JPH09141039A - Gasoline vapor adsorption, separation and recovery method and device therefor - Google Patents

Gasoline vapor adsorption, separation and recovery method and device therefor

Info

Publication number
JPH09141039A
JPH09141039A JP7329891A JP32989195A JPH09141039A JP H09141039 A JPH09141039 A JP H09141039A JP 7329891 A JP7329891 A JP 7329891A JP 32989195 A JP32989195 A JP 32989195A JP H09141039 A JPH09141039 A JP H09141039A
Authority
JP
Japan
Prior art keywords
gasoline
adsorbent
tower
adsorption
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7329891A
Other languages
Japanese (ja)
Inventor
Toshinaga Kawai
井 利 長 川
Kenichiro Suzuki
木 謙 一 郎 鈴
Hiroshi Tawara
原 弘 田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7329891A priority Critical patent/JPH09141039A/en
Publication of JPH09141039A publication Critical patent/JPH09141039A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide the method of safety and effectively separating and recovering gasoline vapor in a gasoline tank and to provide the device therefor. SOLUTION: Gasoline vapor containing gasoline is introduced from the bottom part of an adsorber 1 to adsorb gasoline from the gasoline vapor by an adsorbent with which the adsorber 1 is packed and to discharge air from the top of the adsorber 1, and also, the adsorbed gasoline by the adsorbent is recovered. In this case, as the adsorbent, silica gel subjected to hydrophobic treatment is used. When gasoline vapor is introduced into the adsorber 1, water droplets are sprayed to the vapor to keep the inside of the adsorber 1 at such suitable relative humidity that the adsorbent is not dried. While kept in this state, the temperature in the adsorber 1 during adsorption is heat-exchanged in the axial direction and also the differential potential of the adsorbent caused in the adsorber is neutralized, and the gasoline adsorbed by the adsorbent is sucked by a vacuum pump 20, and is cooled and recovered, thereby regenerating the absorbent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガソリンタンク内
のガソリン蒸気を分離し、回収するガソリン蒸気吸着分
離回収方法及びその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gasoline vapor adsorption / separation method and apparatus for separating and recovering gasoline vapor in a gasoline tank.

【0002】[0002]

【従来の技術】ガソリンタンク内のガソリンの蒸気は、
一般にガソリン本体の組成と異なり、低沸点成分からな
るガス混合物で、主成分はブタン,ペンタンであり、ヘ
キサンも多少含有されている。このガス混合物は低揮発
性であり、沸点60℃,分子量70以下の炭化水素であっ
て、大型タンク内の揮発ガソリンは空気中に40%濃度の
飽和に近い状態で存在し、タンク内に液状ガソリンを注
入すると、内部のガスと共に外部に排出されるが、上記
のガソリン蒸気の量は膨大であり、これをそのまま大気
に放出すると、大気環境は悪化して公害の原因となる
し、また、省資源上も好ましくない。
2. Description of the Related Art Gasoline vapor in a gasoline tank is
In general, unlike the composition of gasoline itself, it is a gas mixture consisting of low boiling point components, the main components of which are butane and pentane, and some hexane. This gas mixture has low volatility and is a hydrocarbon with a boiling point of 60 ° C and a molecular weight of 70 or less. Volatile gasoline in a large tank exists in the air in a state close to saturation of 40% concentration, and is a liquid in the tank. When gasoline is injected, it is exhausted to the outside together with the internal gas, but the amount of the above-mentioned gasoline vapor is enormous, and if this is released into the atmosphere as it is, the atmospheric environment will deteriorate and cause pollution. It is not preferable in terms of resource saving.

【0003】そのため、石油精製プラントでは、ガソリ
ン蒸気を回収するために、一般に灯油で洗浄することが
行われているが、ガソリンを吸収した灯油は蒸留塔で再
度分離する工程が必要であり、そのための設備は石油精
製プラント内で初めて可能であって、通常の市街地区域
では実現できない。
Therefore, in petroleum refining plants, in order to recover gasoline vapor, it is generally performed to wash with kerosene, but kerosene that has absorbed gasoline requires a step of separating again in a distillation column. This equipment can be used for the first time in an oil refining plant and cannot be realized in a normal urban area.

【0004】また、上記の灯油に替えて、リ−ンオイル
を利用した吸収液で洗浄する方法も開発された。この方
法は、基本的には石油プラントの小型化を図ったもので
あるが、吸収塔内でガソリンを飽和吸収した吸収液を真
空により別の再生装置で分離回収しなければならないの
で、装置全体は大型化せざるを得ず、しかも、この方法
は湿式処理のため、種々のミストが同伴されるなど、操
作上の問題も多いし、真空ポンプの性能により出口濃度
が決まるので、高濃度で回収するためには真空装置に多
額の費用がかかるなどの問題もある。
A method has also been developed in which, instead of the above kerosene, a cleaning solution using lean oil is used for cleaning. This method basically aims at downsizing of the oil plant, but since the absorption liquid that saturated and absorbed gasoline in the absorption tower must be separated and recovered by a separate regenerator by vacuum, the entire equipment Is inevitably large in size, and since this method is a wet process, various mists are entrained, so there are many operational problems, and the concentration of the outlet is determined by the performance of the vacuum pump. There is also a problem in that the vacuum device requires a large amount of money for recovery.

【0005】更に、膜分離法によるガソリン蒸気の回収
も試みられたが、この方法は、導入ガスの圧力を高くし
なければならないため、多大な動力を必要とするばかり
でなく、排出ガソリン濃度を減少させるためには、多段
式にしなければならないので、装置が高価につき、ま
た、膜物質の化学的劣化現象も無視できないため、排出
濃度を8%以下にすることは殆ど不可能である。
Further, attempts have been made to recover gasoline vapor by a membrane separation method. However, this method requires a great amount of power because the pressure of the introduced gas must be increased, and the exhaust gas concentration is also reduced. In order to reduce the amount, it is necessary to use a multi-stage method, so that the apparatus is expensive, and the chemical deterioration phenomenon of the membrane material cannot be ignored. Therefore, it is almost impossible to reduce the emission concentration to 8% or less.

【0006】一方、吸着剤に活性炭を使用した従来の溶
剤回収装置を用いてガソリン蒸気を回収することも考え
られたが、活性炭はガソリンを高濃度に吸着すると、吸
着熱により100℃以上の熱を発生して、空気の存在によ
り自然発火したり、ガス流と活性炭の摩擦により静電気
が発生して、その火花でガス爆発を起こす可能性がある
ので、これらの事故の発生を避けるため、低濃度に稀釈
してガソリンの回収を行おうとすれば、装置が大型化し
て実用的でなくなる。
On the other hand, it has been considered to recover gasoline vapor by using a conventional solvent recovery device using activated carbon as an adsorbent, but when activated carbon adsorbs gasoline at a high concentration, the activated carbon generates heat of 100 ° C. or more due to heat of adsorption. May occur, and spontaneous ignition may occur due to the presence of air, or static electricity may be generated due to friction between the gas flow and activated carbon, causing a gas explosion with the sparks. If you try to dilute the concentration to recover the gasoline, the size of the device becomes large and it becomes impractical.

【0007】また、吸着法を利用したVPSA法(真空
圧力スイング吸着)は短時間で操作の切換えを行うた
め、温度が高温にならないので、自然発火の危険性がな
く安全であり、再生も低温の真空パ−ジを採用した乾式
のため、安価な分離装置を提供できるが、このVPSA
方式をガソリン蒸気の回収に適用すると、多量のパ−ジ
空気により回収ガソリンが稀釈され、ガソリンは気体で
しか回収されないという欠点がある。
Further, since the VPSA method (vacuum pressure swing adsorption) utilizing the adsorption method switches the operation in a short time, the temperature does not rise to a high temperature, so there is no danger of spontaneous ignition, it is safe, and the regeneration is low. Since it is a dry type that adopts the vacuum page, it is possible to provide an inexpensive separation device.
When the method is applied to the recovery of gasoline vapor, the recovered gasoline is diluted by a large amount of purge air, and the gasoline is recovered only as a gas.

【0008】然し乍ら、ガソリン蒸気を大気に放出する
ことは、前述のように、大気汚染及び資源の無駄使いに
つながるものであるから、大気環境改善及び省資源の面
からガソリン蒸気からのガソリンの回収は極めて重要な
問題である。
However, since the release of gasoline vapor to the atmosphere leads to air pollution and waste of resources, as described above, recovery of gasoline from gasoline vapor from the viewpoint of improving the atmospheric environment and saving resources. Is a very important issue.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上述のよう
な従来技術に鑑み、ガソリンタンク内のガソリン蒸気を
安全にしかも能率よく分離,回収できる方法及びその装
置を提供することを、その課題とするものである。
SUMMARY OF THE INVENTION In view of the above-mentioned prior art, the present invention provides a method and apparatus for safely and efficiently separating and recovering gasoline vapor in a gasoline tank. It is what

【0010】[0010]

【課題を解決するための手段】上記課題を解決すること
を目的としてなされた本発明ガソリン蒸気吸着分離回収
方法の構成は、吸着塔の底部からガソリンを含有したガ
ソリン蒸気を導入し、前記吸着塔内に充填した吸着剤に
よりガソリン蒸気からガソリンを吸着して塔頂部から空
気を排出すると共に吸着剤が吸着したガソリンを回収す
るに際し、前記吸着剤として疎水化処理を施したシリカ
ゲルを用い、ガソリン蒸気の吸着塔内への導入時に該蒸
気に水滴を噴霧して塔内を吸着剤が乾燥しない適宜相対
湿度に保持しながら、吸着時に塔内温度を軸方向に熱交
換させると共に塔内に発生する吸着剤の電位差を中和さ
せるようにし、且つ、吸着剤の再生時に該吸着剤が吸着
したガソリンを真空ポンプにより吸引し、冷却して回収
することを特徴とするものであり、また、その装置の構
成は、塔底部からガソリンを含有したガソリン蒸気を導
入し、塔内に疎水化処理を施したシリカゲルから成る吸
着剤を充填して該吸着剤により前記ガソリン蒸気からガ
ソリンを吸着し、塔頂部から空気を排出するようにした
吸着塔の内部に、複数の伝導性金属板又は金属製多重円
筒体等から成り吸着時に塔内の温度を軸方向に熱交換す
ると共に塔内に発生する電位差を中和する熱交換部材を
内装して接地し、前記吸着塔のガソリン蒸気導入部辺に
ガソリン蒸気に水滴を噴霧して吸着時に塔内を吸着剤が
乾燥しない適宜相対湿度保持させる水蒸気発生器を付設
する一方、吸着剤の再生時に該吸着剤が吸着したガソリ
ンを、真空ポンプにより吸引し冷却器により冷却して回
収するようにしたことを特徴とするものである。
The structure of the gasoline vapor adsorption separation / recovery method of the present invention, which has been made for the purpose of solving the above-mentioned problems, has a structure in which gasoline vapor containing gasoline is introduced from the bottom of an adsorption tower, When adsorbing gasoline from gasoline vapor by the adsorbent filled inside and exhausting air from the tower top and collecting the gasoline adsorbed by the adsorbent, silica gel subjected to hydrophobic treatment is used as the adsorbent, and gasoline vapor is used. When the adsorbent is introduced into the adsorption tower, water vapor is sprayed on the vapor to keep the adsorbent inside the tower at an appropriate relative humidity so that the adsorbent does not dry, while the temperature inside the tower is heat-exchanged in the axial direction and generated in the tower. It is characterized in that the potential difference of the adsorbent is neutralized, and the gasoline adsorbed by the adsorbent is sucked by a vacuum pump at the time of regeneration of the adsorbent, cooled, and recovered. Further, the apparatus is constructed such that gasoline vapor containing gasoline is introduced from the bottom of the column, and the column is filled with an adsorbent made of silica gel subjected to a hydrophobic treatment, and the gasoline is adsorbed by the adsorbent. Adsorption of gasoline from steam and discharge of air from the top of the tower consists of multiple conductive metal plates or multiple metal cylinders inside the adsorption tower. In addition, the heat exchange member for neutralizing the potential difference generated in the tower is installed and grounded, and water droplets are sprayed on the gasoline vapor to the gasoline vapor introduction part of the adsorption tower to prevent the adsorbent from drying inside the tower during adsorption. A steam generator for appropriately maintaining relative humidity is additionally provided, while the gasoline adsorbed by the adsorbent during regeneration of the adsorbent is sucked by a vacuum pump and cooled by a cooler to be collected. Than it is.

【0011】[0011]

【発明の実施の形態】即ち、本発明は、前述のVSPA
法の長所を活かし、発火等の危険を伴うことなく、高濃
度(20%)のガソリン蒸気のガソリンを吸着法により分
離,回収し、出口空気中のガソリン濃度を著しく、例え
ば0.1%程度にまで低くできるようにするためのもので
あって、そのためには、まず、吸着剤に適切なものを選
定しなければならない。
BEST MODE FOR CARRYING OUT THE INVENTION That is, the present invention is based on the above-mentioned VSPA.
Utilizing the advantages of the law, high-concentration (20%) gasoline vapor gasoline is separated and collected by the adsorption method without danger of ignition, etc., and the concentration of gasoline in the outlet air is remarkable, for example, up to about 0.1%. In order to make it possible to lower the temperature, first of all, it is necessary to select a suitable adsorbent.

【0012】そこで、本発明においては、吸着剤として
可燃性の活性炭を用いることなく、不燃性のシリカゲル
を使用するようにした。本来、吸湿性シリカゲルもガソ
リンの吸着に適するが、同時にガスを乾燥することにな
り、乾燥雰囲気の中で吸着剤粒子が流動し摩擦すれば、
粒子間に静電気が生じて、放電現象により着火爆発の危
険性が避けられない。従って、本発明において使用する
シリカゲルはその吸湿特性をなくし或いは減少させて、
通過ガス或いはガソリン蒸気に適度の水分湿度を持たせ
ることによって、電気伝導により粒子が帯電しないよう
にしなければならない。
Therefore, in the present invention, nonflammable silica gel is used as the adsorbent without using flammable activated carbon. Originally, hygroscopic silica gel is also suitable for adsorbing gasoline, but at the same time it will dry the gas, and if the adsorbent particles flow and rub in a dry atmosphere,
There is an unavoidable risk of ignition and explosion due to static electricity generated between particles and the discharge phenomenon. Thus, the silica gel used in the present invention eliminates or reduces its hygroscopic properties,
It is necessary to prevent the particles from being charged by electric conduction by allowing the passing gas or gasoline vapor to have an appropriate moisture and humidity.

【0013】[0013]

【実施例】次に、本発明の実施例を図により説明する。
図1は4種類の疎水化処理を施したシリカゲルを用いて
ガソリン蒸気を処理した場合のそれぞれのペンタン吸着
量の等温線を示す図表、図2は図1の吸着剤のVPSA
性能を示す図表、図3は本発明装置に使用する吸着塔の
一例の縦断面図、図4は図3の横断面図、図5は本発明
装置の別例で、再生システムを含む2塔式吸着装置の系
統図である。
Next, an embodiment of the present invention will be described with reference to the drawings.
Fig. 1 is a chart showing the isotherms of the pentane adsorption amount when treating gasoline vapor using silica gels that have been subjected to four types of hydrophobization treatment, and Fig. 2 is the VPSA of the adsorbent of Fig. 1.
FIG. 3 is a longitudinal sectional view of an example of an adsorption tower used in the apparatus of the present invention, FIG. 4 is a horizontal sectional view of FIG. 3, FIG. 5 is another example of the apparatus of the present invention, and two towers including a regeneration system are shown. It is a systematic diagram of an adsorption device.

【0014】一般に、シリカゲルは表面の-OH基により
水分を選択的に吸着するが、シランカップリング材等を
溶媒で稀釈し浸漬すると、吸着細孔中で容易に加水分解
し、分子間脱水してゲル状物質となり、Si-O-Siの皮膜
となって、細孔内は疎水性に変質することが知られてい
る。本発明に適するシリカゲル素材は上記疎水化処理を
施した孔径40〜100Åの細孔を持つものがよい。即ち、
優れた吸着−脱離特性を持つ吸着剤を選定することが肝
要である。実際に、細孔に疎水化処理に施したシリカゲ
ルを用いて吸着−脱離操作実験を行ったところ、疎水化
の程度は細孔径に依存し、ガソリンの吸着−脱離特性と
密接な関係にあることが判明した。
In general, silica gel selectively adsorbs moisture by the -OH group on the surface, but when a silane coupling agent or the like is diluted with a solvent and immersed, it easily hydrolyzes in the adsorption pores and dehydrates intermolecularly. It is known that it becomes a gel-like substance, becomes a film of Si-O-Si, and the inside of the pores is changed to hydrophobic. The silica gel material suitable for the present invention is preferably one having pores having a pore size of 40 to 100 Å which has been subjected to the above-mentioned hydrophobic treatment. That is,
It is important to select an adsorbent that has excellent adsorption-desorption characteristics. Actually, when an adsorption-desorption operation experiment was performed using silica gel whose pores were hydrophobized, the degree of hydrophobization depended on the pore size and was closely related to the adsorption-desorption characteristics of gasoline. It turned out to be.

【0015】疎水化処理を施した細孔径の異なる次の4
種のシリカゲルを使用し、VSPA操作によるガソリン
蒸気からのガソリンの除去,回収実験を行った。 (1) 表面積600m2/g、平均細孔径30Å (疎水性成分付
着量1.6%) (2) 表面積450m2/g、平均細孔径60Å (疎水性成分付
着量6.8%) (3) 表面積300m2/g、平均細孔径100Å(疎水性成分付
着量3.0%) (4) 表面積450m2/g、平均細孔径60Å (疎水性成分付
着量2.4%) その結果、ペンタンの吸着量は、細孔径の大きさにより
性能上差異があり、疎水性成分添加量が多く細孔径が60
〜100Åと大きいシリカゲルが吸着性能に優れることが
判った。即ち、それぞれのシリカゲルの等温線の形は、
図1の図表に示すとおりで、(2),(3)及び(4)は脱離に
優れる凹型ないしはほぼ直線状であるのに対し、細孔径
が30Åと小さい(1)は疎水性成分付着量が少ないため、
吸着性能に劣ることが判り、その等温線の形は凸型であ
った。また、(4)のシリカゲル150gを1リットル円筒型
ポリ容器(内径90mm、高さ165mm)に入れて蓋をし、振
とう機(ヤマト科学 SA-31)に取付けて、水平方向に幅
40mm、振とう数280/minで5分間振とうさせた後、速や
かに蓋を開け、静電電位測定器(春日電気 KSD-0103)
を用いて容器底部より150mm、直径方向の中心に対し垂
直にセンサ一を合わせて帯電度を測定したところ、その
電位は-0.1kVで、帯電しにくいことが判明した。
The following four different pore sizes that have been hydrophobized
Using the seed silica gel, the experiment of removing and recovering gasoline from gasoline vapor by VSPA operation was conducted. (1) Surface area 600 m 2 / g, average pore diameter 30 Å (hydrophobic component attachment amount 1.6%) (2) Surface area 450 m 2 / g, average pore diameter 60 Å (hydrophobic component attachment amount 6.8%) (3) Surface area 300 m 2 / g, average pore diameter 100Å (hydrophobic component adhesion amount 3.0%) (4) Surface area 450m 2 / g, average pore diameter 60Å (hydrophobic component adhesion amount 2.4%) As a result, pentane adsorption amount There is a difference in performance depending on the size, and the amount of hydrophobic component added is large and the pore size is 60.
It was found that silica gel as large as ~ 100Å excels in adsorption performance. That is, the shape of each isotherm of silica gel is
As shown in the chart in Fig. 1, (2), (3) and (4) are concave or almost linear with excellent desorption, whereas (1) with a small pore size of 30 Å has hydrophobic components attached. Because the amount is small,
It was found that the adsorption performance was poor, and the shape of the isotherm was convex. Moreover, 150g of silica gel of (4) is put in a 1 liter cylindrical plastic container (inner diameter 90mm, height 165mm), covered, and attached to a shaker (Yamato Scientific SA-31) to make it horizontally wide.
After shaking for 5 minutes at a shaking rate of 280 / min at 40 mm, the lid is opened promptly, and an electrostatic potential measuring device (Kasuga Denki KSD-0103) is used.
When the electrostatic charge was measured by using a sensor, the sensor was placed 150 mm from the bottom of the container and perpendicular to the center of the diameter direction, and the electric potential was -0.1 kV, and it was found that charging was difficult.

【0016】また、上記4種の吸着剤のVPSA性能
は、図2の図表に示すとおりであって、それぞれの吸着
剤によりパ−ジガスの必要量に著しい差異があり、(4)
の吸着剤が本発明に最も適していることが判明した。
尚、パ−ジ係数とは、 (実際の空気パ−ジ量/供給ガス)÷{真空圧/吸着圧
(mmHg)} である。
The VPSA performance of the above four kinds of adsorbents is as shown in the chart of FIG. 2, and there is a significant difference in the required amount of purge gas depending on the adsorbents.
The adsorbents have been found to be most suitable for the present invention.
The purge coefficient is (actual air purge amount / supply gas) / {vacuum pressure / adsorption pressure.
(mmHg)}.

【0017】上記の疎水性吸着剤の採用により、吸着
塔の各粒子間で帯電しない湿度60%以上に保持すること
が可能となった。しかし、本来、吸着塔内のガソリン濃
度は、入口付近では20体積%以上となり、空気と混合し
ても爆発濃度範囲(1.5〜6%)を超えるので危険性はな
いが、ガスが吸着塔内を進行するに従ってガソリン濃度
は低下し、ついには爆発限界内に到達する。このとき、
吸着塔の壁面と流体の間に電位差が生じていると、放電
現象による火花が発生するおそれがあるので、これを防
止するためには、塔内くまなく接地されているようにす
ることも必要である。尚、上記(4)の吸着剤は、前述し
たように、帯電しにくいので、上記接地は不要である
が、接地することにより安全度は一層高まる。
By adopting the above-mentioned hydrophobic adsorbent, it becomes possible to keep the humidity between the particles of the adsorption tower at a humidity of 60% or more which is not charged. However, the concentration of gasoline in the adsorption tower is essentially 20% by volume or more near the inlet, and even if mixed with air, it exceeds the explosive concentration range (1.5 to 6%), so there is no danger, but the gas inside the adsorption tower is not dangerous. As the engine progresses, the gasoline concentration decreases until it reaches the explosion limit. At this time,
If there is a potential difference between the wall of the adsorption tower and the fluid, sparks may occur due to the discharge phenomenon.To prevent this, it is also necessary to ground all over the tower. Is. As described above, the adsorbent (4) does not need to be grounded because it is difficult to be charged as described above, but grounding further enhances safety.

【0018】一方、吸着と真空脱離を繰り返せば、大型
の吸着塔は軸方向に温度の勾配を生じ、塔の上部は比較
的高温に、塔底部は低温になることが知られている。こ
れは吸着熱が塔頂よりガスの流出に伴って失われるから
であって、吸着層の温度の低下により正常な真空脱離操
作が不可能になり、必然的にパ−ジ空気の量が増加し、
回収ガソリンの収率が減少する。一般には、塔底部を加
温、塔頂部は冷却するのが吸着法によるガソリンの収率
に最も効果的であるので、上記のように、塔上部が比較
的高温に、塔底部が低温になる現象はこれを防止しなけ
ればならない。
On the other hand, it is known that when adsorption and vacuum desorption are repeated, a large adsorption tower causes a temperature gradient in the axial direction, the upper part of the tower has a relatively high temperature and the bottom part has a low temperature. This is because the heat of adsorption is lost along with the outflow of gas from the top of the column, and the normal vacuum desorption operation becomes impossible due to the decrease in the temperature of the adsorption layer, and the amount of purge air is inevitably increased. Increased,
The yield of recovered gasoline is reduced. Generally, it is most effective for the gasoline yield by the adsorption method to heat the bottom of the tower and cool the top of the tower. Therefore, as described above, the top of the tower becomes relatively hot and the bottom of the tower becomes cold. The phenomenon must prevent this.

【0019】そのためには、塔内部において軸方向に熱
交換を行うようにすればよく、望ましくは熱伝導体,電
気良導体である多重の円筒状熱交換部材を設置すること
により達成されるので、この熱交換部材を設置する場
合、これを接地しておけば、特に静電気対策を採らなく
ても充分静電気対策になり、安全性が高くなる。
For that purpose, heat may be exchanged in the axial direction inside the tower, and it is preferably achieved by installing a plurality of cylindrical heat exchange members which are heat conductors and good electric conductors. When this heat exchange member is installed, if it is grounded, it is sufficient to take measures against static electricity without taking measures against static electricity, and the safety is enhanced.

【0020】図3,4は本発明において使用される吸着
塔の構成を示すもので、各図において、1は内部に吸着
剤2を充填した吸着塔、3は該吸着塔1の上蓋、4は吸
着塔1に設けた空気導入部、5は同じく原料ガス即ちガ
ソリン蒸気を吸着塔1内に導入するための導入口、6,
7は吸着塔1内に配設され該塔1内を均一温度に加温す
るための同心円状の金属伝熱筒から成る熱交換部材、8
は吸着塔1に設けた加圧空気の出口、9は同じく再生パ
−ジガス導入部で、前記金属伝熱筒6,7は据付部材10
を介して接地されている。尚、熱交換部材6,7は、熱
伝導体で電気良導体として兼用できる銅製或いはアルミ
ニウム製の金網又は板で、塔内部に筒状以外に渦巻状に
設置してもよい。また、吸着剤2としては、表面積が45
0m2/g、細孔径が60Åの疎水化処理の施された前記(4)の
シリカゲルを用いている。
3 and 4 show the construction of the adsorption tower used in the present invention. In each drawing, 1 is an adsorption tower filled with an adsorbent 2 inside, 3 is an upper lid of the adsorption tower 1, 4 Is an air inlet provided in the adsorption tower 1, 5 is an inlet for introducing a raw material gas, that is, gasoline vapor into the adsorption tower 1, 6,
Reference numeral 7 denotes a heat exchange member which is arranged in the adsorption tower 1 and is composed of concentric metal heat transfer tubes for heating the inside of the tower 1 to a uniform temperature.
Is an outlet for pressurized air provided in the adsorption tower 1, 9 is also a regeneration purge gas introduction part, and the metal heat transfer cylinders 6 and 7 are installation members 10
Grounded. The heat exchange members 6 and 7 are wire nets or plates made of copper or aluminum that can also serve as good electric conductors with heat conductors, and may be installed in the tower in a spiral shape other than a cylindrical shape. The surface area of the adsorbent 2 is 45
The silica gel of (4) above, which has been subjected to the hydrophobic treatment with 0 m 2 / g and a pore size of 60 Å, is used.

【0021】また、図5に示す吸着装置は、図3の吸着
塔1,1'を具えた2塔式真空吸着装置であって、図中、
11,11'、12,12'はガス導入管13と吸着塔1,1'のガス
導入口5,5'と結ぶ配管に設けた開閉弁、14,14'、1
5,15'は排ガス流出管16と吸着塔1,1'の上部を結ぶ配
管に設けた逆止弁、17は水蒸気発生器、18,18'は吸着
塔1,1'に設けた塔内の湿度検出器、19はパ−ジガス送
給部、20は真空ポンプ、21はガソリン回収用の配管、22
は該配管21に設けた冷却器でその内部に冷却水23が流さ
れるようになっていて、以上により装置が構成されてお
り、その作用は次の通りである。
The adsorption device shown in FIG. 5 is a two-column vacuum adsorption device comprising the adsorption towers 1, 1'of FIG.
11, 11 ', 12, 12' are opening / closing valves provided in pipes connecting the gas introduction pipe 13 and the gas introduction ports 5, 5'of the adsorption towers 1, 1 ', 14, 14', 1
5 and 15 'are check valves provided in the pipe connecting the exhaust gas outflow pipe 16 and the upper part of the adsorption towers 1 and 1', 17 are steam generators, 18 and 18 'are inside the adsorption towers 1 and 1' Humidity detector, 19 is a purge gas feeding unit, 20 is a vacuum pump, 21 is a pipe for collecting gasoline, 22
Is a cooler provided in the pipe 21 so that the cooling water 23 is flown into the cooler, and the device is constituted by the above, and its operation is as follows.

【0022】上記の装置において、ガソリンを含む原料
ガスを原料ガス導入管13から送り込むと、該ガスは水蒸
気発生器15により湿度を60〜80%に調整され、開閉弁11
を経、原料ガス導入口5から吸着塔1の内部に導入され
て、吸着剤2の層を通りガソリン分を吸着,除去された
後、逆止弁14を経て排ガス流出管16から清浄な空気とし
て排出される。この間、吸着剤2の層の湿度は水蒸気発
生器17と湿度検出器18により70%に自動調整されてい
る。
In the above apparatus, when the raw material gas containing gasoline is fed from the raw material gas introduction pipe 13, the humidity of the gas is adjusted to 60 to 80% by the steam generator 15, and the on-off valve 11
After being introduced into the adsorption tower 1 through the raw material gas introduction port 5 and adsorbing and removing the gasoline component through the layer of the adsorbent 2, clean air is discharged from the exhaust gas outflow pipe 16 through the check valve 14. Is discharged as. During this time, the humidity of the layer of the adsorbent 2 is automatically adjusted to 70% by the steam generator 17 and the humidity detector 18.

【0023】一方、吸着塔1'においては、パ−ジガス送
給部19からの空気が逆止弁15'を通って頂部から塔内に
導入され、吸着剤2が吸着している高濃度のガソリンを
脱離し、脱離されたガソリンは大気圧により加圧圧縮さ
れて配管21から冷却器22に導入され、該冷却器22内を流
れる冷却水23による冷却によって大半は液化し、液状ガ
ソリンとして回収される。また、未回収のガソリン蒸気
は配管21を通り切換弁8を通って吸着塔1内で処理され
る。
On the other hand, in the adsorption tower 1 ', the air from the purge gas feeding section 19 is introduced into the tower from the top through the check valve 15' and the adsorbent 2 is adsorbed at a high concentration. The gasoline is desorbed, and the desorbed gasoline is compressed under atmospheric pressure and introduced into the cooler 22 through the pipe 21, and most of it is liquefied by cooling by the cooling water 23 flowing in the cooler 22 and becomes liquid gasoline. Be recovered. The unrecovered gasoline vapor is processed in the adsorption tower 1 through the pipe 21 and the switching valve 8.

【0024】本発明装置は上記の操作を各吸着塔1,1'
において交互に行うことにより、連続的にガソリンを回
収するのであるが、実際に、1気圧程度の空気中に、湿
度60%,ガソリンを20体積%含有した蒸気を混入したガ
ソリン蒸気を25L/minで吸着塔内に導入して、ガソリン
を吸着除去する操作を5分間行い、次に、真空度25mmHg
に設定して脱離再生を行ったところ、出口空気は水分が
60%で変化はなく、ガソリン濃度は僅かに0.1%であっ
た。このことはガソリン蒸気中のガソリン成分の殆どが
吸着除去されたことを示す。また、吸着剤の再生は、空
気パ−ジ量0.12L/min、塔内温度35℃、冷却器を流れる
冷却水温度20℃の条件で行い、回収された液状ガソリン
は収率99.9%であった。一方、ガソリンが回収されなか
ったガソリン飽和空気は吸着塔の入口に戻され、再度吸
着工程に送られたが、そのガス量は吸着量に影響を与え
なかった。
The apparatus of the present invention performs the above operation for each adsorption tower 1, 1 '.
The gasoline is continuously recovered by alternately performing the above, but actually, 25 L / min of gasoline vapor containing 60% humidity and 20% by volume of gasoline mixed in the air of about 1 atm. Is introduced into the adsorption tower at 5 minutes, and the operation of adsorbing and removing gasoline is carried out for 5 minutes.
When desorption regeneration was performed by setting to
There was no change at 60% and the gasoline concentration was only 0.1%. This means that most of the gasoline components in the gasoline vapor have been adsorbed and removed. Regeneration of the adsorbent was performed under the conditions of an air purge rate of 0.12 L / min, a tower temperature of 35 ° C, and a cooling water temperature of 20 ° C flowing through the cooler, and the recovered liquid gasoline had a yield of 99.9%. It was On the other hand, the saturated air with no gasoline recovered was returned to the inlet of the adsorption tower and sent to the adsorption process again, but the amount of gas did not affect the amount of adsorption.

【0025】[0025]

【発明の効果】本発明は上述のとおりであって、真空再
生吸着法を使用し、吸着剤として空気中のガソリン除去
回収に好適な細孔内疎水化処理を施したシリカゲルを使
用したので、水分に対してはこれを吸着除去することな
く湿度60%以上を保持し、且つ空気中のガソリンのみを
吸着除去する一方、再生工程においては、極小のパ−ジ
空気量で真空脱離すると共にガソリンを高収率で回収で
きるようにしたから、装置の構成を簡潔にでき、従っ
て、本発明装置はこれを市街地のガソリンスタンドなど
に設置すれば、大気環境の改善及び省資源を実現でき
る。
The present invention is as described above, and since the vacuum regeneration adsorption method is used and the silica gel subjected to the hydrophobic treatment in the pores suitable for removing and recovering gasoline in the air is used as the adsorbent, Humidity of 60% or more is maintained for moisture without adsorbing and removing it, and only gasoline in the air is adsorbed and removed, while in the regeneration process, vacuum desorption is performed with a minimum amount of purge air. Since the gasoline can be collected with a high yield, the structure of the device can be simplified. Therefore, if the device of the present invention is installed at a gas station in an urban area, the atmospheric environment can be improved and resources can be saved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】4種類の吸着剤を用いてガソリン蒸気を処理し
た場合のそれぞれのペンタン吸着量の等温線を示す図
表。
FIG. 1 is a chart showing isotherms of pentane adsorption amounts when treating gasoline vapor with four kinds of adsorbents.

【図2】図1の吸着剤のVPSA性能を示す図表。FIG. 2 is a chart showing the VPSA performance of the adsorbent of FIG.

【図3】本発明に使用する吸着塔の一例の縦断面図。FIG. 3 is a vertical sectional view of an example of an adsorption tower used in the present invention.

【図4】図3の横断面図。FIG. 4 is a transverse sectional view of FIG. 3;

【図5】本発明装置の一例の再生システムを含む2塔式
吸着装置の系統図。
FIG. 5 is a system diagram of a two-column type adsorption device including a regeneration system as an example of the device of the present invention.

【符号の説明】[Explanation of symbols]

1,1' 吸着塔 2 吸着剤 3 吸着塔の蓋 4 空気導入部 5 原料ガス導入口 6,7 熱交換部材 8 加圧空気の出口 9 再生パ−ジガス導入部 10 吸着塔の据付部材(接地部材を兼ねる) 11,11',12,12' 切換弁 13 ガス導入管 14,14',15,15' 逆止弁 16 排ガス流出管 17 水蒸気発生器 18,18' 湿度検出器 19 パ−ジガス送給部 20 真空ポンプ 21 ガソリン回収用の配管 22 冷却器 23 配管 24 冷却水 1,1 'Adsorption tower 2 Adsorbent 3 Adsorption tower lid 4 Air inlet 5 Raw material gas inlet 6,7 Heat exchange member 8 Pressurized air outlet 9 Regeneration purge gas inlet 10 Adsorption tower installation member (grounding) (Also serves as a member) 11, 11 ', 12, 12' Switching valve 13 Gas inlet pipe 14, 14 ', 15, 15' Check valve 16 Exhaust gas outlet pipe 17 Steam generator 18, 18 'Humidity detector 19 Page gas Feeding unit 20 Vacuum pump 21 Pipe for collecting gasoline 22 Cooler 23 Pipe 24 Cooling water

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年1月22日[Submission date] January 22, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Correction target item name] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0005】更に、膜分離法によるガソリン蒸気の回収
も試みられたが、この方法は、回収ガスの圧力を低くし
なければならないため、多大な動力を必要とするばかり
でなく、排出ガソリン濃度を減少させるためには、多段
式にしなければならないので、装置が高価につき、ま
た、膜物質の化学的劣化現象も無視できないため、排出
濃度を8%以下にすることは殆ど不可能である。
Further, attempts have been made to recover gasoline vapor by a membrane separation method, but this method requires a large amount of power because the pressure of the recovered gas must be lowered, and the exhaust gas concentration is also reduced. In order to reduce the amount, it is necessary to use a multi-stage method, so that the apparatus is expensive, and the chemical deterioration phenomenon of the membrane material cannot be ignored. Therefore, it is almost impossible to reduce the emission concentration to 8% or less.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 吸着塔の底部からガソリンを含有したガ
ソリン蒸気を導入し、前記吸着塔内に充填した吸着剤に
よりガソリン蒸気からガソリンを吸着して塔頂部から空
気を排出すると共に吸着剤が吸着したガソリンを回収す
るに際し、前記吸着剤として疎水化処理を施したシリカ
ゲルを用い、ガソリン蒸気の吸着塔内への導入時に該蒸
気に水滴を噴霧して塔内を吸着剤が乾燥しない適宜相対
湿度に保持しながら、吸着時に塔内温度を軸方向に熱交
換させると共に塔内に発生する吸着剤の電位差を中和さ
せるようにし、且つ、吸着剤の再生時に該吸着剤が吸着
したガソリンを真空ポンプにより吸引し、冷却して回収
することを特徴とするガソリン蒸気吸着分離回収方法。
1. A gasoline vapor containing gasoline is introduced from the bottom of the adsorption tower, and the adsorbent filled in the adsorption tower adsorbs gasoline from the gasoline vapor and discharges air from the top of the tower while adsorbing the adsorbent. When recovering the gasoline, a silica gel subjected to a hydrophobic treatment is used as the adsorbent, and when the gasoline vapor is introduced into the adsorption tower, water vapor is sprayed onto the vapor to prevent the adsorbent from drying inside the tower. While adsorbing, the temperature inside the column is heat-exchanged during adsorption and the potential difference of the adsorbent generated in the column is neutralized, and the gasoline adsorbed by the adsorbent is vacuumed during regeneration of the adsorbent. A method for adsorbing, separating and collecting gasoline vapor, which comprises sucking with a pump, cooling and collecting.
【請求項2】 塔底部からガソリンを含有したガソリン
蒸気を導入し、塔内に疎水化処理を施したシリカゲルか
ら成る吸着剤を充填して該吸着剤により前記ガソリン蒸
気からガソリンを吸着し、塔頂部から空気を排出するよ
うにした吸着塔の内部に、複数の伝導性金属板又は金属
製多重円筒体等から成り吸着時に塔内の温度を軸方向に
熱交換すると共に塔内に発生する電位差を中和する熱交
換部材を内装して接地し、前記吸着塔のガソリン蒸気導
入部辺にガソリン蒸気に水滴を噴霧して吸着時に塔内を
吸着剤が乾燥しない適宜相対湿度に保持させる水蒸気発
生器を付設する一方、吸着剤の再生時に該吸着剤が吸着
したガソリンを、真空ポンプにより吸引し冷却器により
冷却して回収するようにしたことを特徴とするガソリン
蒸気吸着分離回収装置。
2. A gasoline vapor containing gasoline is introduced from the bottom of the tower, an adsorbent made of silica gel subjected to a hydrophobic treatment is filled in the tower, and the adsorbent adsorbs gasoline from the gasoline vapor. Inside the adsorption tower, which is designed to exhaust air from the top, consists of multiple conductive metal plates or metal multi-cylinders, etc. to heat-exchange the temperature in the tower in the axial direction during adsorption and to generate a potential difference inside the tower. Generates water vapor that keeps the adsorbent inside the tower at a proper relative humidity so that water droplets are sprayed on the gasoline vapor introduction part of the adsorption tower to prevent the adsorbent from drying during adsorption. A gasoline vapor adsorption / separation / recovery device characterized in that while the adsorbent is attached, the gasoline adsorbed by the adsorbent is sucked by a vacuum pump and cooled by a cooler to be recovered when the adsorbent is regenerated. Place.
JP7329891A 1995-11-24 1995-11-24 Gasoline vapor adsorption, separation and recovery method and device therefor Pending JPH09141039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7329891A JPH09141039A (en) 1995-11-24 1995-11-24 Gasoline vapor adsorption, separation and recovery method and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7329891A JPH09141039A (en) 1995-11-24 1995-11-24 Gasoline vapor adsorption, separation and recovery method and device therefor

Publications (1)

Publication Number Publication Date
JPH09141039A true JPH09141039A (en) 1997-06-03

Family

ID=18226415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7329891A Pending JPH09141039A (en) 1995-11-24 1995-11-24 Gasoline vapor adsorption, separation and recovery method and device therefor

Country Status (1)

Country Link
JP (1) JPH09141039A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998050149A1 (en) * 1997-05-07 1998-11-12 Cosmo Research Institute Adhesive, process for preparing the same, and method for recovering vapor of hydrocarbon by utilizing condensation by cooling
KR100378946B1 (en) * 1999-12-14 2003-04-08 차동순 Separate withdrawal of Gasolines vapor on service station
WO2015173949A1 (en) * 2014-05-16 2015-11-19 栗田工業株式会社 Activated carbon cartridge, gas purification device, and air purification method
CN108689381A (en) * 2018-06-26 2018-10-23 武汉轻工大学 A kind of area of refinery oil loading platform gas recovery system for oil and its recovery method
JP2020022926A (en) * 2018-08-06 2020-02-13 栗田工業株式会社 Regeneration method for fuel gas adsorption column

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998050149A1 (en) * 1997-05-07 1998-11-12 Cosmo Research Institute Adhesive, process for preparing the same, and method for recovering vapor of hydrocarbon by utilizing condensation by cooling
KR100378946B1 (en) * 1999-12-14 2003-04-08 차동순 Separate withdrawal of Gasolines vapor on service station
WO2015173949A1 (en) * 2014-05-16 2015-11-19 栗田工業株式会社 Activated carbon cartridge, gas purification device, and air purification method
CN108689381A (en) * 2018-06-26 2018-10-23 武汉轻工大学 A kind of area of refinery oil loading platform gas recovery system for oil and its recovery method
CN108689381B (en) * 2018-06-26 2023-09-19 武汉轻工大学 Oil gas recovery system and recovery method for oil loading and unloading platform of refinery area
JP2020022926A (en) * 2018-08-06 2020-02-13 栗田工業株式会社 Regeneration method for fuel gas adsorption column

Similar Documents

Publication Publication Date Title
KR100427676B1 (en) Process or recovery of gaseous hydrocarbons contained in waste gas
CA1132061A (en) Process and apparatus for recovering hydrocarbons from air-hydrogen vapor mixtures
CA1137426A (en) Process and apparatus for recovering hydrocarbons from air-hydrocarbon vapor mixtures
CA1149308A (en) Process and apparatus for recovering hydrocarbons from air-hydrocarbon vapor mixtures
CN102120121B (en) Oil gas adsorber
CN106621711B (en) A kind of processing method of the benzene gas containing high concentration
JPH09141039A (en) Gasoline vapor adsorption, separation and recovery method and device therefor
JP3011094B2 (en) Treatment and recovery of gaseous hydrocarbons contained in waste gas
US5584911A (en) Vapor recovery system with cyclonic separator
US5515686A (en) Absorber fluid circuit for vapor recovery system
JP3133988B2 (en) Equipment for treating lean gaseous hydrocarbons contained in waste gas
JP2925522B2 (en) Method for recovering hydrocarbons in liquid form from waste gas containing gaseous hydrocarbons
JP2840563B2 (en) Method for treating and recovering rich gaseous hydrocarbons contained in emitted gas
CN205700032U (en) Exhaust-gas treatment activated carbon adsorption and regenerating unit
JPS621525B2 (en)
KR100266479B1 (en) Adsorptive collection and recovery of volatile petroleum compounds
CN212790376U (en) Processing apparatus who contains chlorinated hydrocarbon organic waste gas
US3507051A (en) Regeneration process
CN211159155U (en) Filling station's cubic vapor recovery system device
JPH0957060A (en) Method for treating and recovering gaseous hydrocarbon contained in waste gas
CN110585851A (en) Filling station's cubic vapor recovery system device
CN217795338U (en) VOCs adsorbs desorption device
CN215352848U (en) Storage tank oil gas VOCs recovery processing system
JPH0230728B2 (en) HAIGASUNOSHORIHOHO
CN210495782U (en) Macromolecular adsorption material VOC waste gas treatment device