を持つ直径47mmのUPE膜を用い同様の
測定を行った。表2に示すようにHBMF2の47mm
ディスクはFe3+とAl3+を除去したがUPE膜のイオ
ン除去は観測されなかった。
Example 4 Al 3+ , Fe by a disk-shaped sample of HBMF2
Measurement of 3+ Removal Capacity A sample cut out to a diameter of 47 mm was added to pure water to measure the removal capacity of Fe 3+ and Al 3+ . In addition, HBMF2 as a reference
The same measurement was performed using a UPE membrane having a diameter of 47 mm having the same pore size as the above. 47 mm of HBMF2 as shown in Table 2
The disk removed Fe 3+ and Al 3+ , but ion removal of the UPE film was not observed.

【0018】[0018]

【表2】 [Table 2]

【0019】実施例5 実施例1におけるポリエチレン製多孔質膜に代えてポリ
テトラフルオロエチレン(以下PTFEと略記する)製
の多孔質膜を同様に処理したHBMF2による純水中F
3+イオンの除去容量の測定。実施例3と同様、直径4
7mmのディスク状膜を用いて純水中に添加しFe3+
除去容量を測定した。また、リファレンスとしてHBM
F2と同じ孔径を持つ直径47mmのPTFE膜を用い
同様の測定を行った。表3に示すようにHBMF2の4
7mmディスクはFe3+とを除去したが、PTFE膜の
イオン除去は観測されなかった。
Example 5 Instead of the polyethylene porous membrane of Example 1, a porous membrane made of polytetrafluoroethylene (hereinafter abbreviated as PTFE) was treated in the same manner, and HBMF2 in pure water F was used.
e 3+ Ion removal capacity measurement. Diameter 4 as in Example 3
A 7 mm disk-shaped film was added to pure water to measure the Fe 3+ removal capacity. Also, HBM as a reference
The same measurement was performed using a 47 mm diameter PTFE membrane having the same pore size as F2. As shown in Table 3, 4 of HBMF2
The 7 mm disk removed Fe 3+ , but no ion removal of the PTFE membrane was observed.

【0020】[0020]

【表3】 [Table 3]

【0021】[0021]

【発明の効果】ハイブリッド構造を有する種々の有機酸
と有機塩基からなる重合体を既存の多孔質膜上にその濾
過性能を失わないように被覆した膜を作成し、これを半
導体ウエハ処理液の精製に適用したところ濾過はもとよ
り、きわめて選択的に金属イオンが除去され、有機アル
カリ液においては有機アルカリの損失が減少し、洗浄水
の純度が極めて向上し、特にHBMF2は微量の金属を
純水中から除去する効果を持ち、その上さらに、一般的
なフィルターと比較して同等以上の粒子除去性能を有す
るので、この濾過膜で処理された超純水を用いてウエハ
を処理洗浄した場合ウエハの少数キャリア再結合ライフ
タイムを向上し、ウエハの金属に依る汚染が低減し得
る。また、イオン交換設備をわざわざ別個に設置しなく
ても濾過と共に脱イオンが円滑になし得る効果をも有す
る。
[Effects of the Invention] A polymer composed of various organic acids and organic bases having a hybrid structure is coated on an existing porous membrane so as not to lose its filtration performance, and this is used as a semiconductor wafer processing solution. When applied to purification, not only filtration but also metal ions are removed very selectively, the loss of organic alkali in organic alkali liquid is reduced, and the purity of washing water is greatly improved. In particular, HBMF2 is used to remove trace amounts of metal with pure water. It has the effect of removing it from the inside, and moreover, it has the same or more particle removal performance as compared with a general filter. Therefore, when the wafer is processed and washed using ultra pure water processed with this filtration film The minority carrier recombination lifetime can be improved and the contamination due to the metal of the wafer can be reduced. In addition, there is also an effect that deionization can be smoothly performed together with filtration without the purpose of separately installing ion exchange equipment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】石英からなる洗浄槽、ポンプおよびHBMF2
を使用してカートリッジフィルタを配管に連結したシス
テムを示す図である。
FIG. 1 Quartz cleaning tank, pump and HBMF2
It is a figure which shows the system which connected the cartridge filter to piping using.

【図2】2種のウエハについてそれぞれ2枚を採取し各
ウエハの4カ所で測定したキャリアライフタイムの平均
値を示す図である。
FIG. 2 is a diagram showing an average value of carrier lifetimes measured at four points on each wafer by collecting two samples from each of two kinds of wafers.

【図3】2種のウエハそれぞれ2枚づつを対象にウエハ
上の金属を塩酸水溶液で抽出し質量分析計ICP−MS
によりその含有量を測定した濃度を各金属に対して示す
図である。
FIG. 3 is a mass spectrometer ICP-MS in which two kinds of wafers each having two wafers are subjected to extraction of metal on the wafers with an aqueous hydrochloric acid solution.
It is a figure which shows the density which measured the content with respect to each metal.

【図4】槽内の液をHBMF2のカートリッジフィルタ
ーを取り付け実施例2と同一循環速度で24時間処理し
てから新たに別のウエハ12枚を1時間浸漬し同様にキ
ャリアライフタイムを測定した結果を示す図である。
FIG. 4 is a result of treating the liquid in the tank with an HBMF2 cartridge filter for 24 hours at the same circulation speed as in Example 2 and then dipping another 12 wafers for 1 hour and similarly measuring the carrier lifetime. FIG.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ハイブリッド構造を有する有機酸および
塩基からなる重合体を被覆してなる半導体処理液精製用
の多孔質膜。
1. A porous membrane for purifying a semiconductor processing solution, which is coated with a polymer composed of an organic acid and a base having a hybrid structure.
【請求項2】 ハイブリッド構造を有する有機酸および
塩基からなる重合体を被覆してなる半導体処理液精製用
の多孔質膜にて濾過する有機アルカリ溶液の精製方法。
2. A method for purifying an organic alkaline solution, which comprises filtering with a porous membrane for purifying a semiconductor processing liquid, which is coated with a polymer composed of an organic acid and a base having a hybrid structure.
【請求項3】 ハイブリッド構造を有する有機酸および
塩基からなる重合体を被覆してなる半導体処理液精製用
の多孔質膜にて濾過するウエハ洗浄水の精製方法。
3. A method for purifying wafer cleaning water, which comprises filtering with a porous membrane for purifying a semiconductor processing liquid, which is coated with a polymer composed of an organic acid and a base having a hybrid structure.
JP31976495A 1995-11-15 1995-11-15 Purification film and method for semiconductor wafer processing liquid Expired - Fee Related JP3734545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31976495A JP3734545B2 (en) 1995-11-15 1995-11-15 Purification film and method for semiconductor wafer processing liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31976495A JP3734545B2 (en) 1995-11-15 1995-11-15 Purification film and method for semiconductor wafer processing liquid

Publications (2)

Publication Number Publication Date
JPH09141058A true JPH09141058A (en) 1997-06-03
JP3734545B2 JP3734545B2 (en) 2006-01-11

Family

ID=18113926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31976495A Expired - Fee Related JP3734545B2 (en) 1995-11-15 1995-11-15 Purification film and method for semiconductor wafer processing liquid

Country Status (1)

Country Link
JP (1) JP3734545B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000033367A1 (en) * 1998-12-01 2000-06-08 Organo Corporation Wet cleaning apparatus
WO2010090100A1 (en) * 2009-02-03 2010-08-12 株式会社日本触媒 Method for regenerating filter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000033367A1 (en) * 1998-12-01 2000-06-08 Organo Corporation Wet cleaning apparatus
US6494223B1 (en) 1998-12-01 2002-12-17 Tadahiro Ohmi Wet cleaning apparatus utilizing ultra-pure water rinse liquid with hydrogen gas
WO2010090100A1 (en) * 2009-02-03 2010-08-12 株式会社日本触媒 Method for regenerating filter
JP5461442B2 (en) * 2009-02-03 2014-04-02 株式会社日本触媒 How to play the filter
US8734655B2 (en) 2009-02-03 2014-05-27 Nippon Shokubai Co., Ltd. Method for regenerating filter

Also Published As

Publication number Publication date
JP3734545B2 (en) 2006-01-11

Similar Documents

Publication Publication Date Title
JP2004330056A (en) Filter cartridge for electronic element substrate surface treatment liquid
US8846773B2 (en) Method for manufacturing anion exchange resin, anion exchange resin, method for manufacturing cation exchange resin, cation exchange resin, mixed bed resin, and method for manufacturing ultrapure water for washing electronic component material
JP5570458B2 (en) Compositions and methods for precipitating metal ions from semiconductor wastewater and simultaneously improving microfilter operation
KR20020086883A (en) Method and apparatus for metal removal by ion exchange
JP5600541B2 (en) Improved method for removing cations using chelating resins
JPH0684875A (en) Method and apparatus for reduction of fine- particle concentration in working fluid
JP2023052469A (en) Chemical liquid, kit, pattern forming method, chemical liquid manufacturing method, and chemical liquid storage body
TW201730115A (en) Metal-contamination preventive agent, metal-contamination preventive membrane, metal-contamination preventive method, and product-cleansing method
JPH09141058A (en) Refining membrane for semiconductor wafer treating liquid and method therefor
TWI748288B (en) Methods for extraction and recovery of au, pt, re, ru, rh and pd from aqueous acidic solutions and chelating fibers used therefor
JP2023174700A (en) Filter, filter manufacturing method, filtering device, and chemical solution manufacturing method
JP2002102719A (en) Mixed bed type ion exchange resin bed and anion exchange resin used in the same
KR102216878B1 (en) Method for preparing a boron selective adsorption resin for use in the production of ultra pure water
JP2022099242A (en) Method for manufacturing refined ortho-periodic acid aqueous solution, method for manufacturing semiconductor device, and ortho-periodic acid aqueous solution
JP3593200B2 (en) Low metal content polybenzimidazole material and its production method
JP5412115B2 (en) Purification method for chelating agent-added chemicals
JP4081503B2 (en) Mixed bed type ion exchange resin
CN113198549A (en) Method for removing metal impurities in photoresist resin
JP2003334550A (en) Ultrapure water and production method therefor
JP7477641B2 (en) Method and apparatus for purifying liquid containing tetraalkylammonium ions
WO2023210370A1 (en) Organic solvent purification method and purification apparatus
JP2987892B2 (en) How to remove dissolved oxygen
TW202233516A (en) Method for producing aqueous solution of purified orthoperiodic acid, method for producing semiconductor device, and aqueous solution of orthoperiodic acid
JP2008264670A (en) Method for manufacturing anion exchange resin, anion exchange, mixed bed resin and method for manufacturing ultrapure water for cleaning electric appliance/material
JP2534861B2 (en) Method for producing high-purity hydrazine hydrate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A601 Written request for extension of time

Effective date: 20050418

Free format text: JAPANESE INTERMEDIATE CODE: A601

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20050421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050927

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051019

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees