JPH09139434A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH09139434A
JPH09139434A JP7296472A JP29647295A JPH09139434A JP H09139434 A JPH09139434 A JP H09139434A JP 7296472 A JP7296472 A JP 7296472A JP 29647295 A JP29647295 A JP 29647295A JP H09139434 A JPH09139434 A JP H09139434A
Authority
JP
Japan
Prior art keywords
region
semiconductor device
diffusion layer
concentration
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7296472A
Other languages
Japanese (ja)
Inventor
Katsutada Horiuchi
勝忠 堀内
Takahide Ikeda
隆英 池田
Hisayuki Higuchi
久幸 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7296472A priority Critical patent/JPH09139434A/en
Publication of JPH09139434A publication Critical patent/JPH09139434A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to remove the substrate floating effect of a MOS transistor by a method wherein a low density diffusion layer region is provided in the vicinity of the source diffusion layer region of the MOS transistor, and a region having a recombination center structure is provided in the low density diffusion layer region. SOLUTION: A MOS type field effect transistor, which is formed on a SOI substrate 1, is provided. The high density n-type source diffusion layer 91 of the above-mentioned MOS transistor has the first diffusion layer 12 which is connected to a source electrode 14, and the second diffusion layer of a low impurity density region 3 which is at least in the neighborhood of the lower region of the first diffusion layer 12. Also, a region (crystal defective region) 11, having a recombination center mechanism relative to electric charge, is provided inside the second diffusion layer 3. As a result, the minority carrier generated on the SOI substrate 1 can be implanted into the crystal defective region 11 and annihilated, and the substrate floating effect is cancelled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置、及び該
半導体装置を構成要素とする記憶装置、電子制御装置、
並びに電子計算機装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, a storage device having the semiconductor device as a constituent element, an electronic control device,
It also relates to an electronic computer device.

【0002】[0002]

【従来の技術】絶縁膜上の単結晶半導体層にトランジス
タを構成する手法はSOI(シリコン・オン・インシュ
レ−タ:Silicon On Insulator)
構造として公知であり、図2に示されるごとき構造が1
995年春季応用物理学会講演予稿集755ペ−ジ等に
記載されている。MOS電界効果型トランジスタ(以降
単にMOSと略記する。)は支持基板1から厚い絶縁膜
2により隔離された単結晶シリコン(Si)膜30に構
成される。図2において、4は素子間分離絶縁膜、5は
ゲ−ト絶縁膜、61はゲ−ト電極、7はゲ−ト保護絶縁
膜、8はゲ−ト側壁絶縁膜、9及び10ははn型高濃度
拡散層で各々ソ−ス、ドレイン領域である。図2のごと
きSOI・MOSは直下に厚い絶縁膜2を有しているた
めドレイン接合容量、及び配線寄生容量が従来MOSに
比べて1/10程度にまで低減できる特徴を有してい
る。更にMOSが基板から絶縁分離されているためα線
照射による誤動作、及びラッチアップ現象を根本的に解
消できる等の特徴を有している。
2. Description of the Related Art A method of forming a transistor in a single crystal semiconductor layer on an insulating film is SOI (Silicon On Insulator).
It is known as a structure, and the structure shown in FIG.
It is described in the 1993 Spring Applied Physics Society Proc. A MOS field effect transistor (hereinafter simply abbreviated as MOS) is composed of a single crystal silicon (Si) film 30 isolated from a support substrate 1 by a thick insulating film 2. In FIG. 2, 4 is an element isolation insulating film, 5 is a gate insulating film, 61 is a gate electrode, 7 is a gate protective insulating film, 8 is a gate side wall insulating film, and 9 and 10 are The n-type high-concentration diffusion layer is a source region and a drain region, respectively. Since the SOI-MOS as shown in FIG. 2 has the thick insulating film 2 immediately below, it has a feature that the drain junction capacitance and the wiring parasitic capacitance can be reduced to about 1/10 as compared with the conventional MOS. Further, since the MOS is insulated and separated from the substrate, it has a feature that a malfunction due to α-ray irradiation and a latch-up phenomenon can be fundamentally eliminated.

【0003】従来SOI・MOSの欠点は単結晶Si膜
30が支持基板1から絶縁されているために、ドレイン
強電界等により発生した少数キャリアが単結晶Si膜3
0内に過渡的に蓄積され、これにより閾電圧値が変動す
る、所謂基板浮遊効果にある。上記効果は少数キャリア
の単結晶Si膜30内蓄積による電位上昇に伴い、ソ−
スからの多数キャリア流入が生じる寄生バイポ−ラ効果
でもある。n導電型SOI・MOS(nMOSと略記す
る)においては正孔が蓄積され、閾電圧値は負値方向に
変動し、電流電圧特性に特異なこぶが観測されたり、オ
フ状態における漏洩電流の増大、更にはソ−ス・ドレイ
ン間耐圧の低下をもたらす。上記の基板浮遊効果は微小
電流差の検出を要する差動増幅器やアナログ回路にとっ
ては致命的な欠点となる恐れがある。
The drawback of the conventional SOI-MOS is that since the single crystal Si film 30 is insulated from the supporting substrate 1, minority carriers generated by a strong drain electric field or the like are generated in the single crystal Si film 3.
There is a so-called substrate floating effect in which the threshold voltage value is transiently accumulated in 0 and the threshold voltage value is changed. The above-mentioned effect is reduced as the potential increases due to the accumulation of minority carriers in the single crystal Si film 30.
It is also a parasitic bipolar effect in which a majority carrier inflow from the memory occurs. In the n-conductivity SOI-MOS (abbreviated as nMOS), holes are accumulated, the threshold voltage value fluctuates in the negative direction, and a peculiar hump is observed in the current-voltage characteristic, or the leakage current in the off state increases In addition, the breakdown voltage between the source and drain is reduced. The substrate floating effect described above may be a fatal defect for a differential amplifier or an analog circuit that requires detection of a minute current difference.

【0004】図2のSOI・MOSは上記の基板浮遊効
果を解消するために提案された構造で、ソ−ス高濃度拡
散層9内にゲルマニュウム(Ge)をイオン注入するこ
とによりGe成分比で10%程度のSiGe混晶16を
構成している。図3は図2のSOI・MOSでドレイン
電圧Vdsが印加された状態におけるチャネルに沿った
エネルギ−バンド図である。Efnは擬フェルミ−準
位、Eiは真性フェルミ−準位である。SiGe混晶1
6の導入によりバンドギャップは約0.1eV狭まり、
ソ−スにおける価電子帯Evは破線で示されるごとく構
成される。ソ−ス近傍における正孔に対する拡散電位差
が解消される。これによりドレイン近傍で発生し、単結
晶Si膜30に注入された正孔は容易にソ−ス内に拡散
し、消滅する。伝導帯EcはSiGe混晶により影響を
受けず、多数キャリアである電子の振舞には悪影響は無
いとされている。
The SOI-MOS shown in FIG. 2 has a structure proposed for eliminating the above-mentioned floating effect of the substrate, and germanium (Ge) is ion-implanted into the source high-concentration diffusion layer 9 to obtain a Ge component ratio. About 10% of SiGe mixed crystal 16 is formed. FIG. 3 is an energy band diagram along the channel in the state where the drain voltage Vds is applied in the SOI.MOS of FIG. Efn is a pseudo Fermi level and Ei is an intrinsic Fermi level. SiGe mixed crystal 1
Introducing 6 narrows the bandgap by about 0.1 eV,
The valence band Ev in the source is constructed as shown by the broken line. The difference in diffusion potential for holes near the source is eliminated. As a result, the holes generated near the drain and injected into the single crystal Si film 30 easily diffuse into the source and disappear. It is said that the conduction band Ec is not affected by the SiGe mixed crystal and has no adverse effect on the behavior of electrons that are majority carriers.

【0005】課題を同じくする他の公知技術が、特開平
5−75120号公報、及び特開平6−291142号
公報に開示されている。
Other known techniques having the same problem are disclosed in Japanese Patent Application Laid-Open Nos. 5-75120 and 6-291142.

【0006】特開平5−75120号公報に記載の技術
は、n型高濃度ソ−ス拡散層内に埋込絶縁膜に接する構
成でp型高濃度領域を設け、該p型領域をコレクタとす
るpnp寄生パイポ−ラトランジスタによりn型高濃度
ソ−ス拡散層に注入された正孔の消滅を図るものであ
る。
In the technique described in Japanese Patent Laid-Open No. 75120/1993, a p-type high-concentration region is provided in the n-type high-concentration source diffusion layer in contact with the buried insulating film, and the p-type region is used as a collector. The pnp parasitic bipolar transistor is used to eliminate the holes injected into the n-type high-concentration source diffusion layer.

【0007】しかしながらこの方法では、以下に示す2
つの欠点を有することが判明した。第1は、pnp寄生
バイポ−ラトランジスタのベ−スとして作用するn型拡
散層の濃度が高いため、p型SOI基板から正孔がn型
高濃度ソ−ス拡散層に注入されるには拡散電位差が高す
ぎ、正孔注入効率が極端に低くなることである。
However, in this method, the following 2
It turned out to have one drawback. First, since the concentration of the n-type diffusion layer acting as the base of the pnp parasitic bipolar transistor is high, holes can be injected from the p-type SOI substrate into the n-type high-concentration source diffusion layer. The diffusion potential difference is too high, and the hole injection efficiency is extremely low.

【0008】第2は、仮りに正孔が注入されたとしても
コレクタとして作用するp型高濃度領域自体が再結合中
心として作用するものではなく、正孔の吸収が保持でき
ないことである。p型高濃度領域自体に正孔消滅機構を
有しない場合、この正孔の流れを保持するためにはコレ
クタとして作用するp型高濃度領域はn型高濃度ソ−ス
拡散層に対して負電圧を印加する必要がある。コレクタ
端子が開放状態ではコレクタ電流が流れず、p型SOI
基板に発生した正孔を引抜くことはできない。特開平6
−291142号公報の技術は、n型高濃度ソ−ス拡散
層底部に接してp型拡散層を設けるものである。このp
型拡散層は正孔の発生領域であるp型SOI基板と側面
で接している。このような構造では、発生した正孔がp
型拡散層にも分散されるためチャネル領域における正孔
密度が相対的に低下し、基板浮遊効果が低減されるとす
るものである。しかしながら、本技術においても発生し
た正孔が消滅するものでなく、本質的な解決とはならな
い。特に、基板浮遊効果低減を図るためにはコレクタと
して作用するp型拡散層領域の面積を大きくする必要が
あり、微細化、低寄生容量化又は高速動作化の妨げと成
る。
Secondly, even if holes are injected, the p-type high-concentration region itself that acts as a collector does not act as a recombination center, and the absorption of holes cannot be maintained. When the p-type high-concentration region itself does not have a hole annihilation mechanism, the p-type high-concentration region acting as a collector in order to maintain the hole flow is negative with respect to the n-type high-concentration source diffusion layer. It is necessary to apply a voltage. When the collector terminal is open, no collector current flows and the p-type SOI
The holes generated in the substrate cannot be extracted. JP 6
The technique of Japanese Patent Application No. 291142 provides a p-type diffusion layer in contact with the bottom of the n-type high-concentration source diffusion layer. This p
The type diffusion layer is in side contact with the p-type SOI substrate, which is a hole generation region. In such a structure, the generated holes are p
Since it is also dispersed in the type diffusion layer, the hole density in the channel region is relatively lowered, and the substrate floating effect is reduced. However, even in the present technology, the generated holes do not disappear, and this is not an essential solution. In particular, in order to reduce the substrate floating effect, it is necessary to increase the area of the p-type diffusion layer region that acts as a collector, which hinders miniaturization, low parasitic capacitance, or high-speed operation.

【0009】[0009]

【発明が解決しようとする課題】図2で示される構造が
SOI・MOSの基板浮遊効果解消に有効であるのはn
MOSに限られ、汎用性が無い。p導電型MOS(pM
OSと略記する)、及び相補型MOS(CMOSと略記
する)には適用できない。即ち、SiGe混晶の存在は
pMOSにおいてもソ−ス拡散層近傍における価電子帯
の拡散電位差を解消し、伝導帯の拡散電位差が保存され
る。この状況は多数キャリアである正孔はパンチスル−
現象を起こし、ゲ−ト電位で制御できなくなること、逆
に単結晶Si膜30に注入された少数キャリアの電子は
ソ−ス内に注入できず基板浮遊効果を解消できないこと
を意味する。
The structure shown in FIG. 2 is effective in eliminating the substrate floating effect of SOI.MOS.
Limited to MOS, not versatile. p conductivity type MOS (pM
It is not applicable to OS) and complementary MOS (abbreviated to CMOS). That is, the presence of the SiGe mixed crystal eliminates the diffusion potential difference in the valence band near the source diffusion layer even in the pMOS, and the diffusion potential difference in the conduction band is preserved. In this situation, holes, which are majority carriers, are punch-through.
This means that a phenomenon is caused and it cannot be controlled by the gate potential. On the contrary, electrons of minority carriers injected into the single crystal Si film 30 cannot be injected into the source and the substrate floating effect cannot be eliminated.

【0010】本発明の目的は、nMOSに限らず、p導
電型MOS(pMOSと略記する)、及び相補型MOS
(CMOSと略記する)等にも適用可能な汎用性の高い
基板浮遊効果解消構造の半導体装置を提供することにあ
る。
The object of the present invention is not limited to an nMOS, but is also a p-conductivity type MOS (abbreviated as pMOS) and a complementary type MOS.
Another object of the present invention is to provide a semiconductor device having a highly versatile substrate floating effect elimination structure that can be applied to (abbreviated as CMOS) and the like.

【0011】また、図2で示される従来構造ではSOI
・MOSの基板浮遊効果解消が十分でなく、基板浮遊効
果解消を更に推し進めるためにはSiGe混晶における
Geの混晶比の上昇を伴う。これに伴い従来方法では結
晶歪の発生による接合リ−ク電流の増加、更には接合破
壊をもたらす欠点があった。
Further, in the conventional structure shown in FIG. 2, SOI is used.
The elimination of the substrate floating effect of MOS is not sufficient, and in order to further promote the elimination of the substrate floating effect, the mixed crystal ratio of Ge in the SiGe mixed crystal is increased. Along with this, the conventional method has the drawback of increasing the junction leak current due to the occurrence of crystal strain and further causing the junction breakdown.

【0012】本発明の他の目的は、接合特性の劣化を伴
うことなく、基板浮遊効果の解消が可能な半導体装置を
提供することにある。
Another object of the present invention is to provide a semiconductor device capable of eliminating the substrate floating effect without deteriorating the junction characteristics.

【0013】さらに、Geイオンの注入には通常GeH
4(ゲルマン)をイオン源として用いるがGeH4は極め
て分解し易い物質であり、注入イオンを安定に供給する
ことが難しく、イオン電流の制御、従ってイオン注入条
件の制御、に困難を伴うこと、及びイオン室を汚染する
ため他のイオン注入との共用が難しくGe専用のイオン
注入装置の導入が不可欠等の問題点がある。
Furthermore, GeH is usually used for implanting Ge ions.
Although GeH 4 is used as an ion source, GeH 4 is a substance that is extremely easily decomposed, it is difficult to stably supply the implanted ions, and it is difficult to control the ion current and thus the ion implantation conditions. In addition, since the ion chamber is contaminated, it is difficult to share it with other ion implantations, and it is necessary to introduce an ion implantation device dedicated to Ge.

【0014】本発明の他の目的は、既存の共用可能な半
導体製造装置のみで製造可能な基板浮遊効果解消構造を
有する半導体装置の製造方法を提供することにある。
Another object of the present invention is to provide a method of manufacturing a semiconductor device having a substrate floating effect eliminating structure which can be manufactured only by an existing sharable semiconductor manufacturing device.

【0015】本発明の他の目的は、CMOSにおいて、
同一製造工程によりnMOS、及びpMOSを同時に基
板浮遊効果解消を実現すことにより、製造工程の簡略
化、ひいては製造原価の低減を図ることにある。
Another object of the present invention is to provide in CMOS
It is intended to realize the elimination of the floating body effect of the nMOS and the pMOS at the same time by the same manufacturing process, thereby simplifying the manufacturing process and eventually reducing the manufacturing cost.

【0016】[0016]

【課題を解決するための手段】本発明の動作原理をnM
OSを例として説明する。なお、pMOSに関しては導
電型を反対導電型に置換えることにより同様に作用させ
ることができる。
The operating principle of the present invention is described in nM.
The OS will be described as an example. The pMOS can be operated in the same manner by replacing the conductivity type with the opposite conductivity type.

【0017】本発明においてはドレイン近傍で発生し、
基板内に蓄積される正孔を速やかにソ−ス拡散層内に注
入、消滅させる。
In the present invention, it occurs near the drain,
The holes accumulated in the substrate are promptly injected into the source diffusion layer and disappeared.

【0018】上記手段として、チャネル直下のp型基板
領域とソ−ス拡散層間に形成される拡散電位差が小さい
領域、即ち十分に低濃度のn型拡散層領域をソ−ス高濃
度拡散層に隣接して設ける。更に該n型低濃度拡散層領
域内に正孔に対して再結合中心として作用する領域を設
け、n型低濃度拡散層領域内に注入された正孔を消滅さ
せる。正孔消滅に要する電子はソ−ス表面のn型高濃度
拡散層領域から供給される。再結合中心による正孔消滅
機構として本発明においては結晶欠陥等に基づく再結合
中心を利用する。
As the above means, a region having a small diffusion potential difference formed between the p-type substrate region immediately below the channel and the source diffusion layer, that is, an n-type diffusion layer region having a sufficiently low concentration is used as a source high-concentration diffusion layer. Adjacent to each other. Further, a region that acts as a recombination center for holes is provided in the n-type low-concentration diffusion layer region to eliminate the holes injected into the n-type low-concentration diffusion layer region. The electrons required for annihilation of holes are supplied from the n-type high concentration diffusion layer region on the surface of the source. In the present invention, a recombination center based on a crystal defect or the like is used as a hole annihilation mechanism by the recombination center.

【0019】図4は本半導体装置におけるソ−ス拡散層
近傍の拡大断面図であり、図5はドレイン電圧が接地電
圧におけるソ−ス近傍のエネルギ−バンド図である。ソ
−ス領域底部は埋込酸化膜により外部から分離された構
成を仮定している。図4において、高濃度ソ−ス拡散層
による従来ソ−ス構造の場合のエネルギ−バンドも破線
で示したが本発明構造において、正孔に対する拡散電位
差の低下は明らかである。低濃度拡散層の不純物濃度は
伝導型が変わらない範囲で低い方が良く、1×1015
cm3以上、1×1018/cm3以下が望ましい。再結合
中心として作用する結晶欠陥の形成はn型低濃度拡散層
における正孔に対する拡散電位差を増大させない元素に
よるイオン注入を施し、SOI層底面部を非晶質化させ
る。上記非晶質はその後の短時間高温熱処理においても
底部が酸化膜であるため再結晶化熱処理による単結晶化
はゲ−ト直下の単結晶SOI層側面部を除いて行なわれ
ず、多結晶化が進行するだけである。上記多結晶、又は
非晶質性は熱処理条件により制御可能であり、再結合中
心特性を制御できる。
FIG. 4 is an enlarged sectional view in the vicinity of the source diffusion layer in this semiconductor device, and FIG. 5 is an energy band diagram in the vicinity of the source when the drain voltage is the ground voltage. The bottom of the source region is assumed to be separated from the outside by a buried oxide film. In FIG. 4, the energy band in the case of the conventional source structure with the high-concentration source diffusion layer is also shown by the broken line, but in the structure of the present invention, the reduction of the diffusion potential difference for holes is obvious. The impurity concentration in the low-concentration diffusion layer is preferably as low as 1 × 10 15 /
It is desirable that the density is at least cm 3 and at most 1 × 10 18 / cm 3 . The formation of crystal defects that act as recombination centers performs ion implantation with an element that does not increase the diffusion potential difference for holes in the n-type low-concentration diffusion layer, and amorphizes the bottom surface of the SOI layer. Since the bottom portion of the amorphous material is an oxide film even after a short time high temperature heat treatment, single crystallization by recrystallization heat treatment is not performed except for the side surface portion of the single crystal SOI layer directly below the gate, and polycrystallization is performed. It just progresses. The polycrystallinity or amorphousness can be controlled by the heat treatment condition, and the recombination center characteristic can be controlled.

【0020】MOS型半導体装置の主流であるCMOS
半導体装置に本発明手法を適用するに当り、nMOSと
pMOSを各々個別に適用することは製造工程数の増
加、及び良品歩留まりの低下を招き、製造コストの上昇
につながる。従って、再結合中心を形成するイオン注入
源としてはn型、及びp型低濃度拡散層における少数キ
ャリアに対する拡散電位差を増大させない元素を同一工
程でpMOS及びnMOSの各ソ−ス低濃度拡散領域に
イオン注入させ、再結合を形成することが望ましい。上
記観点からSi半導体によるMOS半導体装置において
はイオン注入源としてP、B、As、Sb、Gaのごと
く容易に活性化してn、又はp導電型を形成する元素以
外の元素であることが望ましい。更に、イオン注入によ
り半導体基板を非非晶質化する元素であることが望まし
く、原子質量が10以下の元素は好ましくない。Si半
導体内において拡散係数が異常に大きく信頼性を損なう
Na、Kのごときアルカリ金属、Mgを含むアルカリ土
類金属も好ましくない。本発明においては半導体を構成
するSi、Ge、C等の14族元素、F、Cl等のハロ
ゲン元素、Ne、Ar等の希ガス元素が好ましい。特に
廉価で、供給も安定し、イオン化が容易で且つ安定なS
i、C、Ne、Ar、Cl等の元素が最も好ましい。
CMOS which is the mainstream of MOS type semiconductor devices
In applying the method of the present invention to a semiconductor device, applying nMOS and pMOS separately causes an increase in the number of manufacturing steps and a decrease in yield of non-defective products, leading to an increase in manufacturing cost. Therefore, as an ion implantation source for forming recombination centers, elements that do not increase the diffusion potential difference with respect to minority carriers in the n-type and p-type low-concentration diffusion layers are added to the source low-concentration diffusion regions of pMOS and nMOS in the same step. It is desirable to implant ions to form recombination. From the above viewpoint, in the MOS semiconductor device made of Si semiconductor, it is desirable that the ion implantation source is an element other than P, B, As, Sb, Ga, which is easily activated to form n or p conductivity type. Furthermore, it is desirable that the element be an element that makes the semiconductor substrate non-amorphous by ion implantation, and an element having an atomic mass of 10 or less is not preferable. Alkali metals such as Na and K, which have an extremely large diffusion coefficient in the Si semiconductor and impair reliability, and alkaline earth metals including Mg are also not preferable. In the present invention, Group 14 elements such as Si, Ge, C, etc., which constitute the semiconductor, halogen elements such as F, Cl, etc., and rare gas elements such as Ne, Ar, etc. are preferable. Particularly inexpensive, stable supply, easy ionization and stable S
The elements such as i, C, Ne, Ar and Cl are most preferable.

【0021】本半導体装置の一形成方法としてはまずゲ
−ト電極をマスクとして低濃度、及び高濃度のソ−ス・
ドレイン拡散層を形成する。上記低濃度拡散層はSOI
層直下の厚いシリコン酸化膜に達するごとイオン注入と
その後の熱処理により形成する。この状態よりゲ−ト側
壁絶縁膜の形成し、ゲ−ト電極及びゲ−ト側壁絶縁膜を
マスクとする例えばSiのイオン注入をSOI層直下の
厚いシリコン酸化膜に達するごとく施して上記酸化膜界
面領域のSOI層を非晶質化させる。上記非晶質領域は
その後の熱処理によっても界面部は単結晶化されず、微
少粒界よりなる多結晶化され、再結合中心として機能す
る。再結合中心領域とチャネル領域SOI基板間間隔、
即ちソ−ス低濃度n型拡散層幅はゲ−ト側壁絶縁膜の膜
厚により制御する。上記ソ−ス低濃度n型拡散層幅は少
数キャリアが容易に再結合中心領域に達し、消滅するた
めに100nm以下であることが望ましい。SOI層表
面に構成するn型高濃度ソ−ス領域は上記再結合中心領
域の形成後、その表面部の一定厚さを選択除去した後、
堆積法による半導体膜を残して形成しても良い。
As one method of forming the semiconductor device of the present invention, first, a low-concentration source and a high-concentration source are formed using the gate electrode as a mask.
A drain diffusion layer is formed. The low concentration diffusion layer is SOI
Each time it reaches the thick silicon oxide film immediately below the layer, it is formed by ion implantation and subsequent heat treatment. From this state, a gate side wall insulating film is formed, and ion implantation of, for example, Si is performed using the gate electrode and the gate side wall insulating film as a mask so as to reach a thick silicon oxide film immediately below the SOI layer. The SOI layer in the interface region is made amorphous. The interface portion of the amorphous region is not single-crystallized by subsequent heat treatment, but is polycrystallized by fine grain boundaries and functions as a recombination center. Spacing between recombination center region and channel region SOI substrate,
That is, the width of the source low concentration n-type diffusion layer is controlled by the film thickness of the gate side wall insulating film. The width of the source low concentration n-type diffusion layer is preferably 100 nm or less so that the minority carriers easily reach the recombination center region and disappear. In the n-type high-concentration source region formed on the surface of the SOI layer, after the recombination center region is formed, a certain thickness of the surface portion is selectively removed.
It may be formed by leaving the semiconductor film by the deposition method.

【0022】本半導体装置の他の形成方法としては従来
製造方法に基づき所望の拡散層構造を有するソ−ス・ド
レイン領域を形成した後、ソ−ス電極との接続の為のコ
ンタクト穴形成において、上記コンタクト穴から選択的
にSOI層直下の厚いシリコン酸化膜に達する低濃度拡
散層形成のイオン注入を施す。しかる後、上記コンタク
ト穴寸法を一定幅縮小するごとく側壁膜を設け、該側壁
膜を注入マスクとする再結合中心領域形成のイオン注入
をSOI層直下の厚いシリコン酸化膜に達するごとく施
しても良い。
As another method of forming the present semiconductor device, a source / drain region having a desired diffusion layer structure is formed on the basis of a conventional manufacturing method, and then a contact hole for connecting to a source electrode is formed. Ion implantation for forming a low-concentration diffusion layer reaching the thick silicon oxide film directly below the SOI layer is selectively performed from the contact hole. After that, a sidewall film may be provided so as to reduce the contact hole size by a certain width, and ion implantation for forming a recombination center region using the sidewall film as an implantation mask may be performed so as to reach a thick silicon oxide film immediately below the SOI layer. .

【0023】本発明の手法はゲ−ト電極及びゲ−ト側壁
絶縁膜、又はコンタクト穴をイオン注入マスクとして実
施するため、ドレイン領域にも同様の構造が形成され
る。ドレインにおいてはドレイン電圧がn型高濃度領域
に印加されるが、ドレインにおけるn型高濃度領域と底
部の再結合中心領域との関係は正孔注入に関して逆方向
特性の関係にあるため接合リ−ク電流の増加は無視で
き、NOSトランジスタとしての動作に何ら支障は生じ
ない。
Since the method of the present invention is carried out by using the gate electrode and the gate sidewall insulating film or the contact hole as an ion implantation mask, a similar structure is formed in the drain region. In the drain, the drain voltage is applied to the n-type high-concentration region, but since the relationship between the n-type high-concentration region and the bottom recombination center region in the drain has a reverse characteristic with respect to the hole injection, it is a junction re-connection. The increase in the output current can be ignored, and there is no hindrance to the operation of the NOS transistor.

【0024】図4に示した構造において、n型高濃度領
域を接地電位とし、p型低濃度SOI基板に正電圧を印
加した時に流れる正孔電流を再結合中心領域とチャネル
領域SOI基板間間隔のパラメ−タとして数値解析によ
り求めた結果を図6に示す。上記解析には厚さ300n
m、4×1017/cm3なる一様濃度分布のp型SOI
層を用い、再結合中心領域とチャネル領域SOI基板間
間隔、即ちソ−ス低濃度n型拡散層幅をパラメ−タとし
た。ソ−ス低濃度n型拡散層は最大濃度1×1016/c
3のガウス分布を有し、SOI層底部の埋込絶縁膜に
接するごとく構成した。再結合時間は再結合中心領域で
1/1010秒、他の領域では1/104秒を仮定してい
る。再結合時間1/1010秒なる値は多結晶Si膜では
通常観測される値である。
In the structure shown in FIG. 4, the hole current flowing when the n-type high-concentration region is set to the ground potential and a positive voltage is applied to the p-type low-concentration SOI substrate is separated between the recombination center region and the channel region SOI substrate. FIG. 6 shows the result obtained by numerical analysis as a parameter of Thickness of 300n for the above analysis
p-type SOI with uniform concentration distribution of m, 4 × 10 17 / cm 3
The layer was used as a parameter, and the distance between the recombination center region and the channel region SOI substrate, that is, the source low-concentration n-type diffusion layer width. Source low concentration n-type diffusion layer has maximum concentration of 1 × 10 16 / c
It has a Gaussian distribution of m 3 and is configured so as to be in contact with the buried insulating film at the bottom of the SOI layer. The recombination time is assumed to be 1/10 10 seconds in the recombination center region and 1/10 4 seconds in other regions. The value of recombination time of 1/10 10 seconds is a value usually observed in a polycrystalline Si film.

【0025】図6には参考のために再結合中心領域を有
しない通常ソ−ス構造の正孔電流も細線で示した。正孔
電流に関しては印加電圧に対して指数関数に比例した電
流が流れ始める閾電圧が存在し、閾電圧以下では印加電
圧ゼロで電流がゼロになるごとく振舞う。本半導体装置
構造の場合、ソ−ス低濃度n型拡散層幅が40nm以下
の条件で閾電圧値近傍での正孔電流は従来構造に比べて
三桁程度大きく、閾電圧も0.2Vの低下が見られる。
上記の意味するところは本半導体装置構造では正孔電流
に対するソ−ス拡散電位が従来構造に比べて0.2eV
低下されたことを示している。上記の値は公知のソ−ス
内SiGe混晶形成によるソ−ス拡散電位の低下値0.
1eVの2倍であり、基板浮遊効果解消が公知手法に比
べて更に改善されることを示している。上記閾電圧の低
下はベ−ス幅の増加と共に解消される方向に向かうが、
0.1μmのソ−ス低濃度n型拡散層幅でも従来構造に
比べて0.04Vの低下が観測される。即ち、本半導体
装置構造において、ソ−ス低濃度n型拡散層幅は0.1
μm以下であることが望ましい。
For reference, FIG. 6 also shows the hole current of a normal source structure having no recombination center region as a thin line. Regarding the hole current, there is a threshold voltage at which a current proportional to the applied voltage starts in an exponential function, and below the threshold voltage, the behavior is as if the current becomes zero when the applied voltage is zero. In the case of this semiconductor device structure, the hole current in the vicinity of the threshold voltage value is about three orders of magnitude higher than the conventional structure under the condition that the source low-concentration n-type diffusion layer width is 40 nm or less, and the threshold voltage is 0.2 V. A decline is seen.
The above meaning means that the source diffusion potential for the hole current is 0.2 eV in the present semiconductor device structure as compared with the conventional structure.
It has been lowered. The above-mentioned values are the values of reduction of the source diffusion potential of the well-known SiGe mixed crystal formation of 0.
It is twice as high as 1 eV, which shows that the elimination of the floating body effect is further improved as compared with the known method. The above-mentioned decrease in the threshold voltage tends to be eliminated as the base width increases,
Even with the source low-concentration n-type diffusion layer width of 0.1 μm, a decrease of 0.04 V is observed as compared with the conventional structure. That is, in this semiconductor device structure, the source low-concentration n-type diffusion layer width is 0.1.
It is desirable that it is not more than μm.

【0026】図6の結果はチャネル領域SOI基板に正
の電圧を印加する順方向特性に関するものである。n型
高濃度領域に正電圧を印加する逆方向特性に関しても数
値解析を実施したが、−3Vまでの解析結果では電流は
計算誤差範囲内の1/1013から1/1015Aの間の値
で、通常構造のものと差違が見られなかった。この結果
はソ−ス内と同様の構造をドレイン内に構成してもリ−
ク電流の増加等の問題が生じないことを示している。
The results of FIG. 6 relate to the forward characteristic of applying a positive voltage to the channel region SOI substrate. It was carried out numerical analysis with regard reverse characteristics of a positive voltage is applied to the n-type high concentration region, between the current in the analysis results to -3V 1/10 13 in the computing error range of 1/10 15 A The value did not differ from that of the normal structure. This result shows that even if the same structure as in the source is constructed in the drain,
This indicates that problems such as an increase in the black current do not occur.

【0027】上記の正孔電流はチャネル領域SOI基板
側から見た正孔消滅領域の断面積に比例する。従って、
SOI層厚がソ−ス/ドレイン高濃度拡散層の接合深さ
を規定するほど極薄となった場合、正孔消滅効果が制限
される。例えばSOI層厚が50nm、ソ−ス/ドレイ
ン高濃度拡散層の接合深さが40nm、正孔消滅領域の
厚さが10nmの場合、通常構造に比べたソ−ス正孔電
流の増加成分は高々1桁強に過ぎない。上記の如き極薄
SOI基板構造に於いては正孔消滅領域をp型拡散層に
構成すれば正孔消滅効果の効率は更に向上し、十分な正
孔消滅効果が期待できる。上記は図7の等価回路図で示
す如くチャネル直下のp型基板領域がエミッタ、低濃度
のn型拡散層領域がベ−ス、正孔消滅領域がp型コレク
タとする寄生pnp型バイポ−ラトランジスタを構成す
ることと等価であり、正孔消滅領域をp型コレクタとす
ることにより正孔消滅領域が低濃度n型領域で構成され
る構造に比べて正孔引抜き効果が更に増大される。図8
は正孔消滅領域をp型拡散層で構成した構造についてn
型高濃度領域を接地電位とし、p型低濃度SOI基板に
正電圧を印加した時に流れる正孔電流を再結合中心領域
とチャネル領域SOI基板間間隔のパラメ−タとして数
値解析により求めた結果を示す。ここにおいて、SOI
層厚は50nm、ソ−ス/ドレイン高濃度拡散層の接合
深さは40nm、正孔消滅領域の厚さは10nmであ
る。図よりSOI層厚が50nmと極薄構造の場合に於
いても十分な正孔消滅効果、即ち基板浮遊効果の解消が
図られることが分かる。
The above hole current is proportional to the cross-sectional area of the hole annihilation region viewed from the side of the channel region SOI substrate. Therefore,
When the SOI layer is so thin as to define the junction depth of the source / drain high-concentration diffusion layer, the hole annihilation effect is limited. For example, when the SOI layer has a thickness of 50 nm, the source / drain high-concentration diffusion layer has a junction depth of 40 nm, and the hole annihilation region has a thickness of 10 nm, the increase component of the source hole current is larger than that of the normal structure. It is just over one digit at most. In the ultra-thin SOI substrate structure as described above, if the hole extinction region is formed as a p-type diffusion layer, the efficiency of the hole extinction effect is further improved, and a sufficient hole extinction effect can be expected. As shown in the equivalent circuit diagram of FIG. 7, the above is a parasitic pnp bipolar transistor in which the p-type substrate region immediately below the channel is the emitter, the low-concentration n-type diffusion layer region is the base, and the hole annihilation region is the p-type collector. This is equivalent to forming a transistor, and by using the p-type collector for the hole extinction region, the hole extraction effect is further enhanced as compared with the structure in which the hole extinction region is a low concentration n-type region. FIG.
Is a structure in which the hole extinction region is composed of a p-type diffusion layer.
The high-concentration type region is set to the ground potential, and the hole current flowing when a positive voltage is applied to the p-type low-concentration SOI substrate is obtained as a parameter of the distance between the recombination center region and the channel region SOI substrate by numerical analysis. Show. Where SOI
The layer thickness is 50 nm, the source / drain high-concentration diffusion layer has a junction depth of 40 nm, and the hole annihilation region has a thickness of 10 nm. From the figure, it can be seen that the hole annihilation effect, that is, the substrate floating effect, can be sufficiently solved even in the case where the SOI layer has an extremely thin structure of 50 nm.

【0028】本発明に基づく半導体装置はソ−ス、ドレ
インに関して対称な構造を有しており、回路動作条件に
よりドレインとソ−スを入替えて両方向動作させる所謂
トランスファMOS等に対しても有効である。更にソ−
ス・ドレイン内における再結合中心領域の存在はドレイ
ン・基板間容量に何ら影響を与えるものでなく、従来S
OI・MOSの最大特徴である厚い埋込酸化膜による寄
生容量低減効果は維持される。更に、本発明は半導体装
置の導電型に関係無く有効であり、従ってSOI・CM
OSの基板浮遊効果の解消に有効である。本発明に基づ
けば従来SOI・MOSの最大の欠点であった基板浮遊
効果に基づく閾電圧の過渡的変動、異常電流・電圧特
性、更にはソ−ス・ドレイン耐圧低下等の問題を解消す
ることができる。これによりSOI・MOSの本来の特
徴である低寄生容量、製造工程数の低減化等の特徴を活
かした高速動作が可能な半導体装置を専用のイオン注入
装置等、新規の半導体装置製造装置を導入すること無く
廉価に提供することができる。
The semiconductor device according to the present invention has a symmetrical structure with respect to the source and the drain, and is also effective for a so-called transfer MOS or the like in which the drain and the source are exchanged for bidirectional operation depending on the circuit operating conditions. is there. Further source
The presence of the recombination center region in the drain and drain does not affect the capacitance between the drain and the substrate, and the conventional S
The effect of reducing the parasitic capacitance by the thick buried oxide film, which is the greatest feature of OI-MOS, is maintained. Further, the present invention is effective regardless of the conductivity type of the semiconductor device, and therefore, the SOI / CM
It is effective in eliminating the substrate floating effect of the OS. According to the present invention, it is possible to solve the problems such as the transient fluctuation of the threshold voltage due to the substrate floating effect, the abnormal current / voltage characteristic, and the source / drain breakdown voltage reduction, which have been the greatest drawbacks of the conventional SOI / MOS. You can Introducing new semiconductor device manufacturing equipment such as a dedicated ion implanter for semiconductor devices that can operate at high speed by taking advantage of the original characteristics of SOI-MOS such as low parasitic capacitance and reduction of the number of manufacturing processes. It can be provided at a low price without doing.

【0029】本発明における他の手法としてチャネル直
下のp型基板領域とソ−ス拡散層間に形成される拡散電
位差が小さい領域、即ち十分に低濃度のn型拡散層領域
をソ−ス高濃度拡散層に隣接して設ける。更に該n型低
濃度拡散層領域に隣接して、正孔に対して再結合中心と
して作用する金属又は金属珪化膜を設け、n型低濃度拡
散層領域内に注入された正孔を消滅させる。図9はドレ
イン電圧が接地電圧における本半導体集積回路装置のソ
−ス近傍のエネルギ−バンド図である。図9において、
高濃度ソ−ス拡散層による従来ソ−ス構造部分のエネル
ギ−バンドを実線で、n型低濃度拡散層領域部分のエネ
ルギ−バンドを破線で示した。本発明構造において、高
濃度ソ−ス拡散層部分に比べてn型低濃度拡散層領域部
分における正孔に対する拡散電位差の低下は明らかであ
る。n型低濃度拡散層の不純物濃度は伝導型が変わらな
い範囲で低い方が良く1×1015/cm3以上で、1×
1018/cm3以下が望ましい。n型低濃度拡散層と金
属又は金属珪化膜間にはショットキ障壁が形成される
が、該障壁は正孔に対しては拡散障壁にはならず、正孔
は金属又は金属珪化膜に達し、速やかに消滅される。
As another method of the present invention, a region having a small diffusion potential difference formed between the p-type substrate region immediately below the channel and the source diffusion layer, that is, an n-type diffusion layer region having a sufficiently low concentration is formed as a source high concentration. It is provided adjacent to the diffusion layer. Further, a metal or metal silicide film that acts as a recombination center for holes is provided adjacent to the n-type low-concentration diffusion layer region to extinguish the holes injected into the n-type low-concentration diffusion layer region. . FIG. 9 is an energy band diagram near the source of the present semiconductor integrated circuit device when the drain voltage is the ground voltage. In FIG.
The energy band of the conventional source structure portion by the high concentration source diffusion layer is shown by a solid line, and the energy band of the n-type low concentration diffusion layer region portion is shown by a broken line. In the structure of the present invention, it is clear that the diffusion potential difference for holes in the n-type low-concentration diffusion layer region portion is lower than that in the high-concentration source diffusion layer portion. The impurity concentration of the n-type low concentration diffusion layer is preferably as low as 1 × 10 15 / cm 3 or more as long as the conductivity type does not change.
It is preferably 10 18 / cm 3 or less. A Schottky barrier is formed between the n-type low concentration diffusion layer and the metal or metal silicide film, but the barrier does not serve as a diffusion barrier for holes, and the holes reach the metal or metal silicide film, It will disappear promptly.

【0030】ドレイン近傍で発生し、基板内に蓄積され
る正孔を速やかにソ−ス拡散層内に注入させる上で、p
型基板領域とソ−ス拡散層間に形成される拡散電位差が
小さいことが必須条件であるが、上記金属珪化膜の形成
過程において、高濃度ソ−ス拡散層上に形成された金属
珪化膜を介してn型不純物が極めて速やかにn型低濃度
拡散層領域表面部に拡散し、表面部分を高濃度化する恐
れも有りえる。上記高濃度化は正孔に対して拡散電位差
を大きくし、正孔のソ−ス領域注入を困難にする。上記
観点から正孔を金属珪化膜内に注入すべきn型低濃度拡
散層領域表面部をp型化することも基板浮遊効果解消の
上で極めて有効である。上記p型化工程はソ−ス電極と
の接続のためのコンタクト孔からのp型イオン(例えば
B)のイオン注入により実現できる。金属珪化膜を介し
たn型不純物の高速拡散の問題を解消する他の手段は正
孔再結合中心として金属珪化膜を形成する代わりにW等
の高融点金属膜を用いればよい。この場合、不純物の高
速拡散は生じず、n型低濃度拡散層領域表面のp型化工
程は省略できる。
In order to quickly inject holes generated in the vicinity of the drain and accumulated in the substrate into the source diffusion layer, p
It is an essential condition that the diffusion potential difference formed between the mold substrate region and the source diffusion layer is small, but in the process of forming the metal silicide film, the metal silicide film formed on the high concentration source diffusion layer is There is a possibility that the n-type impurities diffuse very quickly to the surface of the n-type low-concentration diffusion layer region through the intervening region, increasing the concentration of the surface portion. The higher concentration increases the diffusion potential difference with respect to holes, making it difficult to inject holes into the source region. From the above viewpoint, making the surface of the n-type low-concentration diffusion layer region where the holes should be injected into the metal silicide film p-type is also very effective in eliminating the substrate floating effect. The p-type conversion step can be realized by ion-implanting p-type ions (for example, B) from the contact hole for connecting to the source electrode. Another means for solving the problem of rapid diffusion of n-type impurities through the metal silicide film is to use a refractory metal film such as W instead of forming the metal silicide film as the hole recombination center. In this case, high-speed diffusion of impurities does not occur, and the p-type conversion step on the surface of the n-type low-concentration diffusion layer region can be omitted.

【0031】本発明構造のソ−ス領域においては金属又
は金属珪化膜下部に高濃度拡散層と低濃度拡散層を形成
する必要がある。nMOSのみで半導体集積回路装置が
構成される場合は上記二種類の拡散層領域を分離するた
めのマスクを必要とする。CMOSにおいては上記拡散
層領域分離のマスクはpMOS領域へのn型イオン注入
阻止マスクでn型低濃度拡散層形成予定領域を覆う構成
にすれば余分のマスクを要せず、従って製造工程数の増
加を伴わない。
In the source region of the structure of the present invention, it is necessary to form a high concentration diffusion layer and a low concentration diffusion layer under the metal or metal silicide film. When the semiconductor integrated circuit device is composed of only nMOS, a mask for separating the above two types of diffusion layer regions is required. In the CMOS, if the mask for separating the diffusion layer region is an n-type ion implantation blocking mask for the pMOS region so as to cover the region where the n-type low-concentration diffusion layer is to be formed, no extra mask is required, so that the number of manufacturing steps is reduced. No increase.

【0032】本発明はSOI基板内に発生した少数キャ
リアの正孔に対するソ−ス接合障壁を低下させるn型低
濃度拡散層の存在と、n型低濃度拡散層に注入された正
孔を速やかに消滅させる再結合中心としての役割を有す
る金属又は金属珪化膜をソ−ス領域に有する構造に特徴
がある。イオン注入阻止マスクを実用マスク合わせ装置
では精度良く位置合わせするのが実際上困難な微細領
域、例えばCMOSNANDゲ−トにおける直列接続n
MOSソ−ス・ドレイン領域のごとくコンタクト孔も配
置されない最小寸法領域にはn型低濃度拡散層の形成は
事実上できない。従って上記領域においては本発明のソ
−ス構造を適用できない。NANDゲ−トの基板浮遊効
果解消を実現するため、本発明においては直列接続トラ
ンジスタ部分のソ−ス・ドレイン拡散層底部は電気的に
共通基板となるごとくソ−ス・ドレイン高濃度拡散層を
浅く形成し、最終トランジスタのソ−ス領域のみに上記
の少数キャリア消滅機構を構成する。
According to the present invention, the presence of the n-type low-concentration diffusion layer that lowers the source junction barrier against the holes of minority carriers generated in the SOI substrate and the holes injected into the n-type low-concentration diffusion layer are promptly detected. It is characterized by a structure having a metal or metal silicide film, which has a role as a recombination center to be eliminated, in the source region. It is practically difficult to accurately align the ion implantation blocking mask with a practical mask aligner, for example, series connection n in a CMOS NAND gate.
It is practically impossible to form an n-type low-concentration diffusion layer in a minimum size region such as a MOS source / drain region where contact holes are not arranged. Therefore, the source structure of the present invention cannot be applied to the above region. In order to eliminate the substrate floating effect of the NAND gate, in the present invention, the source / drain diffusion layer bottom of the series-connected transistor portion is provided with a source / drain high-concentration diffusion layer as if it were an electrically common substrate. It is formed shallowly and the above-mentioned minority carrier disappearance mechanism is formed only in the source region of the final transistor.

【0033】ソ−スとドレインの役割が動作タイミング
により逆転する双方向トランジスタ(トランスファMO
S)においては本発明に基づく少数キャリア消滅機構が
ドレイン領域にも形成される。ドレインにおいてはドレ
イン電圧がn型高濃度領域と共にn型低濃度拡散層にも
印加されるが、ドレインにおけるn型低濃度領域は正電
圧印加に関して逆方向特性の関係にあるため接合リ−ク
電流の増加は無視でき、NOSトランジスタとしての動
作に何ら支障は生じない。
A bidirectional transistor (transfer MO) in which the roles of the source and the drain are reversed depending on the operation timing.
In S), the minority carrier annihilation mechanism according to the present invention is also formed in the drain region. In the drain, the drain voltage is applied to the n-type low-concentration diffused layer together with the n-type high-concentration region. Is negligible, and there is no hindrance to the operation of the NOS transistor.

【0034】[0034]

【発明の実施の形態】以下、本発明を実施例によりさら
に詳細に説明する。理解を容易にするため、図面を用い
て説明し、要部は他の部分よりも拡大して示されてい
る。各部の材質、導電型、及び製造条件などは本実施例
の記載に限定されるものではなく、それぞれ多くの変形
が可能であることはいうまでもない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail by way of examples. In order to facilitate understanding, the drawings are used for the description, and the main parts are shown in a larger scale than the other parts. It is needless to say that the material, conductivity type, manufacturing conditions and the like of each part are not limited to those described in the present embodiment, and many modifications are possible.

【0035】実施例1 図10から図12は本発明の第1の実施例による半導体
装置の製造工程順を示す断面図、図1はその完成断面図
である。直径12.5cmの単結晶Siよりなる支持基
板1上に500nm厚のシリコン酸化膜(単に酸化膜と
称する)2、及び200nm厚のn導電型、抵抗率0.
5Ωcm(不純物濃度1×1016/cm3)、面方位
(100)の単結晶Si層3からなるSOI基板に公知
のMOS電界効果型トランジスタの製造方法により素子
間分離絶縁膜4、5nm厚のゲ−ト酸化膜5、n型低抵
抗多結晶Si膜よりなるゲ−ト電極6、ゲ−ト保護絶縁
膜7を形成した。なお、ゲ−ト酸化膜5の形成に先立っ
て、閾電圧値が0.1Vとなるごとく単結晶Si層3の
ゲ−ト電極形成予定領域32に選択的にBのイオン注入
を施した。上記イオン注入はゲ−ト酸化膜5の形成後に
実施しても良い。ゲ−ト長は200nmである。この状
態よりゲ−ト保護絶縁膜7及びゲ−ト電極6を注入阻止
マスクとして加速エネルギ−25kev、ド−ズ量3×
1015/cm2の条件によりAsのイオン注入とその後
の熱処理を施し、高濃度n型拡散層ソ−ス91、及びド
レイン101を形成した。上記の各n型不純物イオン注
入では単結晶Si層3は単結晶性を維持していた(図1
0)。
Embodiment 1 FIGS. 10 to 12 are sectional views showing a sequence of manufacturing steps of a semiconductor device according to a first embodiment of the present invention, and FIG. 1 is a completed sectional view thereof. A 500 nm thick silicon oxide film (hereinafter simply referred to as an oxide film) 2 on a supporting substrate 1 made of single crystal Si having a diameter of 12.5 cm, an n conductivity type of 200 nm thick, and a resistivity of 0.
An SOI substrate composed of a single crystal Si layer 3 having a surface orientation (100) of 5 Ωcm (impurity concentration of 1 × 10 16 / cm 3 ) was used to form an element isolation insulating film 4 or 5 nm thick by a known MOS field effect transistor manufacturing method. A gate oxide film 5, a gate electrode 6 made of an n-type low resistance polycrystalline Si film, and a gate protective insulating film 7 were formed. Prior to the formation of the gate oxide film 5, B ions were selectively implanted into the gate electrode formation planned region 32 of the single crystal Si layer 3 so that the threshold voltage value became 0.1V. The ion implantation may be carried out after the gate oxide film 5 is formed. The gate length is 200 nm. In this state, the gate protective insulating film 7 and the gate electrode 6 are used as an injection blocking mask to accelerate energy of 25 keV and dose of 3 ×.
Ion implantation of As and subsequent heat treatment were performed under the conditions of 10 15 / cm 2 to form a high-concentration n-type diffusion layer source 91 and a drain 101. In each of the above n-type impurity ion implantations, the single crystal Si layer 3 maintained single crystallinity (FIG. 1).
0).

【0036】図10の状態より、200nm厚の堆積性
絶縁膜を全面に形成し、異方性ドライエッチングにより
ゲ−ト側壁部にのみ上記絶縁膜を選択的に残置させてゲ
−ト側壁絶縁膜8を形成した。ゲ−ト側壁絶縁膜8の膜
厚条件に関して、最小膜厚20nm、最大膜厚0.5μ
mまで10から100nm間隔で変化させた本実施例に
基づく半導体装置も別途製造した。引続き、高濃度n型
拡散層ソ−ス91、及びドレイン101下部に残置され
た低濃度n型基板領域3の酸化膜2界面で濃度が最大と
なるごとくド−ズ量3×1015/cm2なる条件でAr
のイオン注入を施した。上記イオン注入の後、800
℃、10分の熱処理を施した。同一条件で別途製造した
試料についてその断面を透過型電子顕微鏡により観察し
た結果、酸化膜2界面近傍に微細粒径多結晶よりなる結
晶欠陥領域11が形成されていることが明らかとなっ
た。Arのイオン注入はその最大濃度が酸化膜2内にな
るごとく加速エネルギ−を設定してもよい。更に別途実
験の結果、結晶欠陥領域11形成のイオン注入はイオン
種としてArでなくとも良く、Ne等の希ガス元素、
F、Cl等のハロゲン元素、及びSi、C、Ge等の1
4族元素であっても同等の効果が得られることが判明し
た。しかしながらPのごとくSi単結晶中でn伝導型を
構成する元素のイオン注入では後述のごとく効果がない
ことが判明した。(図11)。
From the state of FIG. 10, a depositing insulating film having a thickness of 200 nm is formed on the entire surface, and the insulating film is selectively left only on the gate side wall portion by anisotropic dry etching to obtain the gate side wall insulation. The film 8 was formed. Regarding the film thickness conditions of the gate side wall insulating film 8, the minimum film thickness is 20 nm and the maximum film thickness is 0.5 μ.
A semiconductor device according to this example in which the distance from m to m was changed at intervals of 10 to 100 nm was also separately manufactured. Subsequently, the high dose n-type diffusion layer source 91 and the low dose n-type substrate region 3 left under the drain 101 have a dose amount of 3 × 10 15 / cm 3 as the concentration becomes maximum at the interface of the oxide film 2. Ar under the condition 2
Ion implantation was performed. 800 after the above ion implantation
Heat treatment was performed at 10 ° C. for 10 minutes. As a result of observing a cross section of a sample separately manufactured under the same conditions with a transmission electron microscope, it was revealed that a crystal defect region 11 made of polycrystal with a fine grain size was formed near the interface of the oxide film 2. In the ion implantation of Ar, the acceleration energy may be set so that the maximum concentration is within the oxide film 2. Further, as a result of another experiment, the ion implantation for forming the crystal defect region 11 does not have to be Ar as an ion species, and a rare gas element such as Ne,
Halogen elements such as F and Cl, and 1 such as Si, C and Ge
It was found that the same effect can be obtained even with a Group 4 element. However, it has been found that ion implantation of an element that constitutes the n-conductivity type in Si single crystal such as P has no effect as described later. (FIG. 11).

【0037】図11の状態よりソ−ス抵抗の低減を図る
目的で化学気相反応による150nm厚のW膜12を露
出されているSi面に選択的に堆積した。上記W膜12
はスパッタリングによる全面被着と、少なくとも高濃度
n型領域91及び101表面を覆うごとくパタ−ニング
して形成しても良い。しかる後、燐が添加されたシリコ
ン酸化膜による配線保護絶縁膜13の堆積を施した(図
12)。
From the state shown in FIG. 11, a W film 12 having a thickness of 150 nm was selectively deposited on the exposed Si surface by a chemical vapor reaction for the purpose of reducing the source resistance. The W film 12
May be formed by depositing the entire surface by sputtering and patterning so as to cover at least the surfaces of the high-concentration n-type regions 91 and 101. After that, the wiring protection insulating film 13 was deposited with a silicon oxide film to which phosphorus was added (FIG. 12).

【0038】図12の状態より公知の半導体装置の製造
方法に基づき配線保護絶縁膜13の所望個所への開口、
更には配線金属の蒸着とそのパタ−ニングによるソ−ス
電極14、ドレイン電極15等を含む配線を形成した。
(図1)。
From the state shown in FIG. 12, an opening is formed in a desired portion of the wiring protection insulating film 13 based on a known semiconductor device manufacturing method.
Further, a wiring including a source electrode 14, a drain electrode 15 and the like was formed by vapor deposition of a wiring metal and its patterning.
(FIG. 1).

【0039】上記製造工程を経て製造された本実施例に
基づく半導体装置のソ−ス・ドレイン間耐圧は4.7V
とソ−ス内の結晶欠陥領域1が構成されていない同一寸
法の従来構造SOIMOSに比べて約1.5V向上し、
通常半導体基板に製造された同一寸法のMOSと同等の
耐圧値を確保することができた。また、電流・電圧特性
においてもキンク特性と称される異常なこぶ状特性は観
測されず、正常な特性を示した。更に、ソ−ス・ドレイ
ン電流・ゲ−ト電圧特性において、従来SOI・MOS
で観測された低ゲ−ト電圧におけるリ−ク電流の存在も
観測されなかった。また上記リ−ク電流、及び閾電圧値
はドレイン電圧を変化させても変化が見出せなかった。
これらの特性から、本実施例に基づく半導体装置では基
板浮遊効果に伴う緒特性から完全に解消されたことが明
らかとなった。本実施例に基づく半導体装置の電流・電
圧特性は正常な特性を示し、ソ−ス、及びドレイン内部
に形成された結晶欠陥領域11は何ら悪影響を及ぼさな
いことも判明した。本実施例に基づく上記基板浮遊効果
の解消は本実施例に基づきゲ−ト側壁絶縁膜8の膜厚を
変化させて製造した半導体装置において、結晶欠陥領域
11端から閾電圧制御用イオン注入p型領域32までの
間隔が500nm以下から20nmまで観測されたが特
性のばらつきも観測されず、上記間隔が500nm以下
であれば十分な基板浮遊効果が得られることが明らかと
なった。なお、結晶欠陥領域11形成をPのイオン注入
に基づいて形成した試料においては基板浮遊効果解消が
殆ど見出せなかった。
The source-drain breakdown voltage of the semiconductor device according to this embodiment manufactured through the above manufacturing process is 4.7V.
In comparison with the conventional structure SOIMOS of the same size in which the crystal defect region 1 in the source is not formed,
It has been possible to secure a withstand voltage value equivalent to that of a MOS of the same size normally manufactured on a semiconductor substrate. Also, in the current / voltage characteristics, abnormal knot-like characteristics called kink characteristics were not observed, and the characteristics were normal. Furthermore, in terms of source / drain current / gate voltage characteristics, conventional SOI / MOS
The presence of a leak current at the low gate voltage observed in 1. was not observed. Further, the leak current and the threshold voltage value were not found to change even if the drain voltage was changed.
From these characteristics, it has been clarified that the semiconductor device according to the present embodiment has been completely eliminated from the characteristics associated with the substrate floating effect. It was also found that the current / voltage characteristics of the semiconductor device according to this example showed normal characteristics, and that the crystal defect region 11 formed inside the source and the drain had no adverse effect. In the semiconductor device manufactured by changing the film thickness of the gate sidewall insulating film 8 according to this embodiment, the substrate floating effect according to this embodiment can be eliminated by ion implantation p for threshold voltage control from the edge of the crystal defect region 11. The interval to the mold region 32 was observed from 500 nm or less to 20 nm, but no variation in characteristics was observed, and it became clear that a sufficient substrate floating effect can be obtained if the interval is 500 nm or less. In addition, in the sample in which the crystal defect region 11 was formed based on the ion implantation of P, the substrate floating effect was hardly found to be eliminated.

【0040】本実施例に基づく半導体装置がSOIMO
Sの基板浮遊効果解消に有効なことから酸化膜2に接し
て構成された結晶欠陥領域11の多結晶性が注入された
正孔の再結晶中心として十分に作用することが推測され
た。
The semiconductor device according to this embodiment is SOIMO.
Since S is effective in eliminating the substrate floating effect, it was speculated that the polycrystallinity of the crystal defect region 11 formed in contact with the oxide film 2 sufficiently acts as the recrystallization center of the injected holes.

【0041】本実施例に基づく半導体装置においては単
結晶Si層3が200nmと比較的厚く、チャネル領域
下部における基板領域では閾電圧以上のゲ−ト電圧印加
によっても空乏層と中性領域が存在する所謂部分空乏化
構造となる。部分空乏化構造は低電圧・高速動作で完全
空乏構造に比べてやや落ちるが製造条件において従来の
半導体基板を用いた条件で容易に製造できる。本実施例
に基づく半導体装置においては廉価に部分空乏化構造M
OSの基板浮遊対策を提供できることを示している。
In the semiconductor device according to the present embodiment, the single crystal Si layer 3 is relatively thick as 200 nm, and the depletion layer and the neutral region exist in the substrate region under the channel region even when the gate voltage above the threshold voltage is applied. This is a so-called partially depleted structure. The partially depleted structure operates at a low voltage and at a high speed, and is slightly lower than the fully depleted structure, but can be easily manufactured under the conventional manufacturing conditions using a semiconductor substrate. In the semiconductor device according to this embodiment, the partially depleted structure M is inexpensive.
It shows that the OS floating board countermeasure can be provided.

【0042】実施例2 図13は本発明の他の実施例による半導体装置の製造工
程を示す断面図、図14はその完成断面図である。本実
施例では前記実施例1に於けるn導電型単結晶Si層3
に代えてp導電型、抵抗率10Ωcmで、他の仕様は同
一条件の単結晶Si膜30からなるSOI基板を用い
た。前記実施例1に基づいて素子間分離絶縁膜4、ゲ−
ト酸化膜5、ゲ−ト電極6、ゲ−ト保護絶縁膜7の形成
まで行なったがゲ−ト酸化膜5の形成に先立って単結晶
Si膜30の最大不純物濃度が表面部で2×1017/c
3になるごとくBのイオン注入を施した。この状態か
ら底部が酸化膜2に達し、最大不純物濃度が1x1017
/cm3となるn型低濃度拡散層33を形成するPのイ
オン注入をゲ−ト保護絶縁膜7及びゲ−ト電極6を注入
阻止マスクとして行なった。引き続き前記実施例1に従
い、ゲ−ト保護絶縁膜7及びゲ−ト電極6を注入阻止マ
スクとしたAsイオン注入とその後の活性化熱処理によ
り高濃度n型拡散層ソ−ス91、及びドレイン101を
形成した。上記の各イオン注入領域は熱処理により単結
晶化が為されていた(図13)。
Embodiment 2 FIG. 13 is a sectional view showing a manufacturing process of a semiconductor device according to another embodiment of the present invention, and FIG. 14 is a completed sectional view thereof. In this embodiment, the n-conductivity type single crystal Si layer 3 in the first embodiment is used.
Instead, an SOI substrate having a p-conductivity type and a resistivity of 10 Ωcm and other specifications having a single crystal Si film 30 under the same conditions was used. Based on the first embodiment, the element isolation insulating film 4, the gate
The formation of the gate oxide film 5, the gate electrode 6, and the gate protective insulating film 7 was carried out. However, prior to the formation of the gate oxide film 5, the maximum impurity concentration of the single crystal Si film 30 was 2 × at the surface portion. 10 17 / c
Ion implantation of B was performed at m 3 . From this state, the bottom reaches the oxide film 2 and the maximum impurity concentration is 1 × 10 17
Ion implantation of P to form the n-type low-concentration diffusion layer 33 of / cm 3 was performed using the gate protection insulating film 7 and the gate electrode 6 as an implantation blocking mask. Subsequently, according to the first embodiment, a high-concentration n-type diffusion layer source 91 and a drain 101 are formed by As ion implantation using the gate protection insulating film 7 and the gate electrode 6 as an implantation blocking mask and subsequent activation heat treatment. Was formed. Each of the above ion-implanted regions was heat-treated to be single-crystallized (FIG. 13).

【0043】図13の状態より100nm厚のシリコン
窒化膜を全面に堆積し、異方性ドライエッチングにより
ゲ−ト電極側壁部にのみ上記シリコン窒化膜を選択残置
させてゲ−ト側壁絶縁膜8とした。次に、ゲ−ト側壁絶
縁膜8とゲ−ト保護絶縁膜7及びゲ−ト電極6を注入阻
止マスクとしてSiのイオン注入を酸化膜2界面で濃度
が最大となるごとくド−ズ量1×1015/cm2なる条
件で行なった。上記イオン注入の後、900℃、10分
の熱処理を施したが熱処理後も酸化膜2界面近傍の単結
晶Si膜30に微細粒径多結晶の結晶欠陥領域11が残
置されていた。結晶欠陥領域11は高濃度n型拡散層ソ
−ス91、及びドレイン101下部領域のn型低濃度拡
散層33内に形成されていたが、その上部に構成されて
いる高濃度n型拡散層ソ−ス91、及びドレイン10
1、更にはその側部のn型低濃度拡散層33は単結晶化
されていた。上記熱処理の後、80nm厚のTi膜のス
パッタリングとその後の熱処理により単結晶Si膜30
露出部に選択的にTi珪化膜121を形成してから上記
個所以外領域の未反応Ti膜を選択的に除去した。引続
き選択形成したTi珪化膜121の低抵抗化熱処理を施
してから前記実施例1に従い配線保護絶縁膜13の堆積
と、所望個所への開口、配線金属膜の蒸着とそのパタ−
ニングによるソ−ス電極14、ドレイン電極15等を含
む配線を形成した(図14)。
A silicon nitride film having a thickness of 100 nm is deposited on the entire surface from the state shown in FIG. 13, and the gate sidewall insulating film 8 is formed by selectively leaving the silicon nitride film only on the gate electrode sidewall by anisotropic dry etching. And Next, using the gate side wall insulating film 8, the gate protective insulating film 7 and the gate electrode 6 as an implantation blocking mask, Si ion implantation is performed at a dose amount of 1 as the concentration becomes maximum at the interface of the oxide film 2. It was carried out under the condition of × 10 15 / cm 2 . After the ion implantation, heat treatment was performed at 900 ° C. for 10 minutes, but the crystal defect region 11 of polycrystalline fine grain size was left in the single crystal Si film 30 near the interface of the oxide film 2 even after the heat treatment. The crystal defect region 11 was formed in the high-concentration n-type diffusion layer source 91 and the n-type low-concentration diffusion layer 33 in the lower region of the drain 101, but the high-concentration n-type diffusion layer formed above it. Source 91 and drain 10
1, and the n-type low-concentration diffusion layer 33 on the side thereof was single-crystallized. After the above heat treatment, a single crystal Si film 30 is formed by sputtering a Ti film having a thickness of 80 nm and heat treatment thereafter.
After the Ti silicide film 121 was selectively formed on the exposed portion, the unreacted Ti film in the region other than the above-mentioned portion was selectively removed. Subsequently, the selectively silicified Ti silicide film 121 is heat-treated to reduce its resistance, and then the wiring protection insulating film 13 is deposited according to the first embodiment, the openings are formed at desired locations, the wiring metal film is vapor-deposited, and the pattern thereof is formed.
A wiring including the source electrode 14, the drain electrode 15 and the like was formed by the annealing (FIG. 14).

【0044】上記製造工程を経て製造された本実施例に
基づく半導体装置に於いては使用した単結晶Si層30
の導電型、抵抗率によらずイオン注入によるn型低濃度
拡散層33を形成することにより前記実施例1の半導体
装置と同様、SOI構造に起因する基板浮遊効果に伴う
緒現象を解消することができた。
The single crystal Si layer 30 used in the semiconductor device according to this embodiment manufactured through the above manufacturing process is used.
By forming the n-type low-concentration diffusion layer 33 by ion implantation regardless of the conductivity type and the resistivity, the phenomenon associated with the floating body effect due to the SOI structure is eliminated as in the semiconductor device of the first embodiment. I was able to.

【0045】実施例3 図15は本発明の他の実施例による半導体装置の完成断
面図である。本実施例では前記実施例2で用いた単結晶
Si膜30の厚さが70nmと超薄膜のSOI基板を用
いた。上記単結晶Si膜30に前記実施例2に従って半
導体装置を製造した。本実施例に於いては、Siイオン
注入に先立ってSiイオン注入予定領域に5×1013
cm2ド−ズ量のBイオン注入を実施し、p導電型の結
晶欠陥領域111とした。上記Bイオン注入は結晶欠陥
領域が構成されるn型低濃度拡散層33の導電型を補償
し、反対導電型にするド−ズ量であれば良く、更に高濃
度にp反転させても良い。
Embodiment 3 FIG. 15 is a completed sectional view of a semiconductor device according to another embodiment of the present invention. In this embodiment, an ultra-thin SOI substrate in which the single crystal Si film 30 used in the second embodiment has a thickness of 70 nm is used. A semiconductor device was manufactured on the single crystal Si film 30 according to the second embodiment. In the present embodiment, 5 × 10 13 / is formed in the Si ion implantation planned region prior to Si ion implantation.
A cm 2 dose amount of B ions was implanted to form a p-conductivity type crystal defect region 111. The B ion implantation may be performed in any dose amount as long as it is a dose amount that compensates the conductivity type of the n-type low-concentration diffusion layer 33 in which the crystal defect region is formed and makes it the opposite conductivity type. .

【0046】上記製造工程を経て製造された本実施例に
基づく半導体装置においては、前記実施例1及び2に基
づく半導体装置と同様に基板浮遊効果に伴う緒特性が観
測されず、正常なSOIMOS特性を得ることができ
た。
In the semiconductor device according to the present embodiment manufactured through the above manufacturing steps, the characteristics associated with the substrate floating effect are not observed, and the normal SOIMOS characteristics are obtained, like the semiconductor devices according to the first and second embodiments. I was able to get

【0047】本実施例に基づく半導体装置においては単
結晶Si層3が70nmと極めて薄く、単結晶Si層3
0内の電荷量限定により閾電圧以上のゲ−ト電圧条件で
はチャネル領域の単結晶Si層30に中性領域は存在せ
ず、完全空乏状態となっている。これは電流駆動源であ
るチャネル中の可動電荷を効果的に誘起することがで
き、大電流化に適している。即ち、低電圧・高速動作に
適している。本実施例に基づく半導体装置においては基
板浮遊効果を伴うことなく上記の完全空乏型SOIMO
Sが従来半導体装置の製造方法のみで廉価に提供でき
た。
In the semiconductor device according to the present embodiment, the single crystal Si layer 3 is extremely thin at 70 nm.
Due to the limitation of the amount of charge within 0, the neutral region does not exist in the single crystal Si layer 30 in the channel region under the gate voltage condition of the threshold voltage or more, and the single crystal Si layer 30 is in a fully depleted state. This is capable of effectively inducing mobile charges in the channel, which is a current drive source, and is suitable for increasing the current. That is, it is suitable for low voltage and high speed operation. In the semiconductor device according to the present embodiment, the above fully depleted SOIMO is produced without the substrate floating effect.
S can be provided at a low price only by the conventional semiconductor device manufacturing method.

【0048】実施例4 図16から図17は本発明の他の実施例による半導体装
置の製造工程を示す断面図、図18はその完成断面図で
ある。本実施例では前記実施例2で用いた単結晶Si膜
30と同一仕様のSOI基板を用いた。前記実施例2に
基づいて素子間分離絶縁膜4、ゲ−ト酸化膜5、ゲ−ト
電極6、ゲ−ト保護絶縁膜7の形成まで製造工程を進め
た後、ゲ−ト電極6、及びゲ−ト保護絶縁膜7をマスク
とするAsの2keVなる低加速エネルギ−で高濃度イ
オン注入を行ない、接合深さ10nm、表面不純物濃度
1×1021/cm3なる浅接合n型高濃度拡散層95、
及び105を形成した。続いて、前記実施例2に従い1
00nm厚のゲ−ト側壁絶縁膜8を形成し、ゲ−ト側壁
絶縁膜8をマスクとするPの高濃度イオン注入を行な
い、接合深さ100nmの低抵抗ソ−ス拡散層91、及
び低抵抗ドレイン拡散層101を形成した(図16)。
Embodiment 4 FIGS. 16 to 17 are sectional views showing a manufacturing process of a semiconductor device according to another embodiment of the present invention, and FIG. 18 is a completed sectional view thereof. In this example, an SOI substrate having the same specifications as the single crystal Si film 30 used in Example 2 was used. According to the second embodiment, after the manufacturing process is advanced to the formation of the element isolation insulating film 4, the gate oxide film 5, the gate electrode 6, and the gate protective insulating film 7, the gate electrode 6, And high-concentration ion implantation with low acceleration energy of 2 keV of As using the gate protection insulating film 7 as a mask, and a shallow junction n-type high concentration with a junction depth of 10 nm and a surface impurity concentration of 1 × 10 21 / cm 3. Diffusion layer 95,
And 105 were formed. Then, according to the second embodiment, 1
A gate side wall insulating film 8 having a thickness of 00 nm is formed, high-concentration ion implantation of P is performed using the gate side wall insulating film 8 as a mask, and a low resistance source diffusion layer 91 having a junction depth of 100 nm and a low resistance source diffusion layer 91 are formed. A resistance drain diffusion layer 101 was formed (FIG. 16).

【0049】図16の状態より公知の半導体装置製造方
法に基づき、配線保護絶縁膜13の堆積と、所望個所へ
の開口を施した。上記開口よりPのイオン注入を施し、
低抵抗ソ−ス拡散層91下部に接し、下地酸化膜2に達
するごとく最小不純物濃度1×1016/cm3なるn型
低濃度拡散層9を形成した。上記工程において、ドレイ
ン拡散層底部にもn型低濃度拡散層10が同時に形成さ
れる。上記n型低濃度拡散層9及び10の活性化と拡散
深さを調整する熱処理を施した後、前記開口側面に配線
保護絶縁膜13材料を異にする堆積膜131をドライエ
ッチングの手法を用いて選択的に残置させた。開口側壁
絶縁膜131は開口から一定膜厚でイオン注入マスクと
なる膜が側壁部に存在することに意味があり、開口底面
部に存在していても次工程には何ら問題は生じない。こ
の状態から開口側壁膜131をマスクとするSiの高エ
ネルギ−イオン注入を前記実施例2の条件に基づき実施
し、結晶欠陥領域11を上記n型低濃度拡散層9内の酸
化膜2界面近傍に形成した。上記製造工程において、結
晶欠陥領域11端からn型低濃度拡散層9接合までの間
隔の調整に開口側壁膜131を用いる手法について説明
したが、上記はn型低濃度拡散層接合深さを熱処理によ
り調整する手法に基づいても良い。この場合、開口側壁
膜131の形成工程は省略できる(図17)。
From the state shown in FIG. 16, a wiring protection insulating film 13 was deposited and an opening was formed at a desired position based on a known semiconductor device manufacturing method. Ion implantation of P is performed from the above opening,
An n-type low-concentration diffusion layer 9 having a minimum impurity concentration of 1 × 10 16 / cm 3 was formed in contact with the lower portion of the low-resistance source diffusion layer 91 so as to reach the underlying oxide film 2. In the above process, the n-type low concentration diffusion layer 10 is simultaneously formed on the bottom of the drain diffusion layer. After performing heat treatment for activating the n-type low-concentration diffusion layers 9 and 10 and adjusting the diffusion depth, a deposition film 131 made of a different material for the wiring protection insulating film 13 is formed on the side surface of the opening by a dry etching method. And left it selectively. It is significant that the opening sidewall insulating film 131 has a film having a constant film thickness from the opening and serving as an ion implantation mask on the sidewall portion, and even if it exists on the opening bottom portion, no problem occurs in the next process. From this state, high energy ion implantation of Si using the opening side wall film 131 as a mask is performed under the conditions of the second embodiment, and the crystal defect region 11 is formed in the n-type low concentration diffusion layer 9 near the interface of the oxide film 2. Formed. In the above manufacturing process, the method of using the opening sidewall film 131 for adjusting the distance from the edge of the crystal defect region 11 to the junction of the n-type low concentration diffusion layer 9 has been described. It may be based on a method of adjusting by. In this case, the step of forming the opening sidewall film 131 can be omitted (FIG. 17).

【0050】図17の状態より公知の半導体装置の製造
方法に基づき、配線金属材料によるソ−ス電極14、ド
レイン電極15を含む電極、及び配線層を形成した。図
16においては開口側壁膜131を除去してから配線材
料を形成する工程に従った半導体装置断面図を図示した
が、上記開口側壁膜は所望により残置させたままであっ
ても何ら問題は生じない(図18)。
From the state shown in FIG. 17, the source electrode 14, the electrode including the drain electrode 15 and the wiring layer made of the wiring metal material were formed based on a known method for manufacturing a semiconductor device. Although FIG. 16 shows a cross-sectional view of the semiconductor device according to the process of removing the opening side wall film 131 and then forming the wiring material, there is no problem even if the opening side wall film is left as it is. (FIG. 18).

【0051】上記製造工程を経て製造された本実施例に
基づく半導体装置においては、前記実施例1及び3に基
づく半導体装置と同様に基板浮遊効果に伴う緒特性が観
測されず、正常な部分空乏型SOIMOS特性を得るこ
とができた。更に、本実施例に基づく半導体装置におい
ては基板浮遊効果解消がコンタクト孔領域だけで実現で
きるため、トランジスタ特性を決定するゲ−ト電極端近
傍におけるソ−ス、ドレイン拡散層形状に何らの制約を
生じない。従って、本実施例に基づけば所望のトランジ
スタ特性を基板浮遊効果の影響なく実現することができ
る。
In the semiconductor device according to the present embodiment manufactured through the above manufacturing steps, the characteristics associated with the substrate floating effect are not observed and the normal partial depletion is observed as in the semiconductor devices according to the first and third embodiments. Type SOIMOS characteristics could be obtained. Further, in the semiconductor device according to the present embodiment, the elimination of the substrate floating effect can be realized only in the contact hole region, so that there are no restrictions on the source and drain diffusion layer shapes in the vicinity of the gate electrode end that determine the transistor characteristics. Does not happen. Therefore, according to this embodiment, desired transistor characteristics can be realized without the influence of the substrate floating effect.

【0052】本実施例に於いて、結晶欠陥領域11端か
らn型低濃度拡散層9接合までの間隔Wbとn型低濃度
拡散層9の最大不純物濃度Nbの最適条件を検討するた
めに図16の状態において、Pイオン注入のド−ズ量と
開口側壁膜131の膜厚を種々変へて製造した。n型低
濃度拡散層9の最大不純物濃度Nbは1×1016/cm
3から1x1020/cm3まで、間隔Wbは20nmから
500nmまで変化させた。最大不純物濃度Nbが1×
1019/cm3から1×1020/cm3と高くなるとSO
I基板30からの正孔注入に対する障壁が高くなるため
か基板浮遊効果解消の兆しは殆ど観測されなかった。最
大不純物濃度Nbが1×1018/cm3から1×1019
/cm3においては間隔Wbが100nm以下で基板浮
遊効果の解消が観測され、間隔Wbが狭まるほど顕著と
なった。1×1016/cm3の最大不純物濃度Nbにお
いては間隔Wbに依らず基板浮遊効果の解消が観測され
たが間隔Wbが50nm以下の試料に於いてはドレイン
電圧2Vの条件で1012A程度のソ−ス・ドレイン微少
リ−ク電流が観測された。上記リ−ク電流はデジタル回
路応用に於いては問題とはならないがアナログ回路に於
いては使用上注意を要する。上記結果を数値としてまと
めると最大不純物濃度Nbと結晶欠陥領域11端からn
型低濃度拡散層9接合までの間隔Wbの積Nb×Wbは
1×1013/cm2以下、好ましくは1×1012/cm2
程度であることが望ましい。
In this embodiment, a diagram for studying the optimum condition of the interval Wb from the edge of the crystal defect region 11 to the junction of the n-type low concentration diffusion layer 9 and the maximum impurity concentration Nb of the n-type low concentration diffusion layer 9 is shown. In the state of 16, the dose amount of P ion implantation and the film thickness of the opening side wall film 131 were changed variously. The maximum impurity concentration Nb of the n-type low concentration diffusion layer 9 is 1 × 10 16 / cm.
3 to 1x10 20 / cm 3, the interval Wb was varied from 20nm to 500 nm. Maximum impurity concentration Nb is 1x
SO rises from 10 19 / cm 3 to 1 × 10 20 / cm 3
Almost no sign of elimination of the substrate floating effect was observed, probably because the barrier against hole injection from the I substrate 30 becomes high. The maximum impurity concentration Nb is 1 × 10 18 / cm 3 to 1 × 10 19
/ Cm 3 , the elimination of the substrate floating effect was observed when the distance Wb was 100 nm or less, and became more remarkable as the distance Wb was narrowed. At the maximum impurity concentration Nb of 1 × 10 16 / cm 3 , the elimination of the substrate floating effect was observed regardless of the distance Wb, but in the sample with the distance Wb of 50 nm or less, about 10 12 A under the condition of the drain voltage of 2V. A slight leak current of the source and drain was observed. The above leak current does not pose a problem in digital circuit applications, but must be used carefully in analog circuits. When the above results are summarized as numerical values, the maximum impurity concentration Nb and n from the end of the crystal defect region 11 are n.
The product Nb × Wb of the distance Wb to the low-concentration diffusion layer 9 junction is 1 × 10 13 / cm 2 or less, preferably 1 × 10 12 / cm 2.
Desirably.

【0053】実施例5 図19は本発明の他の実施例による半導体装置の製造工
程を示す断面図、図20はその完成断面図である。前記
実施例1において、単結晶Si層30として500nm
の厚さのSOI基板を用い、素子間分離絶縁膜4の形成
により単結晶Si膜30の活性領域を互いに分離した
後、所望の回路構成に従って該活性領域の一部には導電
型変更と閾電圧値制御のイオン注入を施して低濃度n型
領域31とした。他の活性領域に於いては閾電圧値制御
のBイオン注入を施した。低濃度n型領域31と低濃度
p型領域3上に前記実施例2に従って、ゲ−ト酸化膜
5、ゲ−ト電極61、ゲ−ト保護絶縁膜7を形成した。
本実施例においてはゲ−ト電極61としてW膜を用い
た。この状態より前記実施例2に従い、ゲ−ト電極61
をマスクとしたイオン注入を施した。上記イオン注入は
低濃度p型領域30では前記実施例に従い低濃度n型拡
散層9、及び10の形成のためのPイオン注入と、高濃
度n型拡散層91、101の形成のためのAsイオン注
入を行ない、低濃度n型領域31ではBイオン注入によ
る低濃度p型拡散層90、及び100の形成と高濃度p
型拡散層92及び102を形成を実施した。低濃度n型
拡散層9、及び10と低濃度p型拡散層90、及び10
0は酸化膜2に達するごとく形成し、その最大不純物濃
度は最終的に1×1017/cm3になるごとく設定し
た。上記の各イオン注入とその後の活性化熱処理の後、
nMOS形成領域にはシリコン窒化膜を選択残置し、異
方性ドライエッチングにより、nMOSゲ−トの側壁部
にのみシリコン窒化膜による100nm厚のゲ−ト側壁
絶縁膜8を形成した。同様にpMOS形成領域には酸化
膜を選択残置し、異方性ドライエッチングにより、pM
OSゲ−トの側壁部にのみ酸化膜による200nm厚の
ゲ−ト側壁絶縁膜8を形成した。上記pMOS、及びn
MOSのゲ−ト側壁絶縁膜8は所望により同一材料によ
る同一膜厚であっても良い。しかる後、ゲ−ト電極6
1、ゲ−ト側壁絶縁膜8をマスクとして酸化膜2界面に
達するごとくド−ズ量5×1015/cm3のArをイオ
ン注入し、低濃度n型拡散層9、及び10と低濃度p型
拡散層90、及び100内部で高濃度n型拡散層91、
101及び高濃度p型拡散層92及び102から隔離さ
れた領域に結晶欠陥領域11を埋込形成した。結晶欠陥
領域11の形成はArのイオン注入によらず、前記実施
例2のごとくSiのイオン注入等によっても何ら差し支
えない。上記結晶欠陥領域11は下地酸化膜2の影響に
より再結晶化熱処理によっても下地酸化膜2に接する領
域は単結晶化されず、多結晶状の結晶欠陥領域が保持さ
れていた。上記結晶欠陥領域11の形成はソ−ス領域に
注入される少数キャリアの再結合中心としての役割を有
するものであり、イオン注入時点で非晶質となる必要は
なく、最終製造工程までの熱処理により形成した結晶欠
陥が完全に回復されない条件が得られれば良い。上記観
点からイオン注入量も1014/cm2程度と少なくとも
良い。更にはHeやH、Fの如き軽元素のイオン注入よ
る欠陥形成も有効である(図19)。
Embodiment 5 FIG. 19 is a sectional view showing a manufacturing process of a semiconductor device according to another embodiment of the present invention, and FIG. 20 is a completed sectional view thereof. In Example 1, the single crystal Si layer 30 has a thickness of 500 nm.
After separating the active regions of the single-crystal Si film 30 from each other by forming the inter-element isolation insulating film 4 using the SOI substrate having the thickness of, the conductivity type is changed and the threshold voltage is changed in a part of the active region according to the desired circuit configuration. A low-concentration n-type region 31 is formed by performing voltage-controlled ion implantation. In the other active regions, B ion implantation with threshold voltage control was performed. The gate oxide film 5, the gate electrode 61, and the gate protective insulating film 7 were formed on the low-concentration n-type region 31 and the low-concentration p-type region 3 according to the second embodiment.
In this embodiment, a W film is used as the gate electrode 61. From this state, according to the second embodiment, the gate electrode 61
Was used as a mask for ion implantation. In the low-concentration p-type region 30, the above-mentioned ion implantation is P ion implantation for forming the low-concentration n-type diffusion layers 9 and 10 and As for forming the high-concentration n-type diffusion layers 91 and 101 according to the above embodiment. Ion implantation is performed, and in the low-concentration n-type region 31, the low-concentration p-type diffusion layers 90 and 100 are formed by B ion implantation and the high-concentration p-type diffusion layer 90 is formed.
The mold diffusion layers 92 and 102 were formed. Low-concentration n-type diffusion layers 9 and 10 and low-concentration p-type diffusion layers 90 and 10
0 was formed as it reached the oxide film 2, and its maximum impurity concentration was set so as to finally reach 1 × 10 17 / cm 3 . After each ion implantation and the subsequent activation heat treatment,
A silicon nitride film was selectively left in the nMOS formation region, and a 100 nm-thick gate sidewall insulating film 8 of a silicon nitride film was formed only on the sidewall portion of the nMOS gate by anisotropic dry etching. Similarly, an oxide film is selectively left in the pMOS formation region, and pM is formed by anisotropic dry etching.
A 200 nm-thick gate sidewall insulating film 8 of an oxide film was formed only on the sidewall portion of the OS gate. The pMOS and n
The gate side wall insulating film 8 of the MOS may have the same film thickness and the same material if desired. After that, the gate electrode 6
1. Using the gate sidewall insulating film 8 as a mask, Ar ions with a dose amount of 5 × 10 15 / cm 3 are ion-implanted as they reach the interface of the oxide film 2, and low concentration n-type diffusion layers 9 and 10 and low concentration Inside the p-type diffusion layers 90 and 100, the high-concentration n-type diffusion layer 91,
The crystal defect region 11 was buried in a region isolated from the 101 and the high-concentration p-type diffusion layers 92 and 102. The crystal defect region 11 may be formed not by Ar ion implantation but by Si ion implantation or the like as in the second embodiment. Due to the influence of the underlying oxide film 2, in the crystal defect region 11, the region in contact with the underlying oxide film 2 was not single-crystallized even by the recrystallization heat treatment, and a polycrystalline crystal defect region was retained. The formation of the crystal defect region 11 has a role as a recombination center of minority carriers injected into the source region, and it does not need to become amorphous at the time of ion implantation, and heat treatment up to the final manufacturing process is performed. It is only necessary to obtain the condition that the crystal defects formed by the above are not completely recovered. From the above viewpoint, the ion implantation amount is preferably at least about 10 14 / cm 2 . Furthermore, defect formation by ion implantation of light elements such as He, H, and F is also effective (FIG. 19).

【0054】図19の状態より前記実施例1に従い配線
保護絶縁膜13の堆積と所望個所への開口、配線用金属
膜の蒸着とそのパタ−ニングにより接地電位線17、出
力端子18、及び電源電圧線19を含む配線を形成した
(図20)。
From the state shown in FIG. 19, according to the first embodiment, the wiring protective insulating film 13 is deposited and an opening is formed at a desired position, the wiring metal film is vapor-deposited, and the patterning thereof is performed to ground potential line 17, output terminal 18, and power supply. Wiring including the voltage line 19 was formed (FIG. 20).

【0055】上記製造工程を経て製造された本実施例に
基づく半導体装置、CMOS、においてpMOS、nM
OSの何れに関しても基板浮遊効果に起因する緒症状を
観測することができなかった。更にnMOS閾電圧値の
負方向変動、pMOS閾電圧値の正方向変動によって接
地電位線17と電源電圧線19間に生じるSOI・CM
OS特有の基板浮遊効果に基づく貫通電流も観測されな
かった。pMOSにおいて、基板浮遊効果が見られなか
ったことはチャネル部単結晶Si膜31に発生した少数
キャリアである電子が低濃度p型拡散層100内を移動
し、結晶欠陥領域11内の再結合中心により消滅するた
めと考えられる。本実施例に基づく半導体装置において
は、nMOSとpMOSの基板浮遊効果を同一のイオン
注入工程で解消することができ、製造工程を複雑にする
ことなく、従って廉価にCMOSの高性能化を達成する
ことができた。
In the semiconductor device, CMOS, according to the present embodiment manufactured through the above manufacturing steps, pMOS, nM
It was not possible to observe any symptom due to the floating effect of the substrate with any of the OSs. Furthermore, the SOI CM generated between the ground potential line 17 and the power supply voltage line 19 due to the negative fluctuation of the nMOS threshold voltage value and the positive fluctuation of the pMOS threshold voltage value.
No through-current due to the floating substrate effect peculiar to the OS was also observed. The substrate floating effect was not observed in the pMOS because electrons, which are minority carriers generated in the channel portion single crystal Si film 31, move in the low concentration p-type diffusion layer 100 and recombination centers in the crystal defect region 11. It is thought that it will disappear due to. In the semiconductor device according to the present embodiment, the substrate floating effect of nMOS and pMOS can be eliminated by the same ion implantation process, and the high performance of CMOS can be achieved at low cost without complicating the manufacturing process. I was able to.

【0056】本実施例において、再結晶中心として作用
する結晶欠陥領域11とチャネル下部の低濃度p型領域
3、或いは低濃度n型領域31間間隔を決定するための
ゲ−ト側壁絶縁膜8の膜厚をnMOSとpMOSで異な
るごとく形成した。上記は低濃度p型拡散層90及び1
00と、低濃度n型拡散層9及び10の不純物の違いに
より接合深さが異なる点を考慮し、その補正を目的とす
るものである。
In this embodiment, the gate side wall insulating film 8 for determining the distance between the crystal defect region 11 acting as a recrystallization center and the low concentration p-type region 3 under the channel or the low concentration n-type region 31. The film thicknesses of nMOS and pMOS are different. The above is the low concentration p-type diffusion layers 90 and 1.
No. 00 and the low-concentration n-type diffusion layers 9 and 10 have different junction depths for the purpose of correction.

【0057】本実施例において、低濃度p型拡散層90
及び100と、低濃度n型拡散層9及び10の最大不純
物濃度は1×1015/cm3以上、1×1018/cm3
下であることが望ましく、特に1×1016から5×10
17/cm3の範囲であることが望ましい。これは5×1
17/cm3以下において、基板浮遊現象の解消は特に
顕著であるが、一方1×1016/cm3以下においてp
n接合の逆方向特性に1/1012A程度の微小電流が生
じ、トランジスタのリ−ク電流となる恐れがある。
In this embodiment, the low concentration p-type diffusion layer 90 is used.
And 100, and the maximum impurity concentration of the low-concentration n-type diffusion layers 9 and 10 is preferably 1 × 10 15 / cm 3 or more and 1 × 10 18 / cm 3 or less, and particularly 1 × 10 16 to 5 × 10 5.
It is preferably in the range of 17 / cm 3 . This is 5x1
At 0 17 / cm 3 or less, elimination of the substrate floating phenomenon is particularly remarkable, while at 1 × 10 16 / cm 3 or less, p
A minute current of about 1/10 12 A is generated in the reverse characteristic of the n-junction, which may cause a leak current of the transistor.

【0058】更に、結晶欠陥領域11形成のためのイオ
ン注入工程はCMOSにおいても一回でよく、イオン注
入元素も低濃度p型拡散層90及び100と、低濃度n
型拡散層9及び10内で導電型に変動をきたさない材料
であればよく、14族元素のSi、Ge、C等、及び
F、Cl等のハロゲン元素、更にはHe、Ne、Ar等
の希ガス元素等が望ましい。
Further, the ion implantation step for forming the crystal defect region 11 may be performed once even in the CMOS, and the ion implantation element is also the low concentration p-type diffusion layers 90 and 100 and the low concentration n.
Any material that does not change the conductivity type in the type diffusion layers 9 and 10 may be used, such as Si, Ge, C, and the like of Group 14 elements, and halogen elements such as F and Cl, and He, Ne, Ar, and the like. A rare gas element or the like is desirable.

【0059】実施例6 図21は本発明の他の実施例による半導体装置の製造工
程を示す断面図、図22はその完成断面図である。本実
施例においては前記実施例5に基づいて半導体装置を製
造したが単結晶Si膜30の膜厚は100nmの超薄膜
SOI基板を用い、完全空乏型の相補型MOS電界効果
トランジスタを製造した。本実施例においてはソ−ス高
濃度n型拡散層91、及び高濃度p型拡散層102の接
合深さは約50nmに設定した。又、低濃度n型拡散層
9及び低濃度p型拡散層90はその底部を下地酸化膜2
と接する如く構成し、その最大不純物濃度は1×1016
から2×1017/cm3になるごとく設定した。nMO
Sのソ−ス高濃度n型拡散層91下部に隣接した低濃度
n型拡散層9内、及びpMOSにおけるソ−ス高濃度p
型拡散層102下部に隣接した低濃度p型拡散層90内
に下地酸化膜2に接するごとく結晶欠陥層よりなる再結
合中心領域11を前記実施例5に従ってSiイオン注入
工程により形成した。本実施例では上記Siイオン注入
工程に先立って、Siイオン注入の最大濃度深さに一致
するごとくnMOSのソ−ス高濃度n型拡散層91下部
領域ではBイオンの、pMOSソ−ス高濃度p型拡散層
102下部領域ではPイオンを各々選択的にイオン注入
した。上記B、及びPイオン注入は最大濃度で1×10
18/cm3となるごとくド−ズ量を設定した(図2
1)。
Embodiment 6 FIG. 21 is a sectional view showing a manufacturing process of a semiconductor device according to another embodiment of the present invention, and FIG. 22 is a completed sectional view thereof. In this example, a semiconductor device was manufactured based on Example 5, but a fully depleted complementary MOS field effect transistor was manufactured by using an ultrathin SOI substrate having a single crystal Si film 30 with a thickness of 100 nm. In this embodiment, the junction depth of the source high-concentration n-type diffusion layer 91 and the high-concentration p-type diffusion layer 102 is set to about 50 nm. The bottoms of the low-concentration n-type diffusion layer 9 and the low-concentration p-type diffusion layer 90 are formed on the base oxide film 2.
The maximum impurity concentration is 1 × 10 16
Was set to 2 × 10 17 / cm 3 . nMO
In the low-concentration n-type diffusion layer 9 adjacent to the lower part of the S source high-concentration n-type diffusion layer 91, and in the pMOS, the source high-concentration p
In the low-concentration p-type diffusion layer 90 adjacent to the lower portion of the type diffusion layer 102, a recombination center region 11 made of a crystal defect layer was formed by the Si ion implantation process according to the fifth embodiment so as to be in contact with the underlying oxide film 2. In the present embodiment, prior to the Si ion implantation step, as in the maximum concentration depth of Si ion implantation, in the lower region of the nMOS source high concentration n-type diffusion layer 91, B ions of pMOS source high concentration are formed. P ions were selectively ion-implanted in the lower region of the p-type diffusion layer 102. The above B and P ion implantations have a maximum concentration of 1 × 10
The dose amount was set to be 18 / cm 3 (Fig. 2
1).

【0060】図21の状態から前記実施例5に従って配
線保護絶縁膜13の形成、及びその所望個所への開口、
さらには配線用金属膜の蒸着とそのパタ−ニングにより
接地電位線17、出力端子18、及び電源電圧線19を
含む配線を形成した(図22)。
From the state shown in FIG. 21, the wiring protection insulating film 13 is formed according to the fifth embodiment, and an opening is formed at a desired position.
Further, the wiring including the ground potential line 17, the output terminal 18, and the power supply voltage line 19 was formed by vapor deposition of the wiring metal film and its patterning (FIG. 22).

【0061】上記製造工程を経て製造された本実施例に
基づく半導体装置、CMOS、においてpMOS、nM
OSの何れに関しても基板浮遊効果に起因する緒症状を
観測されないことは前記実施例5と同様であったが、本
実施例に基づく半導体装置においては単結晶Si層3が
100nmと極めて薄く、チャネル領域における基板不
純物濃度も低く設定されている。従って、単結晶Si層
3内の電荷量限定により閾電圧以上のゲ−ト電圧条件で
はチャネル領域の単結晶Si層3に中性領域は存在せ
ず、完全空乏状態となっている。これは電流駆動源であ
るチャネル中の可動電荷を効果的に誘起することがで
き、大電流化に適している。即ち、低電圧・高速動作に
適している。本実施例に基づく半導体装置においては基
板浮遊効果を伴うことなく上記の完全空乏型SOIMO
Sが従来半導体装置の製造方法のみで廉価に提供でき
た。
In the semiconductor device, CMOS, according to the present embodiment manufactured through the above manufacturing steps, pMOS, nM
Similar to the fifth embodiment, no symptom caused by the substrate floating effect was observed in any of the OSs, but in the semiconductor device according to the present embodiment, the single crystal Si layer 3 is extremely thin, 100 nm, and the channel The substrate impurity concentration in the region is also set low. Therefore, due to the limitation of the amount of electric charge in the single crystal Si layer 3, the neutral region does not exist in the single crystal Si layer 3 in the channel region under the gate voltage condition equal to or higher than the threshold voltage, and the single crystal Si layer 3 is completely depleted. This is capable of effectively inducing mobile charges in the channel, which is a current drive source, and is suitable for increasing the current. That is, it is suitable for low voltage and high speed operation. In the semiconductor device according to the present embodiment, the above fully depleted SOIMO is produced without the substrate floating effect.
S can be provided at a low price only by the conventional semiconductor device manufacturing method.

【0062】実施例7 図23から図24は本発明の第7の実施例による半導体
装置の製造工程順を示す断面図、図25はその完成断面
図である。図26は本実施例を適用したNANDゲ−ト
回路を示す回路図で、図中の点線で囲まれたnMOS領
域の構造断面図が図25及び図23、図24である。直
径12.5cmの単結晶Siよりなる支持基板1上に5
00nm厚のシリコン酸化膜(単に酸化膜と称する)
2、及び200nm厚のn導電型、抵抗率0.5Ωcm
(不純物濃度1×1016/cm3)、面方位(100)
の単結晶Si層3からなるSOI基板に公知のMOS電
界効果型トランジスタの製造方法により素子間分離絶縁
膜4、5nm厚のゲ−ト酸化膜5、n型低抵抗多結晶S
i膜よりなるゲ−ト電極60、61及び62とゲ−ト保
護絶縁膜7を形成した。なお、ゲ−ト酸化膜5の形成に
先立って閾電圧値が0.1Vとなるごとく単結晶Si層
3のゲ−ト電極形成予定領域30の表面領域に、また下
部領域にはパンチスル−ストップのためのBイオン注入
をレジストマスクにより選択的に施した。なおゲ−ト長
は200nmである。上記イオン注入はゲ−ト酸化膜5
の形成後に実施しても良い。図示していないがpMOS
領域の単結晶Si層3にはp導電型、不純物濃度1×1
16/cm3となるごとく別途選択的にイオン注入を施
した。この状態よりpMOS構成予定領域とnMOSソ
−ス領域の一部を覆うレジストマスク12とゲ−ト保護
絶縁膜7、及びゲ−ト電極6を注入阻止マスクとして加
速エネルギ−15kev、ド−ズ量5×1014/cm2
の条件によりAsのイオン注入とその後の熱処理を施
し、浅接合の第一のn型高濃度拡散層ソ−ス、及びドレ
イン90を形成した(図23)。
Embodiment 7 FIGS. 23 to 24 are sectional views showing the steps of manufacturing a semiconductor device according to a seventh embodiment of the present invention, and FIG. 25 is a completed sectional view thereof. FIG. 26 is a circuit diagram showing a NAND gate circuit to which this embodiment is applied, and FIGS. 25, 23 and 24 are structural sectional views of the nMOS region surrounded by a dotted line in the figure. 5 on a supporting substrate 1 made of single crystal Si having a diameter of 12.5 cm
00nm thick silicon oxide film (simply called oxide film)
2 and 200 nm thick n conductivity type, resistivity 0.5 Ωcm
(Impurity concentration 1 × 10 16 / cm 3 ), plane orientation (100)
On the SOI substrate composed of the single crystal Si layer 3 of the above, the element isolation insulating film 4, the gate oxide film 5 with a thickness of 5 nm, the n-type low resistance polycrystalline S by the known method for manufacturing a MOS field effect transistor.
Gate electrodes 60, 61 and 62 made of the i film and a gate protective insulating film 7 were formed. Prior to the formation of the gate oxide film 5, a threshold voltage value of 0.1 V is formed on the surface region of the gate electrode formation planned region 30 of the single crystal Si layer 3, and a punch through stop is formed on the lower region. B ion implantation for P was selectively performed by a resist mask. The gate length is 200 nm. The ion implantation is performed on the gate oxide film 5
You may carry out after formation of. PMOS (not shown)
The single crystal Si layer 3 in the region has p conductivity type and impurity concentration of 1 × 1.
Ion implantation was separately and separately performed so as to reach 0 16 / cm 3 . From this state, the resist mask 12 covering a part of the pMOS structure region and a part of the nMOS source region, the gate protection insulating film 7, and the gate electrode 6 are used as an injection blocking mask to accelerate the acceleration energy of 15 keV and the dose amount. 5 × 10 14 / cm 2
Under the above conditions, As ion implantation and subsequent heat treatment were performed to form a shallow junction first n-type high-concentration diffusion layer source and a drain 90 (FIG. 23).

【0063】図23の状態より、100nm厚の堆積性
絶縁膜を全面に形成し、異方性ドライエッチングにより
ゲ−ト側壁部にのみ上記絶縁膜を選択的に残置させてゲ
−ト側壁絶縁膜8を形成した。再びpMOS構成予定領
域とnMOSソ−ス領域の一部を覆うレジストマスク1
2とゲ−ト保護絶縁膜7、及びゲ−ト電極6を注入阻止
マスクとして第二のn型高濃度拡散層ソ−ス9、91及
びドレイン10をPのイオン注入とレジストマスク除去
後の活性化熱処理により形成した。上記第二のn型高濃
度拡散層ソ−ス9、91及びドレイン10の接合深さは
最終的に約100nmであった。しかる後、pMOS領
域においてレジストマスクを用いてBのイオン注入を施
し、p型高濃度拡散層ソ−ス、ドレインを形成した(図
示せず)。引続き、30nm厚のTi膜をスパッタリン
グにより全面に形成してから窒素雰囲気で750℃、6
0秒の短時間熱処理を施し、露出されているSi面にの
み選択的にTiの珪化膜11を形成した。酸化膜上の未
反応のTi膜を過酸化水素水で除去した後、上記Ti珪
化膜11の低抵抗化熱処理をAr雰囲気中で850℃、
60秒実施した(図24)。
From the state of FIG. 23, a 100 nm-thick deposition insulating film is formed on the entire surface, and the above-mentioned insulating film is selectively left only on the gate side wall portion by anisotropic dry etching to form the gate side wall insulation. The film 8 was formed. Again, a resist mask 1 for covering the pMOS structure planned region and a part of the nMOS source region.
2 and the gate protective insulating film 7 and the gate electrode 6 are used as implantation blocking masks, the second n-type high concentration diffusion layer sources 9 and 91 and the drain 10 are implanted with P ions and the resist mask is removed. It was formed by activation heat treatment. The junction depth of the second n-type high-concentration diffusion layer sources 9 and 91 and the drain 10 was finally about 100 nm. After that, B ions are implanted in the pMOS region using a resist mask to form a p-type high concentration diffusion layer source and a drain (not shown). Subsequently, a Ti film having a thickness of 30 nm is formed on the entire surface by sputtering, and then at 750 ° C. for 6 hours in a nitrogen atmosphere.
A heat treatment was performed for a short time of 0 second to selectively form the Ti silicide film 11 only on the exposed Si surface. After removing the unreacted Ti film on the oxide film with hydrogen peroxide solution, a heat treatment for reducing the resistance of the Ti silicide film 11 is performed at 850 ° C. in an Ar atmosphere.
It carried out for 60 seconds (FIG. 24).

【0064】図24の状態より燐が添加されたシリコン
酸化膜による配線保護絶縁膜13の堆積と公知の半導体
装置の製造方法に基づき配線保護絶縁膜13の所望個所
への開口、更には配線金属の蒸着とそのパタ−ニングに
よるソ−ス電極14、ドレイン電極15等を含む配線を
形成した。(図25)。
From the state of FIG. 24, the wiring protection insulating film 13 is deposited by a silicon oxide film to which phosphorus is added, and the wiring protection insulating film 13 is opened to a desired position based on a known semiconductor device manufacturing method, and further, a wiring metal is formed. A wiring including the source electrode 14, the drain electrode 15 and the like was formed by vapor deposition and patterning thereof. (FIG. 25).

【0065】上記製造工程を経て製造された図26の回
路図で示されるNAND回路を含む本実施例に基づく半
導体集積回路装置のソ−ス・ドレイン間耐圧は4.7V
とソ−ス内のp型拡散層11が構成されていない同一寸
法の従来構造SOIMOSに比べて約1.5V向上し、
通常半導体基板に製造された同一寸法のMOSと同等の
耐圧値を確保することができた。また、電流・電圧特性
においてもキンク特性と称される異常なこぶ状特性は観
測されず、正常な特性を示した。更に、ソ−ス・ドレイ
ン電流・ゲ−ト電圧特性において、従来SOI・MOS
で観測された低ゲ−ト電圧におけるリ−ク電流の存在も
観測されなかった。また上記リ−ク電流、及び閾電圧値
はドレイン電圧を変化させても変化が見出せなかった。
これらの特性から、本実施例に基づく半導体集積回路装
置では基板浮遊効果に伴う緒特性から完全に解消され
た。さらにソ−ス領域の高融点珪化膜の存在によりソ−
ス直列抵抗が低減され、大電流で高速動作のSOI半導
体集積回路装置を実現できた。
The source-drain breakdown voltage of the semiconductor integrated circuit device according to the present embodiment including the NAND circuit shown in the circuit diagram of FIG. 26 manufactured through the above manufacturing process is 4.7V.
In comparison with a conventional structure SOIMOS of the same size in which the p-type diffusion layer 11 in the source is not formed, the voltage is improved by about 1.5V.
It has been possible to secure a withstand voltage value equivalent to that of a MOS of the same size normally manufactured on a semiconductor substrate. Also, in the current / voltage characteristics, abnormal knot-like characteristics called kink characteristics were not observed, and the characteristics were normal. Furthermore, in terms of source / drain current / gate voltage characteristics, conventional SOI / MOS
The presence of a leak current at the low gate voltage observed in 1. was not observed. Further, the leak current and the threshold voltage value were not found to change even if the drain voltage was changed.
From these characteristics, the semiconductor integrated circuit device according to the present embodiment completely eliminates the characteristics associated with the floating body effect. Furthermore, the presence of the high melting point silicified film in the source region
The series resistance was reduced, and an SOI semiconductor integrated circuit device operating at high current with high current could be realized.

【0066】本実施例に基づくNAND回路の直列接続
nMOSの各トランジスタにおいてはソ−ス領域に少数
キャリア消滅機構が構成されないが基板が共通の構成を
有しているため端部トランジスタのソ−ス領域における
少数キャリア消滅機構3及び11の働きにより基板浮遊
効果に基づく緒現象を解消することができた。
In each of the series-connected nMOS transistors of the NAND circuit according to this embodiment, the minority carrier elimination mechanism is not formed in the source region, but since the substrate has a common structure, the source of the end transistor is formed. Due to the functions of the minority carrier disappearance mechanisms 3 and 11 in the region, the phenomenon caused by the substrate floating effect could be eliminated.

【0067】本実施例に基づく半導体集積回路装置にお
いては単結晶Si層3が200nmと比較的厚く、チャ
ネル領域下部における基板領域では閾電圧以上のゲ−ト
電圧印加によっても空乏層と中性領域が存在する所謂部
分空乏化構造となる。部分空乏化構造は低電圧・高速動
作で完全空乏構造に比べてやや落ちるが製造条件におい
て従来の半導体基板を用いた条件で、製造工程数の増加
をもたらすこと無く、容易に製造できた。本実施例に基
づく半導体集積回路装置においては廉価に部分空乏化構
造MOSの基板浮遊対策を提供できる。
In the semiconductor integrated circuit device according to the present embodiment, the single crystal Si layer 3 is relatively thick as 200 nm, and in the substrate region below the channel region, the depletion layer and the neutral region are applied even if the gate voltage above the threshold voltage is applied. Is a so-called partially depleted structure. Although the partially depleted structure is operated at a low voltage and at a high speed and is slightly lower than the fully depleted structure, it can be easily manufactured under the condition using the conventional semiconductor substrate in the manufacturing condition without increasing the number of manufacturing steps. In the semiconductor integrated circuit device according to this embodiment, it is possible to inexpensively provide the substrate floating countermeasure for the partially depleted structure MOS.

【0068】実施例8 図27から図28は本発明の他の実施例による半導体集
積回路装置の製造工程順を示す断面図、図29はその完
成断面図である。前記実施例7において、素子間分離絶
縁膜4の形成後、pMOS形成予定領域31がp導電
型、不純物濃度1×1016/cm3になるごとくBのイ
オン注入と熱処理を単結晶Si層3に施した。しかる
後、nMOSのゲ−ト電極形成予定領域下部の単結晶S
i層30表面領域に閾電圧値が0.1Vとなるごとく、
また下部領域にはパンチスル−ストップのためのBイオ
ン注入をレジストマスクにより選択的に施した。pMO
Sのゲ−ト電極形成予定領域下部の単結晶Si層32に
おいては閾電圧値が−0.1Vとなるごとく、表面領域
へのPイオン注入を、また下部領域にはパンチスル−ス
トップのためのPイオン注入をレジストマスクにより選
択的に施した。続いて、ゲ−ト酸化膜5、ゲ−ト電極6
0及び62、ゲ−ト保護絶縁膜7の形成を前記実施例7
に従って製造してからpMOS形成予定領域とnMOS
のソ−ス領域の一部を覆うごとく配置したレジストマス
ク12とnMOSゲ−ト電極60、及びゲ−ト保護絶縁
膜7を注入阻止マスクとするAsの2keVなる低加速
エネルギ−で高濃度イオン注入を行ない、レジスト膜1
2の除去後に実施した活性化熱処理により接合深さ10
nm、表面不純物濃度1×1021/cm3の浅接合n型
高濃度拡散層90を形成した(図27)。
Embodiment 8 FIGS. 27 to 28 are sectional views showing the sequence of manufacturing steps of a semiconductor integrated circuit device according to another embodiment of the present invention, and FIG. 29 is its completed sectional view. In Example 7, after the formation of the element isolation insulating film 4, pMOS forming region 31 is p-type conductivity, an impurity concentration of 1 × 10 16 / cm 3 to as comprising an ion implantation and heat treatment of the single-crystal Si layer 3 of B Applied to. Then, the single crystal S under the gate electrode formation planned region of the nMOS is formed.
As the threshold voltage value becomes 0.1 V in the surface region of the i layer 30,
Further, B ion implantation for punch-through stop was selectively applied to the lower region by a resist mask. pMO
In the single crystal Si layer 32 below the S gate electrode formation planned region, P ion implantation is performed in the surface region and the punch-through stop is performed in the lower region as the threshold voltage value becomes -0.1V. P ion implantation was selectively performed using a resist mask. Subsequently, the gate oxide film 5 and the gate electrode 6
0 and 62, formation of the gate protective insulating film 7 was carried out in the same manner as in the seventh embodiment.
PMOS formation planned area and nMOS after manufacturing according to
Of the source mask and the nMOS gate electrode 60 and the gate protection insulating film 7 are used as an injection blocking mask, and a low acceleration energy of 2 keV of As and a high concentration of ions. Injection, resist film 1
By the activation heat treatment performed after the removal of 2
A shallow junction n-type high-concentration diffusion layer 90 having a surface impurity concentration of 1 × 10 21 / cm 3 was formed (FIG. 27).

【0069】図27の状態よりnMOS形成予定領域と
pMOSのソ−ス領域の一部を覆うごとく配置したレジ
ストマスク12とpMOSゲ−ト電極62、ゲ−ト保護
絶縁膜7を注入阻止マスクとするBF2を注入ソ−スと
するイオン注入と上記レジスト膜12除去後の熱処理に
より極浅接合の第一のp型高濃度拡散層100及び10
1を形成した。しかる後、前記実施例1に従い100n
m厚のゲ−ト側壁絶縁膜8を形成してから再びpMOS
領域とnMOSソ−ス領域の一部を覆うごとく配置した
レジストマスク12を設け、該レジストマスクとnMO
Sのゲ−ト電極60、保護絶縁膜7を注入阻止マスクと
するPのイオン注入及びその後の熱処理により接合深さ
100nmの第二のn型高濃度ソ−ス拡散層90、及び
高濃度ドレイン拡散層92を形成した。更に、nMOS
領域とpMOSソ−ス領域の一部を覆うごとく配置した
レジストマスク12を再び設け、該レジストマスクとp
MOSゲ−ト電極62、ゲ−ト保護絶縁膜7を注入阻止
マスクとしたBF2のイオン注入とその後の熱処理によ
り接合深さ100nmの第二のp型高濃度ソ−ス拡散層
102、及び高濃度ドレイン拡散層105を形成した
(図28)。
From the state shown in FIG. 27, the resist mask 12, the pMOS gate electrode 62, and the gate protective insulating film 7 which are arranged so as to cover the nMOS formation planned region and a part of the pMOS source region, serve as an injection blocking mask. Ion implantation using BF 2 as an implantation source and heat treatment after the removal of the resist film 12 are performed to form the first p-type high-concentration diffusion layers 100 and 10 having an extremely shallow junction.
1 was formed. Then, according to the first embodiment, 100n
After forming the gate side wall insulating film 8 of m thickness, pMOS is formed again.
A resist mask 12 is provided so as to cover the region and a part of the nMOS source region.
A gate electrode 60 of S, a second n-type high-concentration source diffusion layer 90 having a junction depth of 100 nm, and a high-concentration drain by P ion implantation using the protective insulating film 7 as an implantation blocking mask and subsequent heat treatment. The diffusion layer 92 was formed. Furthermore, nMOS
The resist mask 12 arranged so as to cover the region and a part of the pMOS source region is provided again, and the resist mask and p
A second p-type high-concentration source diffusion layer 102 having a junction depth of 100 nm is formed by ion implantation of BF 2 using the MOS gate electrode 62, the gate protection insulating film 7 as an implantation blocking mask, and subsequent heat treatment, and A high concentration drain diffusion layer 105 was formed (FIG. 28).

【0070】図28の状態より露出されたn型低濃度S
i層3、n型高濃度ソ−ス拡散層90、n型高濃度ドレ
イン拡散層92、p型高濃度ドレイン拡散層105、p
型高濃度ソ−ス拡散層102、及びp型型低濃度Si層
31の各表面に80nm1厚のW膜111を選択的に堆
積させた。上記W膜111の形成は選択堆積法によらず
とも良く、例えば全面堆積後、所望個所に選択的に残置
するごとくパタ−ニングしても良い。更に上記W膜11
1はTi,Ta,Mo,Al等の他の金属膜、或いはT
iN,WN等の低抵抗金属化合物であっても良い。最後
に公知の半導体装置製造方法に基づき、配線保護絶縁膜
13の堆積と、所望個所への開口を施してから配線金属
材料による接地電位線14、出力端子18、及び電源電
位線15を含む電極、及び配線層を形成した(図2
9)。
The n-type low concentration S exposed from the state of FIG.
i layer 3, n-type high-concentration source diffusion layer 90, n-type high-concentration drain diffusion layer 92, p-type high-concentration drain diffusion layer 105, p
A W film 111 having a thickness of 80 nm1 was selectively deposited on each surface of the high-concentration type source diffusion layer 102 and the p-type low-concentration Si layer 31. The W film 111 may be formed not by the selective deposition method, but may be patterned by, for example, selectively depositing it at a desired location after the entire surface deposition. Furthermore, the W film 11
1 is another metal film such as Ti, Ta, Mo, Al, or T
It may be a low resistance metal compound such as iN or WN. Finally, an electrode including a ground potential line 14, an output terminal 18, and a power supply potential line 15 made of a wiring metal material after the wiring protection insulating film 13 is deposited and an opening is formed at a desired position based on a known semiconductor device manufacturing method. , And a wiring layer were formed (FIG. 2
9).

【0071】上記製造工程を経て製造された本実施例に
基づく半導体集積回路装置では基板浮遊効果に伴う緒特
性が観測されず、正常な部分空乏型SOIMOS特性を
得ることができた。特に本実施例の半導体集積回路装置
においてはW膜111にn型、又はp型不純物がn型高
濃度ソ−ス拡散層90或いはp型高濃度ソ−ス拡散層1
02から取り込まれることがない。n型低濃度Si層
3、あるいはp型型低濃度Si層31とW膜111界面
に高濃度不不純物層が蓄積による少数キャリア注入障壁
は形成されず、実施例1に比べて更に効率良く基板浮遊
効果を解消できた。
In the semiconductor integrated circuit device according to the present embodiment manufactured through the above manufacturing steps, no characteristic associated with the floating body effect was observed, and normal partial depletion type SOIMOS characteristics could be obtained. In particular, in the semiconductor integrated circuit device of this embodiment, the W film 111 has an n-type or p-type impurity of the n-type high-concentration source diffusion layer 90 or the p-type high-concentration source diffusion layer 1.
It is not imported from 02. The minority carrier injection barrier due to the accumulation of the high-concentration non-impurity layer at the interface between the n-type low-concentration Si layer 3 or the p-type low-concentration Si layer 31 and the W film 111 is not formed, and the substrate is more efficient than that in the first embodiment. I was able to eliminate the floating effect.

【0072】実施例9 図30は本発明の他の実施例による半導体装置の完成断
面図である。本実施例では前記実施例2に従って半導体
集積回路装置を製造したが、前記実施例8におけるW膜
111に代えて前記実施例7と同様に高融点金属の珪化
膜を形成した。本実施例においては露出単結晶Si層上
に全面蒸着したW膜の熱反応によるタングステン珪化膜
111を形成した。しかる後、配線保護絶縁膜13の堆
積と所望個所への開口を施したが、nMOSソ−ス上の
タングステン珪化膜111への接続口に選択的にBイオ
ン注入を施し、その後の熱処理によりタングステン珪化
膜111底面のp型低濃度Si領域3にp型拡散層10
3を形成した。しかる後、前記実施例2に従って配線金
属材料による接地電位線14、出力端子18、及び電源
電位線15を含む電極、及び配線層を形成した。上記B
イオン注入によるp型拡散層103の形成はn型低濃度
領域3の表面が隣接する高濃度n型拡散層からのn型不
純物が金属珪化膜111を介して拡散し、n型高濃度化
するのを補償する目的であり、p反転させず、低濃度n
型拡散層であってもさしつかえない(図30)。
Embodiment 9 FIG. 30 is a completed sectional view of a semiconductor device according to another embodiment of the present invention. In this embodiment, the semiconductor integrated circuit device was manufactured according to the second embodiment, but the silicide film of the refractory metal was formed in the same manner as in the seventh embodiment instead of the W film 111 in the eighth embodiment. In this embodiment, the tungsten silicide film 111 is formed on the exposed single crystal Si layer by the thermal reaction of the W film entirely deposited. After that, the wiring protection insulating film 13 was deposited and an opening was formed at a desired position. However, B ions were selectively implanted into the connection opening to the tungsten silicide film 111 on the nMOS source, and the subsequent heat treatment was performed to remove tungsten. The p-type diffusion layer 10 is formed in the p-type low-concentration Si region 3 on the bottom surface of the silicide film 111.
3 was formed. Then, according to the second embodiment, an electrode including the ground potential line 14, the output terminal 18, and the power supply potential line 15 and a wiring layer made of a wiring metal material were formed. B above
In the formation of the p-type diffusion layer 103 by ion implantation, the n-type impurity from the high-concentration n-type diffusion layer adjacent to the surface of the n-type low-concentration region 3 is diffused through the metal silicide film 111 to increase the n-type concentration. For the purpose of compensating for a low concentration of n
Even a mold diffusion layer can be used (FIG. 30).

【0073】上記製造工程を経て製造された本実施例に
基づく半導体集積回路装置においては、前記実施例8に
基づく半導体集積回路装置と同様に基板浮遊効果に伴う
緒特性が観測されず、正常なSOIMOS特性を得るこ
とができた。特に前記実施例1に比べて基板浮遊効果解
消の効果は著しく、低ゲ−ト電圧におけるリ−ク電流の
低減の再現歩留まりが更に向上された。これは前記実施
例7においては金属珪化膜111とn型拡散層3間障壁
が隣接する高濃度n型拡散層からのn型不純物が金属珪
化膜111を介した拡散によりn型高濃度化し、正孔注
入の障壁を上昇させる傾向、即ち基板浮遊効果解消の程
度が阻害される傾向が、n型高濃度ソ−ス拡散層9のさ
らなる高濃度化等の製造条件によっては存在したのに対
し、本実施例構造においてはn型低濃度領域3に注入さ
れた正孔に対してp型拡散層103の存在がn型高濃度
ソ−ス拡散層9の製造条件等に依存せず、金属珪化膜1
11とn型拡散層3間障壁を低下させ、速やかに金属珪
化膜111への注入・再結合を助長するためと考えられ
る。
In the semiconductor integrated circuit device according to the present embodiment manufactured through the above manufacturing steps, the characteristics associated with the floating body effect are not observed, and the semiconductor integrated circuit device according to the present embodiment does not have a normal characteristic. It was possible to obtain SOIMOS characteristics. Particularly, the effect of eliminating the substrate floating effect is remarkable as compared with the first embodiment, and the reproduction yield of the reduction of the leak current at the low gate voltage is further improved. This is because the n-type impurities from the high-concentration n-type diffusion layer in which the barrier between the metal silicide film 111 and the n-type diffusion layer 3 is adjacent to each other in Example 7 are increased in n-type concentration by diffusion through the metal silicide film 111. The tendency to increase the hole injection barrier, that is, the degree to which the substrate floating effect is eliminated is present depending on the manufacturing conditions such as further increasing the concentration of the n-type high-concentration source diffusion layer 9. In the structure of this embodiment, the existence of the p-type diffusion layer 103 for holes injected into the n-type low-concentration region 3 does not depend on the manufacturing conditions of the n-type high-concentration source diffusion layer 9, etc. Silicized film 1
It is considered that this is to lower the barrier between the n-type diffusion layer 3 and the n-type diffusion layer 3 and promptly promote injection / recombination into the metal silicide film 111.

【0074】実施例10 図31は本発明の他の実施例による半導体装置の構成を
示す図である。本実施例は、実施例1〜9記載の本発明
に基づく半導体装置により構成された随時書込み読出し
型記憶装置(DRAMと称される)に適用した例であ
る。図において、一記憶単位であるメモリセルは下図の
ごとく本発明による一つの半導体装置と一つの容量素子
Csの直列接続により構成され、デ−タ伝達線であるビ
ット線、及び入出力制御のワ−ド線に接続される。本随
時書込み読出し型記憶装置はメモリセルが行列状に配置
されたメモリセルアレイと制御用周辺回路で構成される
が、周辺回路も本発明の半導体装置により構成した。メ
モリセル選択のアドレス信号端子数を低減するため列ア
ドレス信号と行アドレス信号をずらし多重化して印加す
るが。RASとCASは各々パルス信号であり、クロッ
ク発生器1、及び2を制御してアドレス信号を行デコ−
ダと列デコ−ダに振分ている。緩衝回路であるアドレス
バッファにより行デコ−ダ及び列デコ−ダに振分られた
アドレス信号に従って特定のワ−ド線、及びビット線を
選択する。各ビット線にはフリップフロップ型増幅器に
よるセンスアンプが接続され、メモリセルから読出され
た信号を増幅する。パルス信号WEは書込みクロック発
生器を制御することにより書込みと読出しの切換えを制
御する。Dは書込み、及び読出し信号である。
Embodiment 10 FIG. 31 is a diagram showing the structure of a semiconductor device according to another embodiment of the present invention. The present embodiment is an example applied to a random writing / reading type memory device (referred to as DRAM) configured by the semiconductor device according to the present invention described in the first to ninth embodiments. In the figure, a memory cell, which is one memory unit, is composed of one semiconductor device according to the present invention and one capacitive element Cs connected in series as shown in the figure below. The bit line is a data transmission line and the input / output control word. -Connected to the power line. The occasional write / read type memory device is composed of a memory cell array in which memory cells are arranged in a matrix and a control peripheral circuit, and the peripheral circuit is also composed of the semiconductor device of the present invention. In order to reduce the number of address signal terminals for memory cell selection, the column address signal and the row address signal are shifted and multiplexed and applied. RAS and CAS are pulse signals, respectively, which control the clock generators 1 and 2 to output address signals to the row decoder.
It is distributed to the liner and the line recorder. An address buffer, which is a buffer circuit, selects a specific word line and bit line according to the address signals distributed to the row decoder and the column decoder. A sense amplifier, which is a flip-flop type amplifier, is connected to each bit line and amplifies the signal read from the memory cell. The pulse signal WE controls the switching between writing and reading by controlling the writing clock generator. D is a write and read signal.

【0075】本実施例の半導体装置を構成する各半導体
装置が請求項1から5記載の本発明に基づく半導体装置
よりなることによりアクセス時間を従来比で30%以上
低減できる高速性が実現できた。さらに、リフレッシュ
特性も16メガビットメモリ構成において、最悪で0.
5秒と従来に比べて約10倍に向上することができた。
上記の高速動作化はSOI構造による寄生容量低減効
果、及び実施例6に基づく大電流化によると考えられ
る。リフレッシュ特性の向上はSOI構造による接合面
積の低減、基板浮遊効果解消による閾電圧変動の解消に
基づくと考えられる。
Since each of the semiconductor devices constituting the semiconductor device of this embodiment is the semiconductor device according to the present invention described in claims 1 to 5, the access time can be reduced by 30% or more as compared with the conventional one, and high speed performance can be realized. . Furthermore, the refresh characteristic is 0.
The time was 5 seconds, which was about 10 times higher than the conventional one.
It is considered that the above-mentioned high-speed operation is due to the parasitic capacitance reducing effect of the SOI structure and the large current according to the sixth embodiment. It is considered that the improvement of the refresh characteristic is based on the reduction of the junction area due to the SOI structure and the elimination of the threshold voltage fluctuation due to the elimination of the substrate floating effect.

【0076】実施例11 図32は本発明の他の実施例による半導体装置の構成を
示す図である。本実施例は、実施例1〜9記載の本発明
に基づく半導体装置により構成された常時書込み読出し
型記憶装置(SRAMと称される)に適用した例であ
る。図において、一記憶単位であるメモリセルは下図の
ごとく本発明による二組の相補型MOSと信号の入出力
を制御する二つのMOS(トランスファMOSと称され
る)で構成される。本SRAMはメモリセルが行列状に
配置されたメモリセルアレイと制御用周辺回路で構成さ
れるが、周辺回路も本発明の半導体装置により構成し
た。本実施例の構成は基本的に前記実施例10のものと
ほぼ同一であるが、SRAMの高速性、低消費電力性を
図るためにアドレス遷移検出器を設け、これにより発生
するパルスによって内部回路を制御している。更に、ア
ドレスバッファからデコ−ダまでの回路の高速化を図る
ため行デコ−ダをプリデコ−ダと主デコ−ダの二段によ
り構成している。チップセレクトは信号CS、及びWE
により情報の書込み、及び読出し時のデ−タの競合を避
け、且つ書込みサイクル時間と読出しサイクル時間をほ
ぼ同じにして高速動作を可能にするための回路である。
Embodiment 11 FIG. 32 is a diagram showing the structure of a semiconductor device according to another embodiment of the present invention. The present embodiment is an example applied to a constant write / read type memory device (referred to as SRAM) configured by the semiconductor device according to the present invention described in the first to ninth embodiments. In the figure, a memory cell, which is one storage unit, is composed of two sets of complementary MOSs according to the present invention and two MOSs (referred to as transfer MOSs) for controlling signal input / output as shown in the figure below. This SRAM is composed of a memory cell array in which memory cells are arranged in a matrix and a peripheral circuit for control, and the peripheral circuit is also composed of the semiconductor device of the present invention. The configuration of this embodiment is basically the same as that of the tenth embodiment, but an address transition detector is provided in order to achieve high speed and low power consumption of SRAM, and the internal circuit is generated by the pulse generated by the address transition detector. Are in control. Furthermore, in order to speed up the circuit from the address buffer to the decoder, the row decoder is composed of two stages, a predecoder and a main decoder. Chip select is signal CS and WE
Is a circuit for avoiding contention of data at the time of writing and reading information, and making the write cycle time and the read cycle time almost the same to enable high speed operation.

【0077】本実施例の半導体装置を構成する各半導体
装置として実施例1〜9記載の本発明に基づく半導体装
置を用いることにより電源電圧を3.5Vから2.0V
と低減でき、且つアクセス時間を従来比で30%以上低
減できる高速性が実現できた。上記はSOI構造による
寄生容量低減効果によると考えられる。更に、基板浮遊
効果解消による閾電圧変動が解消され、センスアンプの
動作範囲の縮小による高速化が可能になったためと考え
られる。
By using the semiconductor device according to the present invention described in Embodiments 1 to 9 as each semiconductor device constituting the semiconductor device of this embodiment, the power supply voltage is changed from 3.5V to 2.0V.
It was possible to reduce the access time and reduce the access time by 30% or more compared with the conventional one, thus realizing high speed. It is considered that the above is due to the parasitic capacitance reducing effect of the SOI structure. Further, it is considered that the fluctuation of the threshold voltage due to the elimination of the substrate floating effect is eliminated, and the operation range of the sense amplifier is reduced to enable the speedup.

【0078】実施例12 図33は本発明の他の実施例による半導体装置の構成を
示す図である。本実施例は、実施例1〜9記載の本発明
に基づく半導体装置により構成された論理回路装置に適
用した例である。図は複合ゲ−ト回路の例であるが、本
発明に基づく半導体装置により複合ゲ−ト回路にNAN
D回路とNOR回路を含む論理回路に適用した。図の複
合回路はVout=V1×V2+V3×V4なる論理演算を
行う回路であり、上記演算をNAND回路とNOR回路
の組合せで構成するよりトランジスタ数を1/2に低減
できる。
Embodiment 12 FIG. 33 is a diagram showing the structure of a semiconductor device according to another embodiment of the present invention. The present embodiment is an example applied to a logic circuit device constituted by the semiconductor device according to the present invention described in the first to ninth embodiments. Although the figure shows an example of a composite gate circuit, the semiconductor device according to the present invention is used to form a NAN in the composite gate circuit.
It was applied to a logic circuit including a D circuit and a NOR circuit. The composite circuit shown in the figure is a circuit for performing a logical operation of Vout = V 1 × V 2 + V 3 × V 4 , and the number of transistors can be reduced to half compared to the case where the above operation is configured by a combination of a NAND circuit and a NOR circuit.

【0079】本実施例の半導体装置を構成する各半導体
装置が請求項1から5記載の本発明に基づく半導体装置
でなることにより従来論理回路装置に比べて遅延時間で
20%以上の低減が図られた。上記はSOI構造による
寄生容量低減効果、及び実施例4に基づく大電流化、及
び低電圧におけるドレインコンダクタンスの大幅な向上
によると考えられる。
Since each of the semiconductor devices constituting the semiconductor device of this embodiment is the semiconductor device according to the present invention according to claims 1 to 5, the delay time is reduced by 20% or more as compared with the conventional logic circuit device. Was given. It is considered that the above is due to the parasitic capacitance reducing effect of the SOI structure, the increase in the current based on the fourth embodiment, and the drastic improvement of the drain conductance at a low voltage.

【0080】実施例13 図34は本発明の他の実施例による半導体装置の構成を
示す図である。
Embodiment 13 FIG. 34 is a diagram showing the structure of a semiconductor device according to another embodiment of the present invention.

【0081】本実施例は、実施例1〜9記載の本発明の
基づく半導体装置により構成された信号伝送処理装置に
関し、特に非同期伝送方式(ATM交換器と称される)
に関する信号伝送処理装置である。図34に於いて、光
ファイバ−により超高速で直列的に伝送されてきた情報
信号は電気信号に変換し(O/E変換)、且つ並列化
(S/P変換)させる装置を介して実施例1〜9記載の
本発明に基づく半導体装置により構成される集積回路
(BFMLSI)に導入した。該集積回路で番地付処理
された電気信号は直列化(P/S変換)及び光信号化
(E/O変換)されて光ファイバ−で出力される。上記
BFMLSIは多重器(MUX)、バッファメモリ(B
FM)、及び分離器(DMUX)により構成される。該
BFMLSIはメモリ制御LSI、及び空アドレス振分
け制御の機能を有するLSI(空アドレスFIFOメモ
リLSI)により制御される。本信号伝送処理装置は伝
送すべき番地と無関係に送られてくる超高速伝送信号を
所望番地に超高速で伝送するスイッチの機能を有する装
置である。BFMLSIは入力光信号の伝送速度に比べ
て著しく動作速度が遅い為、入力信号を直接スイッチン
グできず、入力信号を一時記憶させ、記憶された信号を
スイッチングしてから超高速な光信号に変換して所望番
地に伝送する方式を用いている。BFMLSIの動作速
度が遅ければ、大きな記憶容量が要求される。本実施例
に基づくATM交換器に於いてはBFMLSIが実施例
1〜9記載の本発明の基づく半導体装置により構成され
ることにより従来のBFMLSIに比べて動作速度が三
倍と高速で且つ廉価なため、BFMLSIの記憶容量を
従来比で約1/3と低減することがとが可能となった。
これによりATM交換器の製造原価を低減することがで
きた。
The present embodiment relates to a signal transmission processing device constituted by the semiconductor device according to the present invention described in the first to ninth embodiments, and in particular, an asynchronous transmission system (called an ATM switch).
It is a signal transmission processing device. In FIG. 34, an information signal transmitted at a high speed in series by an optical fiber is converted into an electric signal (O / E conversion) and is parallelized (S / P conversion) through a device. It was introduced into an integrated circuit (BFMLSI) composed of the semiconductor device according to the present invention described in Examples 1 to 9. The electric signal subjected to the addressing process in the integrated circuit is serialized (P / S conversion) and converted into an optical signal (E / O conversion) and output through the optical fiber. The BFMLSI is a multiplexer (MUX), a buffer memory (B
FM) and a separator (DMUX). The BFM LSI is controlled by a memory control LSI and an LSI having an empty address allocation control function (empty address FIFO memory LSI). This signal transmission processing device is a device having a function of a switch for transmitting an ultra high speed transmission signal sent to a desired address at an ultra high speed regardless of an address to be transmitted. Since the operation speed of BFMLSI is significantly slower than the transmission speed of the input optical signal, the input signal cannot be directly switched, the input signal is temporarily stored, and the stored signal is switched and then converted into an ultra-high-speed optical signal. A method of transmitting to a desired address is used. If the operation speed of the BFMLSI is slow, a large storage capacity is required. In the ATM switch according to the present embodiment, the BFMLSI is composed of the semiconductor device according to the present invention described in the first to ninth embodiments, so that the operating speed is three times as high as that of the conventional BFMLSI and the cost is low. Therefore, the storage capacity of the BFMLSI can be reduced to about 1/3 of the conventional one.
As a result, the manufacturing cost of the ATM switch could be reduced.

【0082】実施例14 他の実施例を図35の計算機構成図で説明する。本実施
例は本発明の半導体装置を命令や演算を処理するプロセ
ッサ500が複数個並列に接続された高速大型計算機に
適用した例である。本実施例では本発明による半導体装
置が従来のバイポ−ラトランジスタを用いた集積回路よ
りも集積度が高く廉価なため、命令や演算を処理するプ
ロセッサ500、システム制御装置501、及び主記憶
装置502等を1辺が10から30mmの本発明の半導
体装置で構成した。
Embodiment 14 Another embodiment will be described with reference to the computer block diagram of FIG. The present embodiment is an example in which the semiconductor device of the present invention is applied to a high-speed large-scale computer in which a plurality of processors 500 for processing instructions and operations are connected in parallel. In this embodiment, the semiconductor device according to the present invention has a higher degree of integration and is less expensive than a conventional integrated circuit using bipolar transistors. Therefore, the processor 500 for processing instructions and operations, the system controller 501, and the main memory 502. Etc. are formed by the semiconductor device of the present invention having one side of 10 to 30 mm.

【0083】これら命令や演算を処理するプロセッサ5
00、システム制御装置501、及び化合物半導体装置
からなるデ−タ通信インタフェ−ス503を同一セラミ
ック基板506に実装した。また、デ−タ通信インタフ
ェ−ス503、及びデ−タ通信制御装置504を同一セ
ラミック基板507に実装した。これらセラミック基板
506、及び507と主記憶装置502が実装されたセ
ラミック基板を大きさが1辺約50cm程度、あるいは
それ以下の基板に実装し、計算機の中央処理ユニット5
08を形成した。この中央処理ユニット508内デ−タ
通信や、複数の中央処理ユニット間デ−タ通信、あるい
はデ−タ通信インタフェ−ス503と入出力プロセッサ
505を実装した基板509との間のデ−タの通信は図
中の両端矢印線で示される光ファイバ510を介して行
われた。
Processor 5 for processing these instructions and operations
00, a system controller 501, and a data communication interface 503 composed of a compound semiconductor device are mounted on the same ceramic substrate 506. Further, the data communication interface 503 and the data communication control device 504 are mounted on the same ceramic substrate 507. The ceramic substrate on which these ceramic substrates 506 and 507 and the main memory device 502 are mounted is mounted on a substrate having a side of about 50 cm or less, and the central processing unit 5 of the computer is mounted.
08 was formed. The data communication in the central processing unit 508, the data communication between a plurality of central processing units, or the data communication between the data communication interface 503 and the board 509 on which the input / output processor 505 is mounted is performed. Communication was performed via an optical fiber 510 indicated by double-ended arrow lines in the figure.

【0084】この計算機では命令や演算を処理するプロ
セッサ500、システム制御装置501、及び主記憶装
置502等の本発明による半導体装置が並列で、且つ高
速に動作し、またデ−タの通信が光を媒体に行われるた
め、1秒間当たりの命令処理回数を大幅に増加すること
ができた。
In this computer, semiconductor devices according to the present invention, such as a processor 500 for processing instructions and operations, a system controller 501, and a main memory 502, operate in parallel and at high speed, and data communication is performed optically. Since it is performed on a medium, the number of instruction processings per second can be significantly increased.

【0085】[0085]

【発明の効果】本発明によればSOI基板上に構成され
た半導体装置の最大の欠点であった基板浮遊効果に基づ
く閾電圧の変動や電流電圧特性上の異常なこぶ上特性の
発生を占有面積の増大や、ソ−スへのGeイオン注入等
の如きイオン源が不安定で、且つ専用装置を必要とする
製造方法に基づくことなく、既存の半導体装置の製造装
置によって、廉価に製造することができる。さらに、本
発明によれば従来不可能であったSOI基板上のpMO
Sの基板浮遊効果に対しても廉価な製造方法により解決
することができる。従って、本発明によればSOI基板
上のCMOSに対して廉価な製造方法により基板浮遊効
果を完全に解消することができる。これにより低電圧、
停電力で且つ超高速の半導体装置、及びそれにより構成
されるシステムを提供することができる。
According to the present invention, the fluctuation of the threshold voltage due to the substrate floating effect, which is the greatest drawback of the semiconductor device formed on the SOI substrate, and the occurrence of the abnormal bump-up characteristic in the current-voltage characteristic are occupied. An inexpensive semiconductor device can be manufactured by an existing semiconductor device manufacturing device without increasing the area and using an unstable ion source such as Ge ion implantation in the source and requiring a dedicated device. be able to. Further, according to the present invention, pMO on an SOI substrate, which has heretofore been impossible, is obtained.
The substrate floating effect of S can be solved by an inexpensive manufacturing method. Therefore, according to the present invention, the floating body effect can be completely eliminated by a low-cost manufacturing method for the CMOS on the SOI substrate. This allows low voltage,
It is possible to provide an ultra-high speed semiconductor device with no power consumption and a system configured by the semiconductor device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施例による半導体装置の完成
断面図。
FIG. 1 is a completed sectional view of a semiconductor device according to a first embodiment of the present invention.

【図2】従来の半導体装置の断面図。FIG. 2 is a cross-sectional view of a conventional semiconductor device.

【図3】従来の半導体装置における基板浮遊効果解消機
構を説明するエネルギバンド図。
FIG. 3 is an energy band diagram for explaining a substrate floating effect elimination mechanism in a conventional semiconductor device.

【図4】本発明の半導体装置における基板浮遊効果解消
機構を説明するソ-ス拡散層断面図。
FIG. 4 is a sectional view of a source diffusion layer for explaining a substrate floating effect eliminating mechanism in a semiconductor device of the present invention.

【図5】本発明の半導体装置による基板浮遊効果解消機
構を説明するエネルギバンド図。
FIG. 5 is an energy band diagram for explaining a substrate floating effect elimination mechanism by the semiconductor device of the present invention.

【図6】本発明の半導体装置による基板浮遊効果解消機
構に関する解析結果。
FIG. 6 is an analysis result regarding a substrate floating effect elimination mechanism by the semiconductor device of the present invention.

【図7】本発明の半導体装置における基板浮遊効果解消
機構を説明する等価回路図。
FIG. 7 is an equivalent circuit diagram illustrating a substrate floating effect eliminating mechanism in the semiconductor device of the present invention.

【図8】本発明の半導体装置による基板浮遊効果解消機
構に関する解析結果。
FIG. 8 is an analysis result regarding a substrate floating effect elimination mechanism by the semiconductor device of the present invention.

【図9】本発明の半導体装置における基板浮遊効果解消
機構を説明するソ−ス拡散層断面図。
FIG. 9 is a sectional view of a source diffusion layer for explaining a substrate floating effect eliminating mechanism in a semiconductor device of the present invention.

【図10】本発明の第1の実施例による半導体装置の製
造工程順を示す断面図。
FIG. 10 is a sectional view showing a sequence of manufacturing steps for a semiconductor device according to the first embodiment of the present invention.

【図11】本発明の第1の実施例による半導体装置の製
造工程順を示す断面図。
FIG. 11 is a sectional view showing a sequence of manufacturing steps for a semiconductor device according to the first embodiment of the present invention.

【図12】本発明の第1の実施例による半導体装置の製
造工程順を示す断面図。
FIG. 12 is a cross-sectional view showing the sequence of manufacturing steps for a semiconductor device according to the first embodiment of the present invention.

【図13】本発明の第2の実施例による半導体装置の製
造工程順を示す断面図。
FIG. 13 is a sectional view showing the sequence of manufacturing steps for a semiconductor device according to the second embodiment of the present invention.

【図14】本発明の第2の実施例による半導体装置の完
成断面図。
FIG. 14 is a completed sectional view of a semiconductor device according to a second embodiment of the present invention.

【図15】本発明の第3の実施例による半導体装置の完
成断面図。
FIG. 15 is a completed sectional view of a semiconductor device according to a third embodiment of the present invention.

【図16】本発明の第4の実施例による半導体装置の製
造工程順を示す断面図。
FIG. 16 is a sectional view showing the sequence of manufacturing steps for a semiconductor device according to the fourth embodiment of the present invention.

【図17】本発明の第4の実施例による半導体装置の製
造工程順を示す断面図。
FIG. 17 is a sectional view showing the sequence of manufacturing steps for a semiconductor device according to the fourth embodiment of the present invention.

【図18】本発明の第4の実施例による半導体装置の完
成断面図。
FIG. 18 is a completed sectional view of a semiconductor device according to a fourth embodiment of the present invention.

【図19】本発明の第5の実施例による半導体装置の製
造工程順を示す断面図。
FIG. 19 is a sectional view showing the sequence of manufacturing steps for a semiconductor device according to the fifth embodiment of the present invention.

【図20】本発明の第5の実施例による半導体装置の完
成断面図。
FIG. 20 is a completed sectional view of a semiconductor device according to a fifth embodiment of the present invention.

【図21】本発明の第6の実施例による半導体装置の製
造工程順を示す断面図。
FIG. 21 is a sectional view showing the sequence of manufacturing steps for a semiconductor device according to the sixth embodiment of the present invention.

【図22】本発明の第6の実施例による半導体装置の完
成断面図。
FIG. 22 is a completed sectional view of a semiconductor device according to a sixth embodiment of the present invention.

【図23】本発明の第7の実施例による半導体装置の製
造工程順を示す断面図。
FIG. 23 is a sectional view showing a sequence of manufacturing steps for a semiconductor device according to a seventh embodiment of the present invention.

【図24】本発明の第7の実施例による半導体装置の製
造工程順を示す断面図。
FIG. 24 is a sectional view showing a sequence of manufacturing steps for a semiconductor device according to a seventh embodiment of the present invention.

【図25】本発明の第7の実施例による半導体装置の完
成断面図。
FIG. 25 is a completed sectional view of the semiconductor device according to the seventh embodiment of the present invention.

【図26】本発明の第7の実施例による半導体装置の回
路図。
FIG. 26 is a circuit diagram of a semiconductor device according to a seventh embodiment of the present invention.

【図27】本発明の第8の実施例による半導体装置の製
造工程順を示す断面図。
FIG. 27 is a sectional view showing the sequence of manufacturing steps for a semiconductor device according to the eighth embodiment of the present invention.

【図28】本発明の第8の実施例による半導体装置の製
造工程順を示す断面図。
FIG. 28 is a sectional view showing a sequence of manufacturing steps for a semiconductor device according to an eighth embodiment of the present invention.

【図29】本発明の第8の実施例による半導体装置の完
成断面図。
FIG. 29 is a completed sectional view of a semiconductor device according to an eighth embodiment of the present invention.

【図30】本発明の第9の実施例による半導体装置の完
成断面図。
FIG. 30 is a completed sectional view of a semiconductor device according to a ninth embodiment of the present invention.

【図31】本発明の第10の実施例を説明するための随
時書込み読出し記憶装置構成図。
FIG. 31 is a block diagram of an occasional write / read memory device for explaining a tenth embodiment of the present invention.

【図32】本発明の第11の実施例を説明するための常
時書込み読出し記憶装置構成図。
FIG. 32 is a configuration diagram of a constant write / read storage device for explaining an eleventh embodiment of the present invention.

【図33】本発明の第12の実施例を説明するための論
理回路装置構成図。
FIG. 33 is a configuration diagram of a logic circuit device for explaining a twelfth embodiment of the present invention.

【図34】本発明の第13の実施例を説明するための非
同期伝送モ-ドシステム構成図。
FIG. 34 is a configuration diagram of an asynchronous transmission mode system for explaining a thirteenth embodiment of the present invention.

【図35】本発明の第14の実施例を説明するための計
算機構成図。
FIG. 35 is a computer configuration diagram for explaining the 14th embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…支持基板、2…酸化膜、3及び30…単結晶Si
層、4…素子間分離絶縁膜、5…ゲ−ト酸化膜、6…ゲ
−ト電極、7…ゲ−ト保護絶縁膜、8…ゲ−ト側壁絶縁
膜、9及び10…低濃度n型拡散層、11及び111…
再結合中心領域、12…W膜、13…配線保護絶縁膜、
14…ソ−ス電極、15…ドレイン電極、16…SiG
e共晶層、17…接地電位線、18…出力端子、19…
電源電圧線、31…n型領域、32…p型領域、33…
n型低濃度拡散層、90及び100…p型拡散層、91
及び101…高濃度n型拡散層、92及び102…高濃
度p型拡散層、110…n型拡散層、121…シリサイ
ド層、500…プロセッサ、501…システム制御装
置、502…主記憶装置、503…デ−タ通信インタフ
エ−ス、504…デ−タ通信制御装置、505…入出力
プロセッサ、506…セラミック基板、507…セラミ
ック基板、508…中央処理ユニット、509…入出力
プロセッサ実装基板、510…デ−タ通信用光ファイ
バ。
1 ... Support substrate, 2 ... Oxide film, 3 and 30 ... Single crystal Si
Layers, 4 ... Element isolation insulating film, 5 ... Gate oxide film, 6 ... Gate electrode, 7 ... Gate protective insulating film, 8 ... Gate sidewall insulating film, 9 and 10 ... Low concentration n Mold diffusion layers, 11 and 111 ...
Recombination center region, 12 ... W film, 13 ... Wiring protection insulating film,
14 ... Source electrode, 15 ... Drain electrode, 16 ... SiG
e eutectic layer, 17 ... Ground potential line, 18 ... Output terminal, 19 ...
Power supply voltage line, 31 ... N-type region, 32 ... P-type region, 33 ...
n type low concentration diffusion layer, 90 and 100 ... p type diffusion layer, 91
And 101 ... high-concentration n-type diffusion layer, 92 and 102 ... high-concentration p-type diffusion layer, 110 ... n-type diffusion layer, 121 ... silicide layer, 500 ... processor, 501 ... system control device, 502 ... main memory device, 503 Data communication interface, 504 Data communication control device, 505 Input / output processor, 506 Ceramic board, 507 Ceramic board, 508 Central processing unit, 509 Input / output processor mounting board, 510 Optical fiber for data communication.

Claims (24)

【特許請求の範囲】[Claims] 【請求項1】支持基板から絶縁膜で分離された単結晶半
導体層に少なくともMOS型電界効果トランジスタが設
けられた半導体装置において、 上記トランジスタの第一導電型からなるソ−ス拡散層
は、ソ−ス電極に接続された第一の拡散層と、該第一の
拡散層の少なくとも下部領域に隣接した低不純物濃度領
域の第二の拡散層とを有し、該第二の拡散層内部には電
荷に対する再結合中心機構を有する領域が設けられてい
ることを特徴とする半導体装置。
1. A semiconductor device in which at least a MOS field effect transistor is provided in a single crystal semiconductor layer separated from a support substrate by an insulating film, wherein a source diffusion layer of the first conductivity type of the transistor is a source diffusion layer. -A first diffusion layer connected to the electrode, and a second diffusion layer in a low impurity concentration region adjacent to at least a lower region of the first diffusion layer, and inside the second diffusion layer Is a semiconductor device having a region having a recombination center mechanism for electric charges.
【請求項2】請求項1記載の半導体装置において、上記
再結合中心機構を有する領域は第二導電型を有すること
を特徴とする半導体装置。
2. The semiconductor device according to claim 1, wherein the region having the recombination center mechanism has a second conductivity type.
【請求項3】請求項1又は2記載の半導体装置におい
て、上記トランジスタのゲ−ト電極直下の第二導電型か
らなる領域と、上記再結合中心機構を有する領域間の最
小間隔Wbと該最小間隔を構成する第二の拡散層の最大
不純物濃度Nbの積Wb×Nbは1×1013/cm2
下であることを特徴とする半導体装置。
3. A semiconductor device according to claim 1, wherein a minimum distance Wb between a region of the second conductivity type immediately below the gate electrode of the transistor and a region having the recombination center mechanism, and the minimum distance. A semiconductor device, wherein the product Wb × Nb of the maximum impurity concentration Nb of the second diffusion layer forming the space is 1 × 10 13 / cm 2 or less.
【請求項4】支持基板から絶縁膜で分離された単結晶半
導体層に第一導電型のMOS型電界効果トランジスタと
第二導電型のMOS型電界効果トランジスタが設けられ
た半導体装置において、 上記第一導電型のMOS型電界効果トランジスタの第一
導電型からなるソ−ス拡散層はソ−ス電極に接続された
第一の拡散層と、該第一の拡散層の少なくとも下部領域
に隣接した低不純物濃度領域の第二の拡散層よりなり、
該第二の拡散層内部には電荷に対する再結合中心機構を
有する第一導電型、又は第二導電型よりなる領域が設け
られていることを特徴とする半導体装置。
4. A semiconductor device in which a first conductivity type MOS field effect transistor and a second conductivity type MOS field effect transistor are provided in a single crystal semiconductor layer separated from a supporting substrate by an insulating film. The source diffusion layer of the first conductivity type of the one conductivity type MOS field effect transistor is adjacent to the first diffusion layer connected to the source electrode and at least the lower region of the first diffusion layer. The second diffusion layer in the low impurity concentration region,
A semiconductor device, wherein a region of the first conductivity type or a second conductivity type having a recombination center mechanism for electric charges is provided inside the second diffusion layer.
【請求項5】請求項4記載の半導体装置において、上記
第二導電型のMOS型電界効果トランジスタの第二導電
型からなるソ−ス拡散層はソ−ス電極に接続された第三
の拡散層と、該第三の拡散層の少なくとも下部領域に隣
接した低不純物濃度領域の第四の拡散層を有し、該第四
の拡散層内部には電荷に対する再結合中心機構を有し、
第一導電型、又は第二導電型よりなる領域が設けられて
いることを特徴とする半導体装置。
5. The semiconductor device according to claim 4, wherein the source diffusion layer of the second conductivity type of the second conductivity type MOS field effect transistor has a third diffusion connected to a source electrode. A layer and a fourth diffusion layer in a low impurity concentration region adjacent to at least a lower region of the third diffusion layer, and having a recombination center mechanism for charges inside the fourth diffusion layer,
A semiconductor device having a region of the first conductivity type or the second conductivity type.
【請求項6】支持基板から絶縁膜で分離された単結晶半
導体層に素子間分離絶縁膜を形成し、電気的に互いに分
離された単結晶半導体層領域群を形成する工程と、 第一導電型のMOS型電界効果トランジスタを形成する
該単結晶半導体層領域群の所望個所には第二導電型の不
純物を、第二導電型のMOS型電界効果トランジスタを
形成する該単結晶半導体層領域群の所望個所には第一導
電型の不純物を選択的に導入する工程と、 ゲ−ト絶縁膜、及びゲ−ト電極を形成する工程と、 ゲ−ト電極をマスクとして第一導電型のMOS型電界効
果トランジスタを形成する該単結晶半導体層領域群の表
面部には第一導電型の高濃度不純物領域を、第二導電型
のMOS型電界効果トランジスタを形成する該単結晶半
導体層領域群の表面部には第二導電型の高濃度不純物領
域を形成する工程と、 第一導電型の高濃度不純物領域に隣接し、該領域下部の
第一導電型低不純物濃度領域内に第二導電型の領域を形
成する工程と、 該第二導電型の領域の内部に支持基板上の絶縁膜に隣接
するごとく再結合中心として作用する結晶欠陥領域を形
成するイオン注入工程とを有することを特徴とする半導
体装置の製造方法。
6. A step of forming an element isolation insulating film on a single crystal semiconductor layer separated from a support substrate by an insulating film to form a group of single crystal semiconductor layer regions electrically isolated from each other; -Type MOS field effect transistor forming the single-crystal semiconductor layer region group, a second conductivity type impurity is formed at a desired portion, and the second-conductivity-type MOS field-effect transistor forming group is formed. Of the first conductivity type impurities at desired locations of the gate electrode, a step of forming a gate insulating film and a gate electrode, and a first conductivity type MOS using the gate electrode as a mask. -Type field-effect transistor forming a single-crystal semiconductor layer region group on the surface of which a first-conductivity-type high-concentration impurity region and a second-conductivity-type MOS field-effect transistor forming group are formed. Second conductivity type on the surface of Forming a high-concentration impurity region, forming a second-conductivity type region in the first-conductivity-type low-impurity-concentration region adjacent to the first-conductivity-type high-concentration impurity region, and An ion implantation step of forming a crystal defect region that acts as a recombination center so as to be adjacent to the insulating film on the support substrate inside the region of the second conductivity type.
【請求項7】請求項6記載の半導体装置の製造方法にお
いて、上記第一導電型の高濃度不純物領域に隣接し、該
領域下部の一領域に第二導電型の領域を形成する工程を
実施しないことを特徴とする半導体装置の製造方法。
7. The method of manufacturing a semiconductor device according to claim 6, wherein a step of forming a second conductivity type region adjacent to the first conductivity type high concentration impurity region and in a region below the region is performed. A method for manufacturing a semiconductor device, characterized by not performing.
【請求項8】請求項6又は7記載の半導体装置の製造方
法において、上記単結晶半導体層領域群の表面部に第一
導電型の高濃度不純物領域、及び第二導電型の高濃度不
純物領域を形成する工程に続いて第一導電型の高濃度不
純物領域に隣接し、該領域下部の一領域に第一導電型の
低濃度不純物領域を形成する工程を実施することを特徴
とする半導体装置の製造方法。
8. The method of manufacturing a semiconductor device according to claim 6, wherein the first-conductivity-type high-concentration impurity region and the second-conductivity-type high-concentration impurity region are formed on the surface of the single crystal semiconductor layer region group. And a step of forming a first-conductivity-type low-concentration impurity region adjacent to the first-conductivity-type high-concentration impurity region and in a region below the region. Manufacturing method.
【請求項9】請求項6乃至8の何れかに記載の半導体装
置の製造方法において、上記第二導電型の高濃度不純物
領域を形成する工程の後、該第二導電型の高濃度不純物
領域に隣接し、該領域下部の一領域に第二導電型の低濃
度不純物領域を形成する工程を施してから該支持基板上
の絶縁膜に達する第二導電型の低濃度不純物領域内にも
再結合中心として作用する結晶欠陥領域を形成する前記
イオン注入工程を施すことを特徴とする半導体装置の製
造方法。
9. The method of manufacturing a semiconductor device according to claim 6, wherein after the step of forming the second-conductivity-type high-concentration impurity region, the second-conductivity-type high-concentration impurity region is formed. Adjacent to, and a step of forming a second-conductivity-type low-concentration impurity region in one region below the region, and then re-forming in the second-conductivity-type low-concentration impurity region reaching the insulating film on the supporting substrate. A method of manufacturing a semiconductor device, comprising performing the ion implantation step of forming a crystal defect region acting as a bonding center.
【請求項10】請求項9記載の半導体装置の製造方法に
おいて、上記再結合中心として作用する結晶欠陥領域形
成工程に先立ち、上記第二導電型の高濃度不純物領域に
隣接し、該領域下部の一領域に第二導電型の低濃度不純
物領域内の再結合中心として作用する結晶欠陥領域とな
るべき領域を第一導電型に変換する工程を施すことを特
徴とする半導体装置の製造方法。
10. The method of manufacturing a semiconductor device according to claim 9, wherein, prior to the step of forming a crystal defect region acting as the recombination center, a region adjacent to the second-conductivity-type high-concentration impurity region and below the region is formed. A method for manufacturing a semiconductor device, comprising the step of converting one region into a region of a second conductivity type, which is to be a crystal defect region acting as a recombination center in a low-concentration impurity region, into a first conductivity type.
【請求項11】請求項6乃至10の何れかに記載の半導
体装置の製造方法において、再結合中心として作用する
結晶欠陥領域の形成は14族元素、ハロゲン元素、及び
希ガス元素の何れかの元素のイオン注入により形成され
されることを特徴とする半導体装置の製造方法。
11. The method of manufacturing a semiconductor device according to claim 6, wherein the crystal defect region acting as a recombination center is formed by any one of a Group 14 element, a halogen element and a rare gas element. A method for manufacturing a semiconductor device, which is formed by ion implantation of an element.
【請求項12】請求項11記載の半導体装置の製造方法
において、上記イオン注入はゲ−ト側壁絶縁膜を注入阻
止マスクとして為されることを特徴とする半導体装置の
製造方法。
12. The method of manufacturing a semiconductor device according to claim 11, wherein the ion implantation is performed by using a gate sidewall insulating film as an implantation blocking mask.
【請求項13】請求項11記載の半導体装置の製造方法
において、上記イオン注入は上記ソ−ス拡散領域へのソ
−ス電極用コンタクト孔を注入孔として為されることを
特徴とする半導体装置の製造方法。
13. The method of manufacturing a semiconductor device according to claim 11, wherein the ion implantation is performed by using a contact hole for a source electrode to the source diffusion region as an implantation hole. Manufacturing method.
【請求項14】支持基板から絶縁膜で分離され、且つ互
いに分離された複数の単結晶半導体層の各々にMOS型
電界効果トランジスタが設けられた半導体装置におい
て、 上記トランジスタのソ−ス領域は第一導電型の第一の拡
散層と、該拡散層の少なくとも下部領域に隣接した第一
導電型の低不純物濃度領域と、上記第一の拡散層、及び
上記第一導電型の低不純物濃度領域表面の高融点金属
膜、又は高融点金属珪化膜により構成されることを特徴
とする半導体装置。
14. A semiconductor device in which a MOS field effect transistor is provided in each of a plurality of single crystal semiconductor layers separated from a supporting substrate by an insulating film and separated from each other, wherein a source region of the transistor is a first region. One conductivity type first diffusion layer, a first conductivity type low impurity concentration region adjacent to at least a lower region of the diffusion layer, the first diffusion layer, and the first conductivity type low impurity concentration region A semiconductor device comprising a refractory metal film or a refractory metal silicide film on the surface.
【請求項15】請求項14記載の半導体装置において、
上記トランジスタは同一単結晶半導体層内で複数のMO
S型電界効果トランジスタと直列接続され、且つ該直列
接続のトランジスタのソ−ス領域は第一導電型の第一の
拡散層と上記第一の拡散層表面の高融点金属膜、又は高
融点金属珪化膜によりなることを特徴とする半導体装
置。
15. The semiconductor device according to claim 14, wherein
The transistor has a plurality of MOs in the same single crystal semiconductor layer.
The source region of the transistor connected in series with the S-type field effect transistor is a first conductivity type first diffusion layer and a refractory metal film on the surface of the first diffusion layer, or a refractory metal. A semiconductor device comprising a silicide film.
【請求項16】支持基板から絶縁膜で分離され、且つ互
いに分離された第一群及び第二群の単結晶半導体層を有
し、該第一群の単結晶半導体層には第一導電型のMOS
型電界効果トランジスタが、第二群の単結晶半導体層に
は第二導電型のMOS型電界効果トランジスタが設けら
れた半導体装置において、 上記第一導電型のMOS型電界効果トランジスタのソ−
ス領域は第一導電型の第一の拡散層と、該拡散層の少な
くとも下部領域に隣接した第一導電型の低不純物濃度領
域と、上記第一の拡散層、及び上記第一導電型の低不純
物濃度領域表面の高融点金属膜、又は高融点金属珪化膜
により構成されることを特徴とする半導体装置。
16. A first group and a second group of single crystal semiconductor layers separated from the supporting substrate by an insulating film and separated from each other, wherein the first group of single crystal semiconductor layers have a first conductivity type. MOS
Type field effect transistor, wherein the second conductivity type MOS field effect transistor is provided in the second group of single crystal semiconductor layers, the source of the first conductivity type MOS field effect transistor is
The first region is a first conductivity type first diffusion layer, a first conductivity type low impurity concentration region adjacent to at least a lower region of the diffusion layer, the first diffusion layer, and the first conductivity type A semiconductor device comprising a refractory metal film or a refractory metal silicide film on the surface of a low impurity concentration region.
【請求項17】請求項14乃至16の何れかに記載の半
導体装置において、上記高融点金属膜、又は高融点金属
珪化膜はその一底部領域において第二導電型不純物領域
を介して上記第一導電型の低不純物濃度領域に接続され
て構成されることを特徴とする半導体装置。
17. The semiconductor device according to claim 14, wherein the refractory metal film or the refractory metal silicide film has the first conductivity type impurity region in one bottom region thereof. A semiconductor device characterized by being connected to a conductive type low impurity concentration region.
【請求項18】請求項1乃至5又は14乃至17記載の
半導体装置において、MOS電界効果型トランジスタの
一端のノ−ドに容量素子が接続されて、一単位の記憶装
置を構成することを特徴とする半導体装置。
18. A semiconductor device according to any one of claims 1 to 5 or 14 to 17, wherein a capacitive element is connected to a node at one end of a MOS field effect transistor to form a unit of memory device. Semiconductor device.
【請求項19】請求項1乃至5又は14乃至17の何れ
かに記載の半導体装置における第一のトランジスタと第
二のトランジスタが互いに接続されて一対をなし、二対
で一単位の記憶装置を構成することを特徴とする半導体
装置。
19. A semiconductor device according to any one of claims 1 to 5 or 14 to 17, wherein a first transistor and a second transistor are connected to each other to form a pair, and two pairs form a unit storage device. A semiconductor device having a structure.
【請求項20】請求項1乃至5又は14乃至17の何れ
かに記載の半導体装置により論理回路装置が構成されて
なることを特徴とする半導体装置。
20. A semiconductor device comprising a semiconductor device according to any one of claims 1 to 5 or 14 to 17 as a logic circuit device.
【請求項21】請求項1乃至5又は14乃至17の何れ
かに記載の半導体装置により非同期型伝送モ−ド装置が
構成されてなることを特徴とする半導体装置。
21. A semiconductor device, characterized in that an asynchronous transmission mode device is constituted by the semiconductor device according to any one of claims 1 to 5 or 14 to 17.
【請求項22】請求項1乃至5又は14乃至17の何れ
かに記載の半導体装置によりプロセッサ装置が構成され
てなることを特徴とする半導体装置。
22. A semiconductor device comprising a processor device comprising the semiconductor device according to any one of claims 1 to 5 or 14 to 17.
【請求項23】絶縁膜上に設けられた単結晶半導体層
と、 該半導体層内に互いに離間して設けられ、第1導電型を
有する第1及び第2の不純物ド−プ領域と、該第1及び
第2の不純物ド−プ領域の間の該単結晶半導体層上に設
けられたゲ−ト絶縁膜と、該ゲ−ト絶縁膜上に形成され
たゲ−ト電極とを有する半導体装置おいて、 上記第1の不純物ド−プ領域に接続され、第1導電型を
有し、該第1の不純物ド−プ領域よりも濃度の低い第3
の不純物ド−プ領域と、 主に該第3の不純物ド−プ領域を介して、上記ゲ−ト電
極下部の上記単結晶半導体層に接続され、該ゲ−ト電極
下部の上記単結晶半導体層内で発生する少数キャリアの
発生速度よりも大きな再結合速度を有する再結合領域と
を更に有することを特徴とする半導体装置。
23. A single crystal semiconductor layer provided on an insulating film, first and second impurity doped regions having a first conductivity type and provided in the semiconductor layer so as to be separated from each other, A semiconductor having a gate insulating film provided on the single crystal semiconductor layer between the first and second impurity doped regions, and a gate electrode formed on the gate insulating film. In the device, a third conductive layer that is connected to the first impurity doped region, has a first conductivity type, and has a lower concentration than the first impurity doped region.
Connected to the single crystal semiconductor layer below the gate electrode via the impurity doped region of the gate electrode and mainly through the third impurity doped region, and the single crystal semiconductor below the gate electrode. A recombination region having a recombination rate higher than a generation rate of minority carriers generated in the layer, the semiconductor device further comprising:
【請求項24】絶縁膜上に設けられた単結晶半導体層
と、 該半導体層内に互いに離間して設けられ、第1導電型を
有する第1及び第2の不純物ド−プ領域と、該第1及び
第2の不純物ド−プ領域の間の該単結晶半導体層上に設
けられたゲ−ト絶縁膜と、該ゲ−ト絶縁膜上に形成され
たゲ−ト電極とを有する半導体装置において、 第1導電型を有し、該第1の不純物ド−プ領域よりも濃
度の低い第3の不純物ド−プ領域と、 該第3の不純物ド−プ領域に接して設けられた結晶欠陥
層とを更に有することを特徴とする半導体装置。
24. A single crystal semiconductor layer provided on an insulating film, first and second impurity doped regions having a first conductivity type and provided in the semiconductor layer so as to be separated from each other, A semiconductor having a gate insulating film provided on the single crystal semiconductor layer between the first and second impurity doped regions, and a gate electrode formed on the gate insulating film. In the device, a third impurity doping region having a first conductivity type and having a concentration lower than that of the first impurity doping region is provided, and the third impurity doping region is provided in contact with the third impurity doping region. A semiconductor device further comprising a crystal defect layer.
JP7296472A 1995-11-15 1995-11-15 Semiconductor device and its manufacture Pending JPH09139434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7296472A JPH09139434A (en) 1995-11-15 1995-11-15 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7296472A JPH09139434A (en) 1995-11-15 1995-11-15 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPH09139434A true JPH09139434A (en) 1997-05-27

Family

ID=17834002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7296472A Pending JPH09139434A (en) 1995-11-15 1995-11-15 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH09139434A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999005715A1 (en) * 1997-07-22 1999-02-04 Hitachi, Ltd. Semiconductor device and method of producing the same
US6541348B1 (en) 2001-12-04 2003-04-01 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing method thereof
JP2004163493A (en) * 2002-11-11 2004-06-10 Sanyo Electric Co Ltd Display device
US6770517B2 (en) 1997-06-19 2004-08-03 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
KR100496244B1 (en) * 2002-06-10 2005-06-17 엔이씨 일렉트로닉스 가부시키가이샤 Semiconductor device and method for manufacturing the same
KR100538598B1 (en) * 2001-12-12 2005-12-22 세이코 엡슨 가부시키가이샤 Electrooptical device, method for manufacturing the same, liquid crystal device and projection display device
JP2006203198A (en) * 2005-01-19 2006-08-03 Internatl Business Mach Corp <Ibm> Sram array, sram cell, microprocessor, method, and sram memory (sram memory and microprocessor comprising logic portion realized on high-performance silicon substrate and sram array portion, including field effect transistor having linked body and method for manufacturing them)
JP2012182503A (en) * 2000-08-14 2012-09-20 Semiconductor Energy Lab Co Ltd Semiconductor device
CN113658921A (en) * 2021-08-13 2021-11-16 长鑫存储技术有限公司 Method for manufacturing semiconductor structure and semiconductor structure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6770517B2 (en) 1997-06-19 2004-08-03 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
WO1999005715A1 (en) * 1997-07-22 1999-02-04 Hitachi, Ltd. Semiconductor device and method of producing the same
US6730964B2 (en) 1997-07-22 2004-05-04 Hitachi, Ltd. Semiconductor device and method of producing the same
JP2012182503A (en) * 2000-08-14 2012-09-20 Semiconductor Energy Lab Co Ltd Semiconductor device
US6541348B1 (en) 2001-12-04 2003-04-01 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing method thereof
KR100538598B1 (en) * 2001-12-12 2005-12-22 세이코 엡슨 가부시키가이샤 Electrooptical device, method for manufacturing the same, liquid crystal device and projection display device
KR100496244B1 (en) * 2002-06-10 2005-06-17 엔이씨 일렉트로닉스 가부시키가이샤 Semiconductor device and method for manufacturing the same
JP2004163493A (en) * 2002-11-11 2004-06-10 Sanyo Electric Co Ltd Display device
JP2006203198A (en) * 2005-01-19 2006-08-03 Internatl Business Mach Corp <Ibm> Sram array, sram cell, microprocessor, method, and sram memory (sram memory and microprocessor comprising logic portion realized on high-performance silicon substrate and sram array portion, including field effect transistor having linked body and method for manufacturing them)
CN113658921A (en) * 2021-08-13 2021-11-16 长鑫存储技术有限公司 Method for manufacturing semiconductor structure and semiconductor structure
CN113658921B (en) * 2021-08-13 2023-10-17 长鑫存储技术有限公司 Method for manufacturing semiconductor structure and semiconductor structure

Similar Documents

Publication Publication Date Title
WO1999005715A1 (en) Semiconductor device and method of producing the same
US11211406B2 (en) Semiconductor device and method for controlling semiconductor device
US7189606B2 (en) Method of forming fully-depleted (FD) SOI MOSFET access transistor
JP3260660B2 (en) Semiconductor device and manufacturing method thereof
US8084342B2 (en) Method of manufacturing a CMOS device with zero soft error rate
US4996575A (en) Low leakage silicon-on-insulator CMOS structure and method of making same
US4644386A (en) Integrated circuit employing insulated gate electrostatic induction transistor
WO2007004535A1 (en) Semiconductor device and method for manufacturing same
JP5364108B2 (en) Manufacturing method of semiconductor device
US4997785A (en) Shared gate CMOS transistor
US5693975A (en) Compact P-channel/N-channel transistor structure
JPH05136374A (en) Semiconductor device and its manufacture
JPH09139434A (en) Semiconductor device and its manufacture
JP2005251776A (en) Semiconductor device and its manufacturing method
JP3845272B2 (en) SRAM and manufacturing method thereof
US20030132452A1 (en) Semiconductor device and method of producing the same
JP3980670B2 (en) Semiconductor device
JPH10189959A (en) Semiconductor device
WO1997006564A1 (en) Semiconductor device and method for manufacturing the same
JPH0695528B2 (en) Method for manufacturing semiconductor device
JP2637186B2 (en) Semiconductor device
JP2006066928A (en) Method of manufacturing semiconductor device
JPH10189771A (en) Semiconductor device and fabrication thereof
JP2001036037A (en) Semiconductor device and manufacture of semiconductor device
KR960003863B1 (en) Semiconductor device having buried layer and the manufacturing method thereof

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061003