JP2987892B2 - How to remove dissolved oxygen - Google Patents
How to remove dissolved oxygenInfo
- Publication number
- JP2987892B2 JP2987892B2 JP18326790A JP18326790A JP2987892B2 JP 2987892 B2 JP2987892 B2 JP 2987892B2 JP 18326790 A JP18326790 A JP 18326790A JP 18326790 A JP18326790 A JP 18326790A JP 2987892 B2 JP2987892 B2 JP 2987892B2
- Authority
- JP
- Japan
- Prior art keywords
- copper
- resin
- chelate resin
- dissolved oxygen
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Treatment Of Water By Ion Exchange (AREA)
- Removal Of Specific Substances (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
【発明の詳細な説明】 <産業上の利用分野> 本発明は、水中に溶存する酸素の除去方法に関する。
更に詳しくは、銅を担持した特定のキレート性官能基を
有するキレート樹脂による溶存酸素の除去方法に関す
る。Description: TECHNICAL FIELD The present invention relates to a method for removing oxygen dissolved in water.
More specifically, the present invention relates to a method for removing dissolved oxygen using a chelate resin having a specific chelating functional group carrying copper.
<従来の技術> 化学工業においては、加熱、冷却等の用役用として、
また吸収、洗浄、晶析等のプロセス用として大量の水が
用いられる。ところがこれらの水中に酸素が存在する
と、溶存酸素に起因する腐食が生じることがある。そこ
で、溶存酸素を除去するために種々の方法が提案され実
施されている。<Conventional technology> In the chemical industry, for utilities such as heating and cooling,
A large amount of water is used for processes such as absorption, washing, and crystallization. However, when oxygen is present in these waters, corrosion due to dissolved oxygen may occur. Therefore, various methods have been proposed and implemented for removing dissolved oxygen.
例えば、ヒドラジン、亜硫酸ナトリウム等を添加し化
学的に溶存する酸素を還元する方法、還元銅を析出させ
たイオン交換樹脂により溶存酸素を還元する方法、パラ
ジウムを担持させたイオン交換樹脂の存在下水素ガスに
より溶存酸素を還元する方法〔化学工業、7,66(198
5)〕等が挙げられる。For example, a method of adding hydrazine, sodium sulfite, etc. to reduce chemically dissolved oxygen, a method of reducing dissolved oxygen by an ion exchange resin on which reduced copper is deposited, a method of reducing hydrogen in the presence of an ion exchange resin carrying palladium Method for reducing dissolved oxygen by gas [Chemical Industry, 7, 66 (198
5)].
<発明が解決しようとする課題> しかしながら水溶液中に溶存する酸素を化学的に還元
する方法においては、還元速度が遅い、多量の塩分が被
処理水中に持ち込まれる結果ボイラー給水の場合にボイ
ラーの運転に支障をきたす等の問題点がある。<Problems to be Solved by the Invention> However, in the method of chemically reducing oxygen dissolved in an aqueous solution, the boiler is operated in the case of a boiler feedwater as a result of a slow reduction rate and a large amount of salt being brought into the water to be treated. There are problems such as causing trouble.
また金属を担持させたイオン交換樹脂の存在下水素ガ
スにより溶存する酸素を還元する方法においては、処理
液中に金属イオンがリークするとか水素ガスが爆発性で
あるため極めて取扱いが難しいという問題点がある。さ
らに、水素ガスの被処理水への溶解も困難で必要以上に
大過剰の水素ガスを使用しなければならないし、処理後
に用水として使用する前に処理水中に溶解している水素
ガスを分離しなければならない等、煩雑な操作を必要と
する。Also, in the method of reducing dissolved oxygen by hydrogen gas in the presence of a metal-supported ion exchange resin, it is extremely difficult to handle because the metal ions leak into the processing solution or the hydrogen gas is explosive. There is. In addition, it is difficult to dissolve hydrogen gas in the water to be treated, and an excessively large amount of hydrogen gas must be used.The hydrogen gas dissolved in the treated water must be separated after treatment and before it can be used as water. Complicated operations are required.
本発明の目的は、水中の溶存酸素を効果的に除去で
き、また処理液中への不純物の混入を抑制しうる方法を
提供することにある。本発明者らは鋭意研究の結果、特
定のキレート樹脂を用いることにより、かかる目的が達
成されることを見出し、本発明を完成するに至った。An object of the present invention is to provide a method capable of effectively removing dissolved oxygen in water and suppressing contamination of a processing solution with impurities. As a result of intensive studies, the present inventors have found that such objects can be achieved by using a specific chelating resin, and have completed the present invention.
<課題を解決するための手段> 本発明は、銅を担持したアミノカルボン酸基及び/又
は銅を担持したアミノアルキレンホスホン酸基を有する
キレート樹脂と、酸素を溶存する水を接触させ、水中の
酸素を樹脂に吸着させることを特徴とする水中の溶存酸
素の除去方法である。<Means for Solving the Problems> The present invention is to contact a chelate resin having an aminocarboxylic acid group carrying copper and / or an aminoalkylenephosphonic acid group carrying copper with water in which oxygen is dissolved, This is a method for removing dissolved oxygen in water, which comprises adsorbing oxygen to a resin.
本発明で対象とする被処理水は、酸素を溶存する水で
あり、特に制限されるものではない。処理水中には、本
発明の効果を損なわない範囲で水以外の成分を含むもの
であってもよい。一般にはボイラー給水、冷却水、洗浄
水等が挙げられる。The water to be treated in the present invention is water in which oxygen is dissolved, and is not particularly limited. The treated water may contain components other than water as long as the effects of the present invention are not impaired. Generally, boiler feed water, cooling water, washing water and the like can be mentioned.
本発明方法において用いられる銅を担持したアミノカ
ルボン酸基及び/又は銅を担持したアミノアルキレンホ
スホン酸基を有するキレート樹脂は、アミノカルボン酸
基及び/又はアミノアルキレンホスホン酸基を官能基と
するキレート樹脂に銅化合物を吸着せしめた後還元処理
することにより得られる。The chelate resin having a copper-carrying aminocarboxylic acid group and / or a copper-carrying aminoalkylenephosphonic acid group used in the method of the present invention is a chelate resin having an aminocarboxylic acid group and / or an aminoalkylenephosphonic acid group as a functional group. It is obtained by adsorbing a copper compound to a resin and then subjecting the resin to a reduction treatment.
かかるアミノカルボン酸基及び/又はアミノアルキレ
ンホスホン酸基を有するキレート樹脂は、銅化合物を吸
着するキレート樹脂であればよく、樹脂基体、形状、製
造方法は特に限定されるものではなく、公知の方法にて
製造したものまたは市販のキレート樹脂が使用できる。The chelate resin having such an aminocarboxylic acid group and / or an aminoalkylenephosphonic acid group may be any chelate resin that adsorbs a copper compound, and the resin substrate, shape, and production method are not particularly limited, and known methods can be used. Or a commercially available chelate resin can be used.
例えばアミノカルボン酸基を有する樹脂としては、
ニトリル基、クロルメチル基、スルホニルクロリド基、
カルボニルクロリド基、イソシアナート基、エポキシ
基、アルデヒド基や、塩素、臭素、ヨウ素の如きハロゲ
ン原子等のアミン反応性基を有した重合体にエチレンジ
アミン、トリメチレンジアミン、テトラメチレンジアミ
ン、ペンタメチレンジアミン、ヘキサメチレンジアミ
ン、オクタメチレンジアミン、ノナメチレンジアミン、
ジエチレントリアミン、トリエチレンテトラミン、テト
ラエチレンペンタミン、ヒドラジン、グアニジン等のポ
リアミンを反応させて分子中に2つ以上の1級もしくは
2級のアミノ基を有するポリアミノ樹脂を得、さらにそ
のポリアミノ樹脂にモノクロル酢酸、モノブロム酢酸、
モノクロルプロピオン酸、モノブロムプロピオン酸等の
ハロゲン化アルキルカルボン酸化合物またはこれらのア
ルカリ金属もしくはアルカリ土類金属の塩等を反応させ
て得られるポリアミノカルボン酸基を有する樹脂、前
記ポリアミノ樹脂にアクリル酸、メタクリル酸、アセチ
レンジカルボン酸、マレイン酸、これらの酸のアルカリ
金属、アルカリ土類金属塩、またはこれらの酸のメチ
ル、エチルエステル等を反応させ、エステルの場合には
加水分解を行わせて得られるポリアミノカルボン酸基を
有する樹脂等が挙げられる。For example, as a resin having an aminocarboxylic acid group,
Nitrile group, chloromethyl group, sulfonyl chloride group,
Carbonyl chloride group, isocyanate group, epoxy group, aldehyde group, chlorine, bromine, a polymer having an amine-reactive group such as a halogen atom such as iodine ethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, Hexamethylenediamine, octamethylenediamine, nonamethylenediamine,
A polyamine such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, hydrazine, guanidine, etc. is reacted to obtain a polyamino resin having two or more primary or secondary amino groups in the molecule, and further, monochloroacetic acid is added to the polyamino resin. , Monobromoacetic acid,
Monochloropropionic acid, a resin having a polyaminocarboxylic acid group obtained by reacting a halogenated alkyl carboxylic acid compound such as monobromopropionic acid or a salt of an alkali metal or an alkaline earth metal thereof, acrylic acid to the polyamino resin, It is obtained by reacting methacrylic acid, acetylenedicarboxylic acid, maleic acid, an alkali metal or alkaline earth metal salt of these acids, or a methyl or ethyl ester of these acids, and in the case of an ester, performing hydrolysis. Examples of the resin include a resin having a polyaminocarboxylic acid group.
市販のアミノカルボン酸基を有する樹脂としては、ス
ミキレートMC−75、スミキレートMC−76、スミキレート
MC−30(以上住友化学工業社製)、デュオライトC−46
6、アンバーライトIRC−718(以上ロームアンドハース
社製)、ダイヤイオンCR−10(三菱化成工業社製)、レ
バチットTP−207(バイエル社製)、ダウエックスA−
1(ダウケミカル社製)、ユニセレックUR−10(ユニチ
カ社製)、エポラスMX−8(ミヨシ油脂社製)等が挙げ
られる。Commercially available resins having an aminocarboxylic acid group include Sumichelate MC-75, Sumichelate MC-76, Sumichelate
MC-30 (Sumitomo Chemical Industries, Ltd.), Duolite C-46
6, Amberlite IRC-718 (from Rohm and Haas), Diaion CR-10 (from Mitsubishi Kasei), Levatit TP-207 (from Bayer), Dowex A-
1 (manufactured by Dow Chemical Co., Ltd.), Unicelec UR-10 (manufactured by Unitika), EPORAS MX-8 (manufactured by Miyoshi Oil & Fats Co., Ltd.) and the like.
また、アミノアルキレンホスホン酸基を有するキレー
ト樹脂としては、前記ポリアミノ樹脂にクロルメチルホ
スホン酸、クロルエチルホスホン酸等のアルキル燐酸化
剤、またはホルムアルデヒド、トリオキシメチレン等の
アルキル化剤と三塩化燐、亜燐酸、次亜燐酸、亜燐酸メ
チルまたは亜燐酸エチル等の燐酸化剤を塩酸、硫酸等の
酸性触媒下で反応させて得られるポリアミノアルキレン
ホスホン酸基を有するキレート樹脂等が挙げられる。Further, as the chelating resin having an aminoalkylenephosphonic acid group, the polyamino resin may be an alkylphosphorizing agent such as chloromethylphosphonic acid or chloroethylphosphonic acid, or an alkylating agent such as formaldehyde or trioxymethylene and phosphorus trichloride, Chelate resins having a polyaminoalkylenephosphonic acid group obtained by reacting a phosphorylating agent such as phosphoric acid, hypophosphorous acid, methyl phosphite or ethyl phosphite under an acidic catalyst such as hydrochloric acid or sulfuric acid.
市販のアミノアルキレンホスホン酸基を有するキレー
ト樹脂としては、スミキレートMC−95(住友化学工業社
製)、デュオライトC−467(ロームアンドハース社
製)、レバチットOC−1060(バイエル社製)、ユニセレ
ックUR−3300(ユニチカ社製)等が挙げられる。Commercially available chelate resins having an aminoalkylenephosphonic acid group include Sumichelate MC-95 (manufactured by Sumitomo Chemical Co., Ltd.), Duolite C-467 (manufactured by Rohm and Haas), Levatit OC-1060 (manufactured by Bayer), and Uniselec UR-3300 (manufactured by Unitika) and the like.
特にポリアミノカルボン酸基又はポリアミノアルキレ
ンホスホン酸基を有するキレート樹脂、具体的にはカル
ボン酸基又はホスホン酸基がポリアミノアルキレン基を
介して高分子主鎖と結合しているキレート樹脂は、銅を
よく担持するので、溶存酸素除去性に優れ、また銅担持
キレート樹脂からの銅の脱離も極めて少ないので、好ま
しく用いられる。In particular, a chelating resin having a polyaminocarboxylic acid group or a polyaminoalkylenephosphonic acid group, specifically, a chelating resin in which a carboxylic acid group or a phosphonic acid group is bonded to a polymer main chain via a polyaminoalkylene group, is preferably copper. It is preferably used, since it supports it and has excellent dissolved oxygen removal properties, and very little elimination of copper from the copper-supporting chelate resin.
前記キレート樹脂に坦持される銅化合物は、前記キレ
ート樹脂とキレート結合するものであれば特に制限され
るものではないが、一般には、ハロゲン化銅、硫酸銅、
蟻酸銅、酢酸銅、銅−アンモニア錯体等が用いられる。The copper compound supported on the chelate resin is not particularly limited as long as it is a chelate bond with the chelate resin, but generally, copper halide, copper sulfate,
Copper formate, copper acetate, copper-ammonia complex and the like are used.
銅の担持方法は、特に制限されるものではないが、一
般には銅化合物を含む適当な溶媒中に前記キレート樹脂
を投入し撹拌接触を行ういわゆるバッチ法、また前記キ
レート樹脂をカラムに充填し銅化合物の溶液を通液する
いわゆるカラム通液方法が挙げられる。このような方法
で銅化合物と前記キレート樹脂の錯体を形成せしめた
後、適当な還元剤を用い公知の方法で該銅化合物が還元
処理される。The method of supporting copper is not particularly limited, but generally, a so-called batch method in which the chelate resin is charged into an appropriate solvent containing a copper compound and stirred and contacted, or the column is filled with the chelate resin and There is a so-called column flow method in which a solution of the compound is passed. After the complex of the copper compound and the chelate resin is formed by such a method, the copper compound is reduced by a known method using an appropriate reducing agent.
還元剤としては、特に制限されるものではないが、一
般にはホルマリン、蟻酸、水素化ホウ素ナトリウム、水
素化リチウムアルミニウム、ヒドラジン、亜硫酸ナトリ
ウム、チオ硫酸ナトリウム等が用いられる。用いる還元
剤の量は、担持した銅化合物を還元するに必要な理論量
の1.1倍以上、一般には1.5〜5倍モル量用いて行われ
る。The reducing agent is not particularly limited, but generally, formalin, formic acid, sodium borohydride, lithium aluminum hydride, hydrazine, sodium sulfite, sodium thiosulfate and the like are used. The amount of the reducing agent to be used is 1.1 times or more, generally 1.5 to 5 times the molar amount of the theoretical amount necessary for reducing the supported copper compound.
還元剤の量は5倍モルを越えても特に支障はないが、
必要以上の還元剤を用いることは不経済である。また、
1.1倍モルより少ない還元剤量による還元処理は、担持
銅化合物の還元が不十分となり溶存酸素除去性能を低下
させるので好ましくない。There is no particular problem if the amount of the reducing agent exceeds 5 times the molar amount,
It is uneconomical to use more reducing agent than necessary. Also,
A reduction treatment with a reducing agent amount less than 1.1 times the molar amount of the reducing agent is not preferred because the reduction of the supported copper compound becomes insufficient and the performance of removing dissolved oxygen is reduced.
処理温度、処理時間は特に制限されるものではない。
還元剤の種類、量、処理時間により異なるが、一般には
室温〜100℃、10分〜24時間で実施される。最適な処理
条件は適宜予備実験を行うことにより設定できる。The processing temperature and the processing time are not particularly limited.
In general, the reaction is carried out at room temperature to 100 ° C. for 10 minutes to 24 hours, although it varies depending on the type, amount and processing time of the reducing agent. Optimal processing conditions can be set by conducting preliminary experiments as appropriate.
酸素を溶存する被処理水と、銅を担持したキレート樹
脂との接触方法は、被処理水に銅を担持したキレート樹
脂を投入し撹拌接触を行うバッチ法でもよいが、処理方
法の簡素化、溶存酸素の除去効率、装置のコンパクト化
等を考慮すると、銅を担持したキレート樹脂を充填した
樹脂塔に被処理水を通液するカラム通液法が好ましい。
カラム通液方法の場合、通常のイオン交換樹脂による水
処理速度で通液が可能であり、特に制限されるものでは
ないが、一般には空塔速度SV=1〜500Hr-1で通液す
る。The method for contacting the water to be treated in which oxygen is dissolved and the chelate resin carrying copper may be a batch method in which the chelate resin carrying copper is put into the water to be treated and agitated contact is performed, but simplification of the treatment method, In consideration of the removal efficiency of dissolved oxygen, downsizing of the apparatus, and the like, a column flow method in which water to be treated is passed through a resin tower filled with a chelate resin carrying copper is preferable.
In the case of the column passing method, the liquid can be passed at a normal water treatment rate with an ion exchange resin, and is not particularly limited. In general, the liquid is passed at a superficial velocity of SV = 1 to 500 Hr −1 .
本発明方法で用いる銅を担持したキレート樹脂と溶存
酸素との反応は非常に速いが、偏流トラブル、通液圧損
等を考慮すると、SV=1〜50Hr-1程度で行うのが好まし
い。SVが1より小さいと単位時間当たりの被処理水量が
少なくなるし、また50より大きくなると偏流等により溶
存酸素の除去効率が低下する。Although the reaction between the copper-supported chelate resin and the dissolved oxygen used in the method of the present invention is very fast, it is preferable to carry out the reaction at SV = 1 to about 50 Hr -1 in consideration of a drift problem, a liquid pressure loss and the like. If SV is smaller than 1, the amount of water to be treated per unit time is reduced, and if it is larger than 50, the efficiency of removing dissolved oxygen is reduced due to drift or the like.
本発明の実施にあたり、銅を担持したキレート樹脂の
使用量は特に制限されるものではなく、接触方法、銅担
持キレート樹脂の種類、被処理液中の溶存酸素濃度等に
よっても変わり、これは適宜予備実験を行うことによっ
て設定される。In carrying out the present invention, the amount of the chelate resin supporting copper is not particularly limited, and varies depending on the contact method, the type of the chelate resin supporting copper, the dissolved oxygen concentration in the liquid to be treated, and the like. It is set by performing preliminary experiments.
銅担持キレート樹脂は公知のパラジウムを主体とした
イオン交換樹脂と比較し活性が強いので、被処理液と銅
担持キレート樹脂との接触温度は特に制限されるもので
はないが、一般には1℃以上で実施される。特に、銅担
持キレート樹脂と溶存酸素との反応性を上げるためには
約10℃以上にするのが望ましく、また銅担持キレート樹
脂の品質劣化抑制のためには、80℃以下が好ましい。The activity of the copper-supported chelate resin is higher than that of a known palladium-based ion-exchange resin. Therefore, the contact temperature between the liquid to be treated and the copper-supported chelate resin is not particularly limited, but is generally 1 ° C. or higher. Will be implemented. In particular, the temperature is desirably about 10 ° C. or higher in order to increase the reactivity between the copper-supported chelate resin and dissolved oxygen, and is preferably 80 ° C. or lower in order to suppress the quality deterioration of the copper-supported chelate resin.
本発明方法により溶存酸素を除去した後の樹脂は、前
記方法で還元処理することにより溶存酸素除去剤として
再使用される。The resin from which dissolved oxygen has been removed by the method of the present invention is reused as a dissolved oxygen remover by subjecting it to a reduction treatment according to the method described above.
<発明の効果> 本発明方法によれば、簡単で効率良く溶存酸素を極め
て低濃度まで除去することができる。かつ従来公知のパ
ラジウム担持イオン交換樹脂のようにヒドラジン、水素
ガス、蟻酸等助剤の共存の必要もなく、安全であり、且
つ処理液への助剤の混入による汚染もなく、その工業的
価値は大きい。<Effect of the Invention> According to the method of the present invention, dissolved oxygen can be easily and efficiently removed to an extremely low concentration. Also, unlike the conventionally known ion-exchange resin carrying palladium, there is no need to coexist with hydrazine, hydrogen gas, formic acid and other auxiliaries, it is safe, and there is no contamination due to mixing of auxiliaries into the processing solution, and its industrial value. Is big.
<実施例> 本発明を実施例によって更に詳細に説明するが、本発
明は以下の実施例によって限定するものではない。<Examples> The present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.
実施例1 下記に示す銅担持キレート樹脂Aを10g充填した内径2
0mmのガラスカラムに、溶存酸素6.9mg/を含む水温25
℃の脱イオン水10を空塔速度SV=30Hr-1で通液した。
処理水中の溶存酸素濃度および銅濃度を測定したところ
各々1.1ppm、0.01ppmであった。Example 1 Inner diameter 2 filled with 10 g of a copper-supported chelate resin A shown below
0 mm glass column containing 6.9 mg / d of dissolved oxygen
C. Deionized water 10 was passed at a superficial velocity SV of 30 Hr -1 .
When the dissolved oxygen concentration and the copper concentration in the treated water were measured, they were 1.1 ppm and 0.01 ppm, respectively.
(キレート樹脂A) ポリアルキレンポリアミノ基を有する市販のキレート
樹脂スミキレートMC−10(住友化学工業社製)50gにモ
ノクロル酢酸ナトリウム147gと水300gを加え、さらにpH
11〜12に調整するために10%水酸化ナトリウムを加え
た。その後60℃で4時間反応を行った後濾過水洗してキ
レート樹脂Aを得た。(Chelate resin A) 147 g of sodium monochloroacetate and 300 g of water were added to 50 g of a commercially available chelate resin Sumichelate MC-10 (manufactured by Sumitomo Chemical Co., Ltd.) having a polyalkylenepolyamino group, and the pH was further increased.
10% sodium hydroxide was added to adjust to 11-12. Thereafter, the reaction was carried out at 60 ° C. for 4 hours, followed by filtration and washing with water to obtain a chelating resin A.
(銅担持キレート樹脂A) 3000mg−Cu/濃度の硫酸銅水溶液100mlに、キレート
樹脂A10gを加え、室温で6時間撹拌接触させたところ、
銅を299mg吸着した銅吸着キレート樹脂Aを得た。この
銅吸着キレート樹脂Aに10%ヒドラジン水溶液100mlを
加え70〜80℃で1時間処理し、銅を還元して銅担持キレ
ート樹脂Aを得た。(Copper supported chelate resin A) Chelate resin A (10 g) was added to 3000 mg-Cu / concentrated copper sulfate aqueous solution (100 ml), and the mixture was stirred and contacted at room temperature for 6 hours.
A copper-adsorbed chelate resin A having 299 mg of copper was obtained. 100 ml of a 10% hydrazine aqueous solution was added to the copper-adsorbed chelate resin A, and the mixture was treated at 70 to 80 ° C. for 1 hour to reduce copper to obtain a copper-supported chelate resin A.
実施例2〜6 銅担持キレート樹脂Aの代わりに下記に示す銅担持キ
レート樹脂B〜Fを用いた以外は、実施例1と同様な試
験を行った。Examples 2 to 6 The same test as in Example 1 was performed except that the copper-supported chelate resins BF shown below were used instead of the copper-supported chelate resin A.
結果を第1表に示す。The results are shown in Table 1.
(キレート樹脂B) スミキレートMC−10(住友化学工業社製)50gにアク
リル酸ナトリウム126g、水126gを加え40℃で12時間反応
を行った後、濾過水洗してキレート樹脂Bを得た。(Chelate resin B) To 50 g of Sumichelate MC-10 (manufactured by Sumitomo Chemical Co., Ltd.), 126 g of sodium acrylate and 126 g of water were added and reacted at 40 ° C for 12 hours.
(銅担持キレート樹脂B) キレート樹脂Bを実施例1と同様に処理して、キレー
ト樹脂B10gに銅を300mg吸着した銅吸着キレート樹脂B
を得た。次いで還元処理して銅担持キレート樹脂Bを得
た。(Copper-supported chelate resin B) The chelate resin B was treated in the same manner as in Example 1, and the copper-adsorbed chelate resin B in which 300 mg of copper was adsorbed on 10 g of the chelate resin B.
I got Subsequently, a reduction treatment was performed to obtain a copper-supported chelate resin B.
(キレート樹脂C) アミノ基を有する市販の塩基性イオン交換樹脂である
スミカイオンKA−890(住友化学工業社製)50gに20%ホ
ルマリン150g、亜燐酸82g、36%塩酸100gを加え90〜95
℃で4時間反応後濾過水洗してキレート樹脂Cを得た。(Chelate resin C) To 50 g of SUMIKAION KA-890 (manufactured by Sumitomo Chemical Co., Ltd.), which is a commercially available basic ion exchange resin having an amino group, was added 150 g of 20% formalin, 82 g of phosphorous acid, and 100 g of 36% hydrochloric acid.
After reacting at 4 ° C. for 4 hours, the mixture was filtered and washed with water to obtain chelate resin C.
(銅担持キレート樹脂C) キレート樹脂Cを実施例1と同様に処理して、キレー
ト樹脂C10gに銅を300mg吸着した銅吸着キレート樹脂C
を得た。次いで還元処理して銅担持キレート樹脂Cを得
た。(Chelate supporting chelate resin C) Chelate resin C was treated in the same manner as in Example 1, and 300 mg of copper was adsorbed on 10 g of chelate resin C.
I got Subsequently, a reduction treatment was performed to obtain a copper-supported chelate resin C.
(銅担持キレート樹脂D) キレート樹脂Aと撹拌接触させる硫酸銅水溶液の量を
200mlとした以外は実施例1と同様な条件で処理をして
キレート樹脂A10gに銅が563mg吸着した銅吸着キレート
樹脂を得た。次いで還元処理して銅担持キレート樹脂D
を得た。(Copper-supported chelate resin D)
A treatment was performed under the same conditions as in Example 1 except that the amount was 200 ml, to obtain a copper-adsorbed chelate resin in which 563 mg of copper was adsorbed on 10 g of the chelate resin A. Next, a reduction treatment is carried out, and the copper-supporting chelate resin D
I got
(銅担持キレート樹脂E) キレート樹脂Aと撹拌接触させる硫酸銅水溶液の量を
1とした以外は実施例1と同様な条件で処理をしてキ
レート樹脂A10gに銅が1230mg吸着した銅吸着キレート樹
脂を得た。次いで還元処理して銅担持キレート樹脂Eを
得た。(Copper-supported chelate resin E) A copper-adsorbed chelate resin in which 1230 mg of copper was adsorbed on 10 g of chelate resin A by treating under the same conditions as in Example 1 except that the amount of the aqueous copper sulfate solution brought into stirring contact with the chelate resin A was set to 1. I got Subsequently, a reduction treatment was performed to obtain a copper-supporting chelate resin E.
(銅担持キレート樹脂F) 3000mg−Cu/濃度の硫酸銅水溶液1に、クロルメ
チル基を有するスチレン−ジビニルベンゼン共重合体に
イミノジ酢酸を反応させて製造された市販のキレート樹
脂スミキレートMC−30の10gを加え、室温で6時間撹拌
接触させたところ、銅を1230mg吸着した銅吸着キレート
樹脂を得た。この銅吸着キレート樹脂を還元処理して銅
担持キレート樹脂Fを得た。(Copper supported chelate resin F) 10 g of a commercially available chelate resin Sumikilate MC-30 produced by reacting styrene-divinylbenzene copolymer having a chloromethyl group with iminodiacetic acid in 3000 mg-Cu / concentration of copper sulfate aqueous solution 1 Was added and stirred at room temperature for 6 hours to obtain a copper-adsorbed chelate resin on which 1230 mg of copper had been adsorbed. This copper-adsorbed chelate resin was subjected to a reduction treatment to obtain a copper-supported chelate resin F.
比較例1〜3 ポリアルキレンポリアミノ基を有する市販のキレート
樹脂スミキレートMC−10(住友化学工業社製)、カルボ
ン酸基を有する市販のイオン交換樹脂デュオライトC−
464、スルホン酸基を有する市販のイオン交換樹脂デュ
オライトC−26(以上ロームアンドハース社製)を用い
実施例1と同様な方法で銅を吸着(いずれも約300mgの
銅を吸着)したイオン交換樹脂を調製し、還元処理して
得た銅担持樹脂の溶存酸素除去試験を行った。結果を第
2表に示す 実施例1〜6および比較例1〜3の結果より、本発明の
銅を担持したアミノカルボン酸基またはアミノアルキレ
ンホスホン酸基の少なくとも一種類を有するキレート樹
脂は、溶存酸素の除去性に優れかつ処理水中への銅イオ
ンの溶出も少なく、工業的価値が大きいことが明らかで
ある。 Comparative Examples 1-3 Commercially available chelate resin Sumichelate MC-10 (manufactured by Sumitomo Chemical Co., Ltd.) having a polyalkylene polyamino group, commercially available ion exchange resin Duolite C- having a carboxylic acid group
464, using commercially available ion-exchange resin Duolite C-26 having a sulfonic acid group (Rome and Haas Co., Ltd.) to adsorb copper by the same method as in Example 1 (each adsorbs about 300 mg of copper) An exchange resin was prepared, and a copper-supported resin obtained by a reduction treatment was subjected to a dissolved oxygen removal test. The results are shown in Table 2. From the results of Examples 1 to 6 and Comparative Examples 1 to 3, the chelate resin having at least one kind of the copper-supported aminocarboxylic acid group or aminoalkylenephosphonic acid group of the present invention is excellent in the removability of dissolved oxygen and It is clear that the elution of copper ions into the treated water is small and the industrial value is large.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭53−658(JP,A) 特開 昭60−41509(JP,A) (58)調査した分野(Int.Cl.6,DB名) C02F 1/42 C02F 1/58 B01J 20/26 B01J 45/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-53-658 (JP, A) JP-A-60-41509 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C02F 1/42 C02F 1/58 B01J 20/26 B01J 45/00
Claims (2)
は銅を担持したアミノアルキレンホスホン酸基を有する
キレート樹脂と、酸素を溶存する水を接触させることを
特徴とする水中の溶存酸素の除去方法。1. Removal of dissolved oxygen in water characterized by contacting a chelate resin having an aminocarboxylic acid group carrying copper and / or an aminoalkylenephosphonic acid group carrying copper with water in which oxygen is dissolved. Method.
ホスホン酸基が、ポリアミノアルキレン基を介して高分
子主鎖と結合している請求項1記載の溶存酸素の除去方
法。2. The method for removing dissolved oxygen according to claim 1, wherein the carboxylic acid group and / or phosphonic acid group in the chelate resin is bonded to the polymer main chain via a polyaminoalkylene group.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18326790A JP2987892B2 (en) | 1990-07-10 | 1990-07-10 | How to remove dissolved oxygen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18326790A JP2987892B2 (en) | 1990-07-10 | 1990-07-10 | How to remove dissolved oxygen |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0471681A JPH0471681A (en) | 1992-03-06 |
JP2987892B2 true JP2987892B2 (en) | 1999-12-06 |
Family
ID=16132676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18326790A Expired - Lifetime JP2987892B2 (en) | 1990-07-10 | 1990-07-10 | How to remove dissolved oxygen |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2987892B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU748273B2 (en) * | 1995-03-10 | 2002-05-30 | Yoshino Kogyosho Co., Ltd. | Separable laminated container and associated technology |
EP1092632B1 (en) | 1995-03-10 | 2003-11-19 | Yoshino Kogyosho Co., Ltd. | Pre-separation method and device for a peelable laminated container |
JP4736928B2 (en) * | 2006-04-21 | 2011-07-27 | 三菱瓦斯化学株式会社 | Oxygen absorbing composition |
-
1990
- 1990-07-10 JP JP18326790A patent/JP2987892B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0471681A (en) | 1992-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2091365C1 (en) | Acid anhydrides containing also ionic metal impurities | |
CA1061945A (en) | Amino alkylene phosphoric acid resins, their use and preparation | |
JPH05212382A (en) | Method for removing heavy metal ion from waste liquid stream | |
JP2987892B2 (en) | How to remove dissolved oxygen | |
JP4518112B2 (en) | Purification method of basic anion exchange resin | |
US4266045A (en) | Etherified phenolic chelate resin, process for its production, and method for adsorption treatment | |
JP2579773B2 (en) | Purification method of alkaline solution | |
JP5167253B2 (en) | Processing method of developing waste liquid containing tetraalkylammonium ions | |
JP2987907B2 (en) | Removal of dissolved oxygen | |
JPS6142335A (en) | Eluting method for metal adsorbed by chelating agent | |
JP2730610B2 (en) | Method for treating wastewater containing organic quaternary ammonium hydroxide | |
JPH11513350A (en) | Method for producing nickel hypophosphite | |
JP4089320B2 (en) | Purification method of basic anion exchange resin | |
JP2536586B2 (en) | Amino acid separation and purification method | |
JPH044092A (en) | Method for purifying aqueous alkali chloride solution | |
JPH05192592A (en) | Treatment of strongly basic anion exchange resin | |
JPH0460700B2 (en) | ||
JP7477641B2 (en) | Method and apparatus for purifying liquid containing tetraalkylammonium ions | |
JPH0686680B2 (en) | Purifying method of Metsuki bath | |
JPH0771636B2 (en) | Purification method of inorganic salt bath | |
JPS62250991A (en) | Method for removing dissolved oxygen | |
JPH03199328A (en) | Method for recovering palladium | |
JP2534861B2 (en) | Method for producing high-purity hydrazine hydrate | |
JPH0777617B2 (en) | Elution method of heavy metals adsorbed on chelating agents | |
JPS6353128B2 (en) |