JPH09139374A - Surface treating method and apparatus and element obtained from them - Google Patents

Surface treating method and apparatus and element obtained from them

Info

Publication number
JPH09139374A
JPH09139374A JP29677695A JP29677695A JPH09139374A JP H09139374 A JPH09139374 A JP H09139374A JP 29677695 A JP29677695 A JP 29677695A JP 29677695 A JP29677695 A JP 29677695A JP H09139374 A JPH09139374 A JP H09139374A
Authority
JP
Japan
Prior art keywords
liquid
pressure
supercritical fluid
predetermined
microstructure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29677695A
Other languages
Japanese (ja)
Inventor
Munehisa Mitsuya
宗久 三矢
Maaku Ratobitsuchi
ラトビッチ・マーク
Yasuo Wada
恭雄 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29677695A priority Critical patent/JPH09139374A/en
Publication of JPH09139374A publication Critical patent/JPH09139374A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micromachines (AREA)
  • Weting (AREA)

Abstract

PROBLEM TO BE SOLVED: To avoid deforming a microstructure in a drying step by dissolving a liq. deposited to the surface of a washed element in a liq. or supercritical fluid of specified compd. in a pressure vessel and lowering the pressure in this vessel held above a critical temp. below a critical pressure to gasify and remove this fluid. SOLUTION: Component elements of a high density integrated circuit to which specified treatment or washing is applied are housed in a housing 2 of a pressure vessel 1 and contacted with a liq. or supercritical fluid entered into the vessel 1 through a pump 14, valve 18 and entrance line 19 from a tank 11 to dissolve the liq. deposited to the surface of the element in the liq. or supercritical fluid of specified compd. While the temp. in the vessel 1 is held above the critical temp. of the specified compd. by a temp. adjuster 7, the pressure is reduced below the critical pressure to gasify and remove the supercritical fluid whereby the elements of a microstructure can be taken out without deformation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は被加工物である固体
基板上への感光性材料の塗布、露光、現像、エッチン
グ、洗浄などの過程を経る素子の表面処理法、処理装置
およびこれによって得られる素子に関し、例えば、加工
形成物の一部あるいはすべての領域が液体中でのエッチ
ングにより被加工物である固体基板から分離せられた微
小構造体、あるいは被加工物である固体基板との接触部
分の面積に比べて固体基板との非接触部分の面積が大き
い微細加工パターンなどの形成に有用であるとともに、
半導体素子の作製過程で問題となる、いわゆるウォータ
マークの防止にも有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface treatment method for an element that undergoes processes such as coating, exposing, developing, etching and cleaning of a photosensitive material on a solid substrate which is a work piece, a treatment apparatus and a method for obtaining the same. Related elements, for example, a microstructure in which a part or all of a region of a processed product is separated from a solid substrate which is a workpiece by etching in a liquid, or a contact with a solid substrate which is a workpiece. It is useful for forming microfabrication patterns etc. where the area of the non-contact part with the solid substrate is large compared to the area of the part
It is also useful for preventing so-called watermark, which is a problem in the manufacturing process of semiconductor devices.

【0002】[0002]

【従来の技術】リソグラフィーによる微小構造体の形成
あるいは半導体素子の製造では、最終的な形成物が支持
基板に接合しているか支持基板から完全に分離せられた
ものであるかにかかわらず、一般に被加工物である固体
基板上への感光性材料の塗布、露光、現像、エッチン
グ、洗浄などの過程を経て、最後に微小構造体周囲に付
着した液体を乾燥、除去することにより完成する。場合
によっては純水で洗浄した後に、これよりも蒸発速度の
大きい他の液体に置換した後に大気中で乾燥させる。
2. Description of the Related Art In the formation of microstructures by lithography or in the manufacture of semiconductor devices, it is common practice to make the final formation, whether bonded to the support substrate or completely separated from the support substrate. The process is performed by applying a photosensitive material onto a solid substrate that is a workpiece, exposing, developing, etching, cleaning, etc., and finally drying and removing the liquid adhering to the periphery of the microstructure. In some cases, after washing with pure water, the liquid is replaced with another liquid having a higher evaporation rate and then dried in the atmosphere.

【0003】[0003]

【発明が解決しようとする課題】目的とするパターン形
成物の全体あるいはその一部が支持基板表面から分離せ
られたものである場合、加工寸法が小さく形状が複雑に
なるに従い、従来の純水やこれを置換した有機溶媒など
の液体の乾燥過程で深刻な障害が現われる。それは、液
体が微細パターンの周囲に付着している段階では設計通
りのパターン形成物が得られているにもかかわらず、乾
燥後には著しい変形や破壊が生じることである。また、
微細パターンの底部がすべて基板表面と結合している場
合であっても、アスペクト比とよばれる微細パターンの
高さと幅の比率が大きい場合にも同様の障害が現われ
る。
When the whole or a part of the target pattern-formed product is separated from the surface of the supporting substrate, as the processing size becomes smaller and the shape becomes more complicated, the conventional pure water is used. Serious obstacles appear during the drying process of liquids such as organic solvents that have replaced it. That is, although the pattern-formed product as designed is obtained at the stage where the liquid is attached to the periphery of the fine pattern, significant deformation or destruction occurs after drying. Also,
Even when the bottoms of the fine patterns are all bonded to the surface of the substrate, the same obstacle appears even when the ratio of the height and width of the fine patterns, which is called the aspect ratio, is large.

【0004】乾燥過程を光学顕微鏡によって詳細に観察
した結果、この変形や破壊は微小構造体を濡らしている
周囲の液体が乾燥して液滴の径が小さくなる際に、この
液滴の表面張力により微小構造体に大きい応力が加わっ
たためであることが明らかとなった。この作用は表面張
力が大きい水の場合に最も顕著であるが、これを置換し
た有機溶媒などの水に比較して表面張力が小さい液体の
場合でも同様の現象が発生する。
As a result of observing the drying process in detail with an optical microscope, this deformation or destruction is caused by the surface tension of the droplets when the surrounding liquid that wets the microstructure is dried and the diameter of the droplets is reduced. It became clear that this is because a large stress was applied to the microstructure. This effect is most prominent in the case of water having a large surface tension, but the same phenomenon occurs in the case of a liquid having a smaller surface tension than water such as an organic solvent that replaces the water.

【0005】かかる課題を克服する一つの手段として凍
結乾燥が考えられるが、液体は一般に凍結時にその体積
が変化する。そのために、凍結時に試料に応力が加わる
ために本質的な解決にはならない。
Freeze-drying is conceivable as one means for overcoming such problems, but the volume of a liquid generally changes during freezing. Therefore, it is not an essential solution because stress is applied to the sample during freezing.

【0006】また、半導体の製造過程では、所定の処理
の乾燥後のシリコンあるいはアルミニゥムの表面に、い
わゆるウォータマークが出来、製品の歩留まり低下の原
因の一つとなっている。
Further, in the process of manufacturing semiconductors, so-called watermarks are formed on the surface of silicon or aluminum after being dried by a predetermined process, which is one of the causes of lowering the yield of products.

【0007】[0007]

【課題を解決するための手段】本発明者らは液体中での
エッチングや洗浄で形成した微小構造体の乾燥過程での
変形や破壊の防止、またウォータマークの発生の防止を
目的として鋭意検討し、本発明を得るに至った。
DISCLOSURE OF THE INVENTION The inventors of the present invention have earnestly studied for the purpose of preventing deformation and destruction of a microstructure formed by etching or washing in a liquid during the drying process and preventing the formation of a watermark. Then, the present invention was obtained.

【0008】本発明者らが注目したのは超臨界流体であ
る。超臨界流体とは、臨界温度および臨界圧力とよばれ
るそれぞれの物質に固有の値以上の温度と圧力のもとで
各物質がとる相の一つであり、この状態では、他の液体
や固体に対する溶解力は該物質の液体状態とほぼ同等で
あるにもかかわらず、その粘度が著しく小さく拡散係数
が極めて大きいという特異な性質を有している。超臨界
流体は周囲の圧力を臨界圧力以下に減ずることにより速
やかにガス化する。
The present inventors have focused their attention on supercritical fluids. A supercritical fluid is one of the phases that each substance takes under a temperature and pressure that are higher than the values unique to each substance called critical temperature and critical pressure.In this state, other liquids and solids Although it has almost the same dissolving power as the liquid state of the substance, it has a peculiar property that its viscosity is extremely small and its diffusion coefficient is extremely large. Supercritical fluid is rapidly gasified by reducing the ambient pressure below the critical pressure.

【0009】溶解力が大きく粘度が小さいという特異な
性質を有する超臨界流体を半導体の微細加工工程での感
光性材料の除去に利用することが特開昭63−1795
30、特開平1−220828、特開平2−20972
9、特開平3−127832などに述べられている。特
に臨界温度が低く取り扱いが容易な二酸化炭素では、地
球環境への影響が小さいという利点のあることが特開平
5−47732に述べられている。
It is possible to utilize a supercritical fluid having a peculiar property of a large dissolving power and a small viscosity for removing a photosensitive material in a semiconductor fine processing step.
30, JP-A-1-220828, JP-A-2-20972
9, JP-A-3-127832 and the like. It is described in JP-A-5-47732 that carbon dioxide, which has a particularly low critical temperature and is easy to handle, has an advantage of having a small effect on the global environment.

【0010】それぞれの超臨界流体の粘度は一般に対応
する液体の100分の1程度以下であることが知られて
いる。これに対して、各超臨界流体の信頼すべき表面張
力の測定値はない。しかしながら、粘度と表面張力の両
者は、いずれも液体や流体を構成する原子や分子間の相
互作用力に起因するものである。従って、粘度が小さい
超臨界流体においては、その表面張力も極めて小さく、
対応する液体の100分の1程度かそれ以下であると本
発明者らは推定した。そのために、これがガス化する過
程で試料に加えられる応力は極めて小さいことが予想さ
れる。以下の実施例で述べる実験事実はこの推定が正し
いことを立証している。
It is known that the viscosity of each supercritical fluid is generally about 1/100 or less of that of the corresponding liquid. In contrast, there are no reliable surface tension measurements for each supercritical fluid. However, both the viscosity and the surface tension are due to the interaction force between the atoms and molecules forming the liquid or fluid. Therefore, in a supercritical fluid with low viscosity, its surface tension is also extremely small,
The inventors have estimated that it is about one hundredth or less than the corresponding liquid. Therefore, it is expected that the stress applied to the sample in the process of gasification thereof is extremely small. Experimental facts set forth in the examples below demonstrate that this assumption is correct.

【0011】本発明においては、微細加工工程のエッチ
ング処理によりその全体や一部を支持基板表面から分離
せしめた微小構造体あるいはアスペクト比の大きい微細
加工パターンを、エッチング液から直接に、あるいは洗
浄用の液体を経由した後に、あるいは後に述べるように
更に別の液体で置換した後に、表面にこれらの液体が付
着した状態で耐圧容器内の超臨界流体に接触させてこれ
らの液体を超臨界流体に溶解させることにより除去す
る。次いで、容器温度を臨界温度以上に保ったまま容器
内部の圧力を臨界圧力以下に減じて該超臨界流体をガス
化して除き、微小構造体を大気中に取り出す。超臨界流
体の表面張力は極めて小さいために、それが微小構造体
表面から除去される際にその表面張力により微小構造体
に与える応力は無視しうる程度である。そのために微小
構造体に変形や破壊が生じることはない。半導体の製造
では、処理中に付着した洗浄液等が効果的に除去され
る。以下、本発明を微細加工により微小構造体を形成す
る例を主体に説明する。
In the present invention, a microstructure or a microfabricated pattern having a large aspect ratio, which is wholly or partially separated from the surface of the supporting substrate by the etching treatment in the microfabrication process, is directly used for cleaning or for cleaning. After passing through the liquid of the above, or after substituting with another liquid as will be described later, these liquids are turned into supercritical fluids by contacting them with the supercritical fluids in the pressure vessel with the liquids attached to the surface. Remove by dissolving. Then, while maintaining the container temperature at or above the critical temperature, the pressure inside the container is reduced to below the critical pressure to gasify and remove the supercritical fluid, and the microstructure is taken out into the atmosphere. Since the surface tension of the supercritical fluid is extremely small, the stress exerted on the microstructure by the surface tension of the supercritical fluid when it is removed from the surface of the microstructure is negligible. Therefore, the microstructure is not deformed or destroyed. In the manufacture of semiconductors, cleaning liquid and the like attached during processing are effectively removed. Hereinafter, the present invention will be described mainly with respect to an example of forming a fine structure by fine processing.

【0012】本発明の特徴は、構成された素子の表面あ
るいは周囲に液体が付着したままの状態で、これを超臨
界流体と接触させることである。液体の蒸発により微小
構造体がいったん乾燥してしまうと、その段階で該微小
構造体に応力が加わり変形や破壊を生じる。そのため
に、超臨界流体を用いた液体の除去前の試料の乾燥を防
止する必要がある。これが、洗浄の目的で超臨界流体を
用いる一連の従来発明と本発明との最大の差異である。
A feature of the present invention is to bring the liquid into contact with the supercritical fluid while the liquid remains attached to the surface or the periphery of the constructed element. Once the microstructure is dried by evaporation of the liquid, stress is applied to the microstructure at that stage, causing deformation or destruction. Therefore, it is necessary to prevent the sample from drying before removing the liquid using the supercritical fluid. This is the greatest difference between the present invention and a series of conventional inventions that use supercritical fluids for cleaning purposes.

【0013】かかる目的のためには微小構造体の周囲に
付着した液体は、その蒸発速度が小さいことが必要であ
り、エチルアルコールやアセトンの如き蒸気圧の高い液
体は不適である。従って、微細加工に用いた感光性有機
化合物の残渣等の除去に上記有機溶媒などを用いた場合
には、かかる操作に引き続いて、これら有機溶媒などを
他の液体に置換するのが有効である。かかる置換に用い
る液体は蒸発速度が小さいことと腐食性や毒性がないこ
とが必須であり、好ましくは、洗浄に用いた液体との相
溶性が高いことである。
For this purpose, the liquid adhering to the periphery of the microstructure must have a low evaporation rate, and liquids with high vapor pressure such as ethyl alcohol and acetone are not suitable. Therefore, when the organic solvent or the like is used to remove the residue of the photosensitive organic compound used for the fine processing, it is effective to replace the organic solvent or the like with another liquid after the operation. . It is essential that the liquid used for such replacement has a low evaporation rate and is not corrosive or toxic, and preferably has high compatibility with the liquid used for cleaning.

【0014】本発明者らの検討により、水はこれらの条
件を満たす最も好ましい化合物の一つであることが明ら
かとなった。従って、液体の選択にあたっては、水と同
等かあるいはこれよりも蒸発速度が小さいこと、即ち室
温での蒸気圧が水と同等かあるいは水より低いことが必
要である。本発明に用いられる水以外の液体としては、
高級アルコール、多価アルコール、炭素数8以上の直鎖
炭化水素などが好ましい。
The studies conducted by the present inventors have revealed that water is one of the most preferable compounds satisfying these conditions. Therefore, when selecting the liquid, it is necessary that the evaporation rate is equal to or lower than that of water, that is, the vapor pressure at room temperature is equal to or lower than that of water. As the liquid other than water used in the present invention,
Higher alcohols, polyhydric alcohols, linear hydrocarbons having 8 or more carbon atoms, and the like are preferable.

【0015】超臨界流体の溶解力は対応する液体とほぼ
同等ではあるが、一般に、液体のほうが溶解力は大き
い。一方、生産工程の効率化のためには、微小構造体の
乾燥に要する時間は短いことが要求される。そのため、
液体が付着した微小構造体を最初に所定化合物の液体に
接触させてこれを除き、しかる後に、耐圧容器内の温度
を上昇させてこの液体を超臨界状態にした後に減圧して
も良い。また溶解力のより大きい液体状態と、粘性が小
さく細かいすき間に入りやすいという超臨界流体の両方
の特性を充分に活かすために、容器内部の温度を臨界温
度の上下に周期的に変動させることも、好ましい方法で
ある。しかしながら重要な点は、耐圧容器内の圧力を減
じてガス化する時は、容器内の温度は必ず超臨界温度を
超えていなくてはならないことである。
Although the dissolving power of a supercritical fluid is almost equal to that of the corresponding liquid, a liquid generally has a larger dissolving power. On the other hand, in order to improve the efficiency of the production process, it is required that the time required for drying the microstructure is short. for that reason,
The microstructure to which the liquid adheres may first be brought into contact with the liquid of the predetermined compound to remove it, and then the temperature in the pressure vessel may be raised to bring the liquid into a supercritical state and then depressurized. It is also possible to periodically change the temperature inside the container above and below the critical temperature in order to take full advantage of the characteristics of both the liquid state, which has a higher dissolving power, and the supercritical fluid, which has a low viscosity and tends to enter small gaps. Is the preferred method. However, the important point is that when the pressure in the pressure resistant vessel is reduced and gasified, the temperature in the vessel must always exceed the supercritical temperature.

【0016】微細加工に用いた感光性有機化合物の残渣
等の非揮発性物質の除去に超臨界流体を利用する場合に
は、洗浄が完了していれば、超臨界流体が液体に変化し
た状態で減圧しても全く構わない。しかしながら微小構
造体の変形防止を目的とした水などの揮発性液体の除去
の場合には、必ず超臨界状態になければならない。その
ため、耐圧容器内の温度は厳密に制御される必要があ
り、本発明による耐圧容器は温度制御機構を有すること
が望ましい。
When a supercritical fluid is used to remove a non-volatile substance such as a residue of a photosensitive organic compound used for microfabrication, if the cleaning is completed, a state in which the supercritical fluid is changed to a liquid It doesn't matter even if the pressure is reduced with. However, in the case of removing a volatile liquid such as water for the purpose of preventing the deformation of the microstructure, it must be in a supercritical state. Therefore, the temperature inside the pressure resistant container needs to be strictly controlled, and the pressure resistant container according to the present invention preferably has a temperature control mechanism.

【0017】微小構造体を濡らした液体を所定化合物の
液体や超臨界流体で置換、除去している際に、洗浄に用
いた微小構造体の表面を濡らしている液体の除去が実質
的に完了したことを知ることが有用である。必要以上の
長時間にわたって所定化合物の液体や超臨界流体を流し
続けることは生産効率の観点から好ましくない。また乾
燥が不十分な状態で大気中に取り出すと、試料の非可逆
な変形を招き、これを再び超臨界流体中に戻しても、も
との形状には復帰しないからである。そのために、耐圧
容器から排出される液体や超臨界流体中の除去すべき液
体の濃度を実時間で測定することが好ましい。濃度の測
定には所定波長の光の吸収率や誘電率変化、あるいは質
量分析法などが用いられるが、かかる濃度の測定手段の
選定は、本発明の内容を制約するものでは無い。
When the liquid that wets the microstructure is replaced or removed by the liquid of a predetermined compound or supercritical fluid, the removal of the liquid that wets the surface of the microstructure used for cleaning is substantially completed. It is useful to know what you have done. It is not preferable from the viewpoint of production efficiency to keep the liquid of the predetermined compound or the supercritical fluid flowing for a longer time than necessary. Further, if taken out into the atmosphere in an insufficiently dried state, irreversible deformation of the sample is caused, and even if it is returned to the supercritical fluid, the original shape is not restored. Therefore, it is preferable to measure the concentration of the liquid discharged from the pressure vessel or the liquid to be removed in the supercritical fluid in real time. For measuring the concentration, absorptance of light of a predetermined wavelength, a change in dielectric constant, mass spectrometry, or the like is used, but the selection of such concentration measuring means does not limit the content of the present invention.

【0018】本発明による除去の対象となるのは、微小
構造体の隙間に液滴として凝縮、あるいは物理的に吸着
している液体である。固体の表面に単分子層として化学
吸着している極めて微量の液体は本方法による除去は困
難である反面、これが残っていたとしても応力による変
形や破壊は生じない。また、これはウォータマークの原
因とは考えられない。従って、本発明における除去すべ
き液体の濃度の測定には上記いずれかの方法で充分であ
る。即ち、除去すべき液体の濃度が検出限界以下に達し
た段階で微小構造体の乾燥は終了するため、それを大気
中に取り出した後での変形や破壊は起こらない。微小構
造体の表面に化学吸着している液体の除去が必要なら
ば、真空中での加熱などの他の方法を採用することは言
うまでもない。
The liquid to be removed according to the present invention is a liquid that is condensed or physically adsorbed in the gaps of the microstructure as droplets. An extremely small amount of liquid that is chemically adsorbed as a monolayer on the surface of a solid is difficult to remove by this method, but even if it remains, it does not deform or break due to stress. Also, this is unlikely to be the cause of the watermark. Therefore, any of the above methods is sufficient for measuring the concentration of the liquid to be removed in the present invention. That is, since the drying of the microstructure ends when the concentration of the liquid to be removed reaches the detection limit or less, the microstructure is not deformed or destroyed after being taken out into the atmosphere. If it is necessary to remove the liquid chemically adsorbed on the surface of the microstructure, it goes without saying that another method such as heating in vacuum is adopted.

【0019】超臨界流体としては、二酸化炭素、アンモ
ニア、水、アルコール類、低分子量の脂肪族飽和炭化水
素類、ベンゼン、ジエチルエーテルなど超臨界状態とな
ることが確認されている多くの物質を利用することがで
きる。これらの中で超臨界温度が31.3℃と室温に近
い二酸化炭素は、取り扱いが容易であること及び試料が
高温にならないですむという理由から、好ましい物質の
一つである。また洗浄で用いた水との相溶性が大きく、
これを溶解しやすいアルコール類も好ましい物質の一つ
である。洗浄工程で用いた水を超臨界状態にして用いる
こともできる。
As the supercritical fluid, many substances such as carbon dioxide, ammonia, water, alcohols, low molecular weight saturated aliphatic hydrocarbons, benzene, diethyl ether, etc., which have been confirmed to be in a supercritical state, are used. can do. Among these, carbon dioxide having a supercritical temperature of 31.3 ° C., which is close to room temperature, is one of the preferable substances because it is easy to handle and the sample does not need to be at a high temperature. In addition, the compatibility with the water used for washing is great,
Alcohols that easily dissolve this are also preferable substances. The water used in the washing step can also be used in a supercritical state.

【0020】本発明を図1に示した純物質の状態図を用
いて説明する。図1において横軸は温度であり縦軸は圧
力である。固体と液体は三重点aを通る融解曲線a−b
で分けられ、液体と気体は三重点aと臨界点cを通る蒸
発曲線a−cで分けられる。超臨界状態は温度と圧力が
それぞれ臨界温度Tcと臨界圧力Tpを超える線d−c
−eで囲まれる領域で存在する。二酸化炭素の場合に
は、臨界温度は31.3℃、臨界圧力は72.9気圧で
あり、そこでの密度は0.45g/mlである。
The present invention will be described with reference to the phase diagram of the pure substance shown in FIG. In FIG. 1, the horizontal axis represents temperature and the vertical axis represents pressure. Solid and liquid are melting curves ab passing through triple point a
The liquid and the gas are separated by an evaporation curve a-c that passes through the triple point a and the critical point c. In the supercritical state, a line dc in which the temperature and the pressure exceed the critical temperature Tc and the critical pressure Tp, respectively.
It exists in the area surrounded by -e. In the case of carbon dioxide, the critical temperature is 31.3 ° C and the critical pressure is 72.9 atm, where the density is 0.45 g / ml.

【0021】微小構造体に付着している液体を除去して
いる段階では、耐圧容器内部は図中の点Aか点Bのいず
れであっても良いが、処理終了後は必ず点Bから線c−
e上の一点を経由して気体状態に入った後に、室温で1
気圧に相当する点Cに到達させられねばならない。容器
内部の温度が低下した状態で減圧して蒸発曲線a−cを
経由すると、そこでは液体と気体が共存し、試料の変形
を招く。微細加工に用いた感光性有機化合物の残渣等の
除去のみを目的として超臨界流体を使用する場合には、
蒸発曲線a−cを経由しても何ら支障は無い。実際、耐
圧容器の外部で温度調節した超臨界流体を耐圧容器内に
導入しただけでは、その段階での断熱膨張や耐圧容器か
らの熱の放射により容器内の温度は臨界温度より低くな
る場合がある。そのため、本発明の目的には、耐圧容器
を温度制御することが好ましい。
At the stage of removing the liquid adhering to the microstructure, the inside of the pressure resistant container may be either point A or point B in the figure, but after the processing is completed, the line from point B must be drawn. c-
After entering the gaseous state via one point on e, 1 at room temperature
It has to be reached to point C, which corresponds to atmospheric pressure. When the pressure inside the container is reduced and the pressure is reduced through the evaporation curves ac, the liquid and the gas coexist there, and the sample is deformed. When using a supercritical fluid for the purpose of only removing the residues of photosensitive organic compounds used for microfabrication,
There is no problem even if it goes through the evaporation curves ac. In fact, simply introducing a supercritical fluid whose temperature is adjusted outside the pressure vessel into the pressure vessel may cause the temperature inside the vessel to become lower than the critical temperature due to adiabatic expansion and radiation of heat from the pressure vessel at that stage. is there. Therefore, for the purpose of the present invention, it is preferable to control the temperature of the pressure resistant container.

【0022】図2に示すのは、本発明による処理システ
ムの主要部としての乾燥装置の概略図である。耐圧容器
は試料である微小構造体の交換のために上方の開口が可
能な容器本体1と本容器内の微小構造体の収容部2、お
よび容器の開口部を気密に封止する圧力容器蓋3とから
なり、試料収容部2は底がメッシュ状になっている。容
器本体1には圧力計4と温度計5が接続されており、容
器本体1はフィードバック回路6を通して温調器7によ
り温度制御される。超臨界流体はタンク11より流量計
13とポンプ14と通して熱交換器16に送られる。1
2はバルブであり、15は逆流防止弁である。所定の温
度に制御された超臨界流体はバルブ18と導入ライン1
9を通して容器本体に送られる。17は圧力調整器であ
る。水などの不純物を含んだ超臨界流体は排出ライン2
1と濃度計22、フィルター23を経由した後に、熱交
換器25で溶解物を析出させてから、循環ライン27を
通って再利用されるが、必要に応じて排気用バルブ24
を通して大気中に放出される場合もある。排気用バルブ
は濃度計22とフィルター23の間に設置してもよい。
26は逆流防止弁である。本図には示していないが、供
給の際に生じる脈流により試料の破損が懸念される場合
には、途中にパルス緩衝器を設けることも有効である。
FIG. 2 is a schematic view of a drying device as a main part of the processing system according to the present invention. The pressure-resistant container is a container body 1 that can be opened upward for exchanging a microstructure that is a sample, a container 2 for the microstructure in the container, and a pressure container lid that hermetically seals the opening of the container. 3 and the sample container 2 has a mesh-shaped bottom. A pressure gauge 4 and a thermometer 5 are connected to the container body 1, and the temperature of the container body 1 is controlled by a temperature controller 7 through a feedback circuit 6. The supercritical fluid is sent from the tank 11 to the heat exchanger 16 through the flowmeter 13 and the pump 14. 1
2 is a valve and 15 is a check valve. The supercritical fluid, which is controlled to a predetermined temperature, has a valve 18 and an introduction line 1.
9 to the container body. Reference numeral 17 is a pressure regulator. Supercritical fluid containing impurities such as water is drain line 2
After passing through 1, the densitometer 22 and the filter 23, the heat exchanger 25 deposits a dissolved substance and then reuses it through the circulation line 27. If necessary, the exhaust valve 24
May be released into the atmosphere through. The exhaust valve may be installed between the densitometer 22 and the filter 23.
Reference numeral 26 is a check valve. Although not shown in the figure, it is also effective to provide a pulse buffer on the way when the sample may be damaged by the pulsating flow generated during the supply.

【0023】本発明による超臨界流体を利用した乾燥方
法の対象となるのは、微細パターンの支持固体基板側の
一部が該支持固体基板から分離せられている微小構造体
であり、あるいは支持固体基板からの分離部がなくても
アスペクト比とよばれるパターンの高さと幅の比率が大
きい微小構造体である。前者はマイクロマシンとよばれ
る微小な駆動部品となり、後者は高密度集積回路の構成
要素として不可欠なものである。特に後者においては、
エッチング工程を経て形成される微細パターンが基板表
面に凸部として存在する従来の微細加工形成物だけでな
く、互いに近接した深い溝部分を有する微細加工形成物
も含まれる。かかる構造の具体例は、例えば、記憶容量
256キロビットのダイナミックランダムアクセスメモ
リが1995年に開催された シンポジウム オン V
LSI テクノロジー の予稿集15から16ページに
記載されている。
The target of the drying method using the supercritical fluid according to the present invention is a microstructure in which a part of the supporting solid substrate side of the fine pattern is separated from the supporting solid substrate, or Even if there is no separation part from the solid substrate, it is a microstructure having a large ratio of pattern height to width called an aspect ratio. The former is a minute driving component called a micromachine, and the latter is an indispensable component of a high-density integrated circuit. Especially in the latter,
This includes not only conventional microfabrication products in which a fine pattern formed through an etching process exists as convex portions on the substrate surface, but also microfabrication products having deep groove portions close to each other. A specific example of such a structure is, for example, Symposium on V in which a dynamic random access memory with a storage capacity of 256 kilobits was held in 1995.
See pages 15 to 16 of the proceedings of LSI Technology.

【0024】液体の表面張力による変形や破壊に関連す
るのは、構成材料の曲げ強さとよばれる特性である。微
細加工の対象となる主な材料については、この値は概ね
10Kgf/mmの領域にある。実際に、従来方法によ
る乾燥時の変形の有無は被加工物である固体基板の材質
ではなく、主に微細加工領域の寸法に依存する。より具
体的には、アスペクト比とよばれる微小部の幅に対する
高さの比ではなく、微小部の幅の二乗に対する高さの比
がある値を超えると乾燥時の変形が顕著になることが明
らかになった。本発明はこれらの試料の乾燥に用いられ
る。
Related to the deformation and breakage of the liquid due to surface tension is a property called bending strength of the constituent materials. For the main materials to be microfabricated, this value is in the region of approximately 10 Kgf / mm. Actually, the presence or absence of deformation during drying by the conventional method mainly depends on the size of the microfabrication region, not on the material of the solid substrate which is the workpiece. More specifically, not the ratio of the height to the width of the minute portion, which is called the aspect ratio, but the ratio of the height to the square of the width of the minute portion exceeds a certain value, the deformation during drying becomes remarkable. It was revealed. The present invention is used to dry these samples.

【0025】基板表面の上部に凸に形成された微細パタ
ーンの場合、微小部の幅の二乗に対する高さの比が25
を超えると、従来の乾燥方法によっては変形する可能性
が著しく高くなった。また微小部の幅がこれよりもわず
かに大きい場合でも、隣りあった二つの微小部分間の距
離が小さいと変形しやすい。また別の場合として、基板
表面に近接して複数の細くて深い溝を形成する場合に
も、溝間の距離の二乗に対する溝の深さの比率が25以
上になると変形が顕著になる。これらのいずれの試料形
態においても、本発明によれば微小構造部を変形させる
ことなく乾燥させることが可能となった。なお、以上の
説明において、長さの単位はいずれもミクロンメートル
である。
In the case of a fine pattern convexly formed on the upper surface of the substrate, the ratio of the height to the square of the width of the fine portion is 25.
If it exceeds, the possibility of deformation is significantly increased by the conventional drying method. Further, even if the width of the minute portion is slightly larger than this, if the distance between two adjacent minute portions is small, it is easily deformed. In another case, when a plurality of thin and deep grooves are formed near the substrate surface, the deformation becomes remarkable when the ratio of the groove depth to the square of the distance between the grooves is 25 or more. In any of these sample forms, according to the present invention, it becomes possible to dry the microstructure portion without deforming it. In the above description, the unit of length is micrometer.

【0026】本発明はリソグラフィー技術以外の方法で
形成された人工的微小構造体、あるいは自然界に存在す
る微小構造体の乾燥過程にも応用することができる。た
とえばホイスカーあるいはひげ結晶とよばれる針状単結
晶は蒸気相からの凝縮だけでなく溶液からの析出によっ
ても形成される。その太さは小さいものでは数ナノメー
トルであり、長さは数センチメートルに達するものもあ
る。ホイスカー自身は理想的に完全に近い結晶であり非
常に大きい強度を有している。しかし、それが成長する
固体表面との境界では、格子の不整合や欠陥により必ず
しも充分な強度を有していない。そのため、かかるホイ
スカーはそれが成長した溶液から取り出す時に、その根
元で破損する場合がある。本発明はこのような針状結晶
の乾燥過程にも有効である。また人工あるいは天然繊維
は長さが幅に比べて無限と言えるほどに長い固体であ
る。その密度や集合状態が繊維としての特性を支配する
が、洗浄や液体中での表面処理後の乾燥過程での繊維の
凝集を防ぐためにも本発明は有効である。また多孔質体
の乾燥にも本発明は効力を発揮する。
The present invention can also be applied to a process of drying an artificial microstructure formed by a method other than the lithography technique or a microstructure existing in nature. For example, needle-shaped single crystals called whiskers or whiskers are formed not only by condensation from the vapor phase but also by precipitation from solution. Its small thickness is a few nanometers, and its length can reach a few centimeters. The whiskers themselves are ideally near-perfect crystals with very high strength. However, at the boundary with the solid surface on which it grows, it does not always have sufficient strength due to lattice mismatch and defects. Therefore, such whiskers may break at their roots when removed from the solution in which they were grown. The present invention is also effective in the process of drying such needle crystals. In addition, artificial or natural fiber is a solid whose length is infinite compared to its width. The density and the aggregated state dominate the characteristics of the fiber, but the present invention is also effective for preventing aggregation of the fiber in the drying process after washing or surface treatment in a liquid. The present invention is also effective for drying the porous body.

【0027】本発明においては微小構造体の表面に付着
した液体を超臨界流体に溶解除去した後にこれをガス化
して除く。超臨界流体は表面張力が小さいために、その
ガス化の過程での微小構造体の変形や破壊は生じ得な
い。
In the present invention, the liquid adhering to the surface of the microstructure is dissolved and removed in the supercritical fluid and then gasified and removed. Since the surface tension of the supercritical fluid is small, the microstructure cannot be deformed or destroyed during the gasification process.

【0028】[0028]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施例1 以下の工程により、図3に平面図を示すコの字型のパタ
ーン形成物を形成した。材料は表面を窒化シリコンで被
覆した非晶質シリコンであり厚さは2ミクロンメートル
である。まずシリコンウエハの表面に0.1ミクロンメ
ートルの厚さに窒化シリコンを、次いで厚さ2ミクロン
メートルに非晶質シリコンを堆積させた。次いでリソグ
ラフィにより非晶質シリコン層をコの字型に残した。こ
の表面に再び0.1ミクロンメートルの厚さに窒化シリ
コンを堆積させた。この段階でコの字型の非晶質シリコ
ン層はその上下と側面を窒化シリコンで覆われている。
次いで再びリソグラフィによりコの字型の非晶質シリコ
ン層を覆っている以外の窒化シリコンを除去した。この
ウエハを水酸化カリウム水溶液に浸すことによりシリコ
ンウエハを溶解させ、窒化シリコンで覆われたコの字型
の微小形成物が分離される。水酸化カリウム水溶液を純
水に置換した後に、容器ごと微小形成物を図2に示した
耐圧容器に移した。ここに超臨界状態の二酸化炭素を連
続的に供給し、排出される超臨界二酸化炭素内から水が
検出されなくなってから減圧し、パターン形成物を乾燥
した状態で取り出した。かかるパターン形成物が設計通
りのサイズと形状を有し、何ら変形や破壊を受けていな
いことを光学顕微鏡で確認した。水で洗浄した後に大気
中で自然乾燥させた同一仕様のパターン形成物では、変
形によりコの字型の両端が密着していた。
Example 1 A U-shaped pattern formed product whose plan view is shown in FIG. 3 was formed by the following steps. The material is amorphous silicon whose surface is coated with silicon nitride and has a thickness of 2 μm. First, silicon nitride was deposited to a thickness of 0.1 μm on the surface of a silicon wafer, and then amorphous silicon was deposited to a thickness of 2 μm. Then, the amorphous silicon layer was left in a U shape by lithography. Silicon nitride was again deposited on this surface to a thickness of 0.1 micrometer. At this stage, the U-shaped amorphous silicon layer has its upper and lower sides and side surfaces covered with silicon nitride.
Next, the silicon nitride other than that covering the U-shaped amorphous silicon layer was removed again by lithography. The silicon wafer is dissolved by immersing the wafer in an aqueous solution of potassium hydroxide, and the U-shaped minute formations covered with silicon nitride are separated. After replacing the potassium hydroxide aqueous solution with pure water, the micro-formed product was transferred together with the container to the pressure resistant container shown in FIG. Carbon dioxide in a supercritical state was continuously supplied thereto, and pressure was reduced after water was no longer detected in the discharged supercritical carbon dioxide, and the pattern formed product was taken out in a dried state. It was confirmed with an optical microscope that the pattern-formed product had a size and shape as designed and was not deformed or destroyed at all. In the pattern-formed product having the same specifications, which was washed with water and then naturally dried in the atmosphere, both ends of the U-shape were adhered due to deformation.

【0029】実施例2 実施例1と同様の工程により、シリコンウエハの表面に
周囲を窒化シリコン層で覆われた非晶質シリコンからな
る図4(a)のパターンを形成した。その厚さは2ミク
ロンメートルである。次いで、このシリコンウエハを水
酸化カリウム水溶液に浸すことによりシリコンウエハを
徐々に溶解させた。図4(a)のパターンの中で幅の狭
い部分の下側のシリコンが除去された段階で、アルカリ
水溶液から純水に移して洗浄した。次いで、このシリコ
ンウエハを耐圧容器の試料収容部に移し、これが乾燥す
る前に速やかに超臨界状態の二酸化炭素を供給した。排
出される超臨界二酸化炭素内から水が検出されなくなっ
てから減圧し、パターン形成物を乾燥した状態で取り出
した。走査型電子顕微鏡観察により、その断面が図4
(b)であることを確認した。図4(b)において、3
1は非晶質シリコン、32は窒化シリコン、33はシリ
コン基板である。本パターンの中の幅の広い部分ではそ
の下側のシリコン層が残っており、本パターンの幅の狭
い部分のみがシリコン基板から分離されている。水で洗
浄した後に大気中で自然乾燥させた同一仕様のパターン
形成物では、幅の狭い部分が折れて基板表面に密着して
いた。
Example 2 By the same process as in Example 1, a pattern of FIG. 4A made of amorphous silicon whose periphery was covered with a silicon nitride layer was formed on the surface of the silicon wafer. Its thickness is 2 microns. Then, the silicon wafer was gradually dissolved by immersing the silicon wafer in an aqueous solution of potassium hydroxide. When the silicon on the lower side of the narrow portion in the pattern of FIG. 4A was removed, the alkaline aqueous solution was transferred to pure water for cleaning. Next, this silicon wafer was transferred to a sample storage part of a pressure resistant container, and carbon dioxide in a supercritical state was promptly supplied before it was dried. After water was no longer detected in the discharged supercritical carbon dioxide, the pressure was reduced and the pattern-formed product was taken out in a dry state. The cross-section is shown in Fig. 4 by scanning electron microscope observation.
It was confirmed that it was (b). In FIG. 4B, 3
Reference numeral 1 is amorphous silicon, 32 is silicon nitride, and 33 is a silicon substrate. In the wide portion of the main pattern, the silicon layer below the silicon layer remains, and only the narrow portion of the main pattern is separated from the silicon substrate. In the pattern-formed product having the same specifications, which was naturally dried in the air after being washed with water, the narrow portion was broken and adhered to the substrate surface.

【0030】実施例3 両面を鏡面研磨したシリコンウエハの片面に膜厚0.1
ミクロンメートルの窒化シリコンと膜厚2ミクロンメー
トルの非晶質シリコンを順次堆積させた。次いでリソグ
ラフィにより非晶質シリコン/窒化シリコン層を幅5ミ
クロンメートル、長さ15ミクロンメートルの長方形に
残して他の部分を除去した。次に低圧気相合成法により
シリコンウエハの両面に膜厚0.1ミクロンメートルの
窒化シリコンを堆積させた後、リソグラフィにより図5
(a)に示す断面図の如くのパターンを形成した。この
シリコンウエハを水酸化カリウム水溶液により裏側から
エッチングした後に水洗した。ついでこれを1−ブタノ
ールに浸した後、超臨界状態の二酸化炭素を用いて実施
例2と同様の方法で乾燥させた。光学顕微鏡観察によ
り、図5(b)の構造が得られていることを確認した。
即ち、裏側の窒化シリコン層が除去された領域からシリ
コンウエハのエッチングが局所的に進行した結果、上面
の長方形の非晶質シリコン層がその一部がシリコンウエ
ハに固定された状態で残っている。水で洗浄した後に大
気中で自然乾燥させた同一仕様のパターン形成物では、
パターン部分が折れてシリコンウエハ側面のエッチング
された部分に付着していた。
Example 3 A silicon wafer whose both surfaces are mirror-polished has a film thickness of 0.1 on one surface.
Micron-meter silicon nitride and amorphous silicon with a film thickness of 2 micrometers were sequentially deposited. Lithographically, the amorphous silicon / silicon nitride layer was left in a rectangle having a width of 5 μm and a length of 15 μm, and the other portion was removed. Next, silicon nitride having a film thickness of 0.1 μm is deposited on both surfaces of the silicon wafer by the low pressure vapor phase synthesis method, and then the silicon nitride film is formed by lithography as shown in FIG.
A pattern as shown in the sectional view of FIG. This silicon wafer was etched from the back side with an aqueous solution of potassium hydroxide and then washed with water. Then, this was soaked in 1-butanol and dried in the same manner as in Example 2 using carbon dioxide in a supercritical state. It was confirmed by observation with an optical microscope that the structure shown in FIG. 5B was obtained.
That is, as a result of locally progressing the etching of the silicon wafer from the region where the silicon nitride layer on the back side is removed, the rectangular amorphous silicon layer on the upper surface remains with a part thereof fixed to the silicon wafer. . With a pattern-formed product of the same specification that was naturally dried in the air after being washed with water,
The pattern portion was broken and adhered to the etched portion on the side surface of the silicon wafer.

【0031】実施例4 電子線描画により、直径200mmのシリコンウエハ上
に線幅0.4ミクロンメートル、間隔0.3ミクロンメ
ートルの電子線レジスト等よりなる有機物層を設けた。
反応性イオンエッチングによりこのウエハ上の有機物層
で覆われていない部分を2ミクロンメートルの深さにエ
ッチングし、さらに酸素プラズマで有機物層を除去し
た。次いで、オゾン/硫酸水溶液、純水、希釈したフッ
酸、純水で順次洗浄した後に、このウエハを全面が水で
濡れた状態のまま図2に示した耐圧容器に移した。容器
温度を27℃に保ち、同じ温度の液体二酸化炭素を循環
供給した。この間、液体二酸化炭素は別の容器内で減圧
して溶解した水を析出させた後に再使用した。最後に容
器温度を40℃に上げた後に減圧してシリコンウエハを
取り出した。光学顕微鏡観察により、ウエハ上には変形
したパターンの無いことを確認した。水で洗浄した後に
大気中で自然乾燥させた、あるいは回転による強制乾燥
をした同一形状のシリコンウエハ上では変形個所が見つ
かった。
Example 4 An organic material layer made of an electron beam resist or the like having a line width of 0.4 μm and an interval of 0.3 μm was provided on a silicon wafer having a diameter of 200 mm by electron beam drawing.
A portion of the wafer not covered with the organic layer was etched to a depth of 2 μm by reactive ion etching, and the organic layer was removed by oxygen plasma. Then, after sequentially washing with an ozone / sulfuric acid aqueous solution, pure water, diluted hydrofluoric acid, and pure water, this wafer was transferred to the pressure vessel shown in FIG. 2 while the entire surface was wet with water. The container temperature was kept at 27 ° C., and liquid carbon dioxide at the same temperature was circulated and supplied. During this period, liquid carbon dioxide was decompressed in another container to precipitate dissolved water, and then reused. Finally, the container temperature was raised to 40 ° C., the pressure was reduced, and the silicon wafer was taken out. It was confirmed by an optical microscope observation that there was no deformed pattern on the wafer. Deformation points were found on silicon wafers of the same shape that were naturally dried in the air after being washed with water or forcedly dried by rotation.

【0032】実施例5 位相シフトマスクを用いた紫外線リソグラフィーと反応
性イオンエッチングによりシリコンウエハ上に線幅0.
6ミクロンメートル、深さ20ミクロンメートルの溝を
間隔0.6ミクロンメートルで形成した。次いで、これ
を薄いフッ硝酸、純水、薄いフッ酸に順次浸し、最後に
純水で充分に洗浄した。以下、実施例1と同様に乾燥さ
せた。大気中に取り出した試料を割って得た側面を走査
型電子顕微鏡観察した結果、欠陥のないことが明らかと
なった。大気中で自然乾燥させた同一仕様のシリコンウ
エハ上では変形個所が見つかった。また同じ深さを有す
る各辺の長さが0.3ミクロンメートルと0.6ミクロ
ンメートルの穴を間隔0.6ミクロンメートルで形成し
た場合にも同様の結果が得られた。
Example 5 A line width of 0..0 was formed on a silicon wafer by ultraviolet lithography using a phase shift mask and reactive ion etching.
Grooves having a depth of 6 μm and a depth of 20 μm were formed at intervals of 0.6 μm. Next, this was sequentially immersed in thin hydrofluoric nitric acid, pure water, and thin hydrofluoric acid, and finally thoroughly washed with pure water. Thereafter, it was dried in the same manner as in Example 1. As a result of observing the side surface obtained by breaking the sample taken out into the air with a scanning electron microscope, it became clear that there was no defect. Deformation points were found on silicon wafers of the same specifications that were naturally dried in the atmosphere. Similar results were obtained when holes having the same depth and having sides of 0.3 μm and 0.6 μm were formed at intervals of 0.6 μm.

【0033】以上いずれも、微小構造体の変形防止を主
体に説明したが、本実施例のいずれの例でも、ウォータ
マークが見られなかったことは言うまでもない。
In all of the above, the prevention of deformation of the microstructure was mainly described, but it goes without saying that no watermark was observed in any of the examples.

【0034】[0034]

【発明の効果】本発明によれば、微小構造体の表面に付
着した液滴を表面張力の小さい超臨界流体に置換した後
に乾燥させるために、微小構造体を変形や破壊させるこ
となく大気中に取り出すことができる。
According to the present invention, since the droplets attached to the surface of the microstructure are replaced with the supercritical fluid having a small surface tension and then dried, the microstructure is not deformed or destroyed in the atmosphere. Can be taken out.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理説明を説明するための純物質の状
態図を示す図。
FIG. 1 is a diagram showing a state diagram of a pure substance for explaining the principle of the present invention.

【図2】本発明による処理システムの主要部の概略図を
示す図。
FIG. 2 is a diagram showing a schematic view of a main part of a processing system according to the present invention.

【図3】実施例1において作成した微小パターンの平面
図を示す図。
FIG. 3 is a diagram showing a plan view of a minute pattern created in Example 1;

【図4】(a)は実施例2において作成した微小パター
ンの平面図、(b)は断面図。
4A is a plan view of a minute pattern created in Example 2, and FIG. 4B is a sectional view.

【図5】(a)は実施例3において作成したエッチング
前のシリコンウエハの断面図、(b)はアルカリ溶液で
のエッチング後の断面図。
5A is a cross-sectional view of a silicon wafer before etching formed in Example 3, and FIG. 5B is a cross-sectional view after etching with an alkaline solution.

【符号の説明】[Explanation of symbols]

1…容器本体、2…微小構造体の収容部、3…圧力容器
蓋、4…圧力計、5…温度計、6…フィードバック回
路、7…温度調節器、11…タンク、12…バルブ13
…流量計、14…ポンプ、15…逆流防止弁、16…熱
交換器、17…圧力調整器、18…バルブ、19…導入
ライン、21…排出ライン、22…濃度計、23…フィ
ルター、24…排気用バルブ、25…熱交換器、26…
逆流防止弁、27…循環ライン、31…非晶質シリコ
ン、32…窒化シリコン、33…シリコン基板。
DESCRIPTION OF SYMBOLS 1 ... Container main body, 2 ... Micro structure accommodating part, 3 ... Pressure container lid, 4 ... Pressure gauge, 5 ... Thermometer, 6 ... Feedback circuit, 7 ... Temperature controller, 11 ... Tank, 12 ... Valve 13
... Flowmeter, 14 ... Pump, 15 ... Backflow prevention valve, 16 ... Heat exchanger, 17 ... Pressure regulator, 18 ... Valve, 19 ... Introduction line, 21 ... Discharge line, 22 ... Concentration meter, 23 ... Filter, 24 ... Exhaust valve, 25 ... Heat exchanger, 26 ...
Check valve, 27 ... Circulation line, 31 ... Amorphous silicon, 32 ... Silicon nitride, 33 ... Silicon substrate.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】被処理対象に対する所定の処理過程を経て
形成される素子の表面処理方法において、該所定の処理
あるいは洗浄処理が施こされた素子を、該所定の処理や
洗浄に用いた液体が付着した状態で耐圧容器内において
液体あるいは超臨界流体状態の所定化合物と接触させて
素子表面に付着した液体を所定化合物の液体あるいは超
臨界流体に溶解せしめ、次いで耐圧容器内の温度を所定
化合物の臨界温度以上に保った状態で圧力を臨界圧力以
下に低下せしめて該超臨界流体をガス化して取り除くこ
とを特徴とする表面処理方法。
1. A surface treatment method for an element formed through a predetermined treatment process on an object to be treated, wherein a liquid which has been subjected to the predetermined treatment or cleaning is an element which has been subjected to the predetermined treatment or cleaning treatment. While adhering to the liquid, the liquid adhering to the device surface is dissolved in the liquid or supercritical fluid of the predetermined compound by contacting with the predetermined compound in the liquid or supercritical fluid state in the pressure resistant container, and then the temperature in the pressure resistant container is set to the predetermined compound. The surface treatment method is characterized in that the supercritical fluid is gasified and removed by lowering the pressure to the critical pressure or lower while maintaining the temperature above the critical temperature.
【請求項2】前記所定の処理や洗浄により素子の周囲に
付着した液体を、水あるいは室温での蒸気圧が水よりも
低い他の液体に置換した後に、耐圧容器内において液体
あるいは超臨界流体状態の所定化合物と接触させる請求
項1記載の表面処理方法。
2. A liquid or a supercritical fluid in a pressure resistant container after the liquid adhered to the periphery of the element by the predetermined treatment or cleaning is replaced with water or another liquid having a vapor pressure at room temperature lower than that of water. The surface treatment method according to claim 1, wherein the surface treatment method is brought into contact with a predetermined compound in a state.
【請求項3】被処理対象に対する所定の処理過程を経て
素子を形成すること、該所定の処理あるいは洗浄処理が
施こされた該素子をそのために用いた液体が付着した状
態で耐圧容器内に搬入すること、該耐圧容器内に液体あ
るいは超臨界流体状態の所定化合物を導入して素子表面
に付着した液体を所定化合物の液体あるいは超臨界流体
に溶解せしめること、該耐圧容器内の液体あるいは超臨
界流体状態の所定化合物を連続的または間歇的に更新す
ること、該更新の際耐圧容器から出てくる液体あるいは
超臨界流体状態の所定化合物中の除去すべき液体化合物
の濃度を検出すること、該濃度が所定値以下になった後
耐圧容器内の温度を所定化合物の臨界温度以上に保った
状態で圧力を臨界圧力以下に低下せしめて該超臨界流体
をガス化して取り除くこととよりなることを特徴とする
表面処理方法。
3. An element is formed through a predetermined treatment process on an object to be treated, and the element subjected to the predetermined treatment or cleaning treatment is placed in a pressure resistant container in a state in which a liquid used therefor is attached. Carrying in, introducing a predetermined compound in a liquid or supercritical fluid state into the pressure vessel to dissolve the liquid adhering to the device surface in the liquid or supercritical fluid of the predetermined compound, the liquid in the pressure vessel or the supercritical fluid Continuously or intermittently updating a predetermined compound in a critical fluid state, detecting the concentration of a liquid compound to be removed in a liquid or a predetermined compound in a supercritical fluid state that comes out of a pressure resistant container during the updating, After the concentration becomes equal to or lower than a predetermined value, the pressure in the pressure vessel is kept at the critical temperature of the predetermined compound or higher, and the pressure is lowered to the critical pressure or lower to gasify the supercritical fluid. Surface treatment wherein the more becomes possible with Kukoto.
【請求項4】耐圧容器内への素子の搬入の際、前記所定
の処理や洗浄により素子の周囲に付着した液体を、水あ
るいは室温での蒸気圧が水よりも低い他の液体に置換す
る請求項3記載の表面処理方法。
4. When carrying an element into a pressure resistant container, the liquid attached to the periphery of the element by the predetermined treatment or cleaning is replaced with water or another liquid having a vapor pressure at room temperature lower than that of water. The surface treatment method according to claim 3.
【請求項5】被処理対象の素子が固体基板への微細加工
により形成される微小構造体であるとともに、該微小構
造体の一部が固体基板の溶液中でのエッチングにより該
基板から分離している請求項1ないし4のいずれかに記
載の表面処理方法。
5. An element to be processed is a microstructure formed by microfabrication on a solid substrate, and a part of the microstructure is separated from the substrate by etching the solid substrate in a solution. The surface treatment method according to any one of claims 1 to 4.
【請求項6】被処理対象に対する所定の処理過程を経て
素子を形成する手段、液体あるいは超臨界流体状態の所
定化合物を保持する耐圧容器、該耐圧容器内に該所定の
処理あるいは洗浄処理が施こされた素子を搬入する手
段、液体あるいは超臨界流体状態の所定化合物中の除去
すべき液体化合物の濃度を検出する手段、耐圧容器内の
温度を所定化合物の臨界温度以上に保った状態で圧力を
臨界圧力以下に低下せしめて該超臨界流体をガス化して
取り除く手段を備えることを特徴とする表面処理装置。
6. A means for forming an element through a predetermined treatment process on an object to be treated, a pressure-resistant container for holding a predetermined compound in a liquid or supercritical fluid state, and the predetermined treatment or cleaning treatment in the pressure-resistant container. A means for carrying in the device, a means for detecting the concentration of a liquid compound to be removed in a predetermined compound in a liquid or supercritical fluid state, a pressure in a state where the temperature inside the pressure vessel is kept above the critical temperature of the predetermined compound. And a means for lowering the supercritical fluid to a critical pressure or lower to gasify and remove the supercritical fluid.
【請求項7】固体基板上への感光性材料の塗布、露光、
現像、エッチング、洗浄などの過程を経て構成された微
小構造体であって、該微小構造体は基板表面に対する凸
部分または連続する二つ以上の凹部分の基板に結合して
いる部位の幅、あるいは隣りあった二つの凸部分間また
は凹部分間の距離の中の小さいほうのミクロンメートル
単位での数値の二乗に対する凸部分または凹部分の基板
表面からのミクロンメートル単位での最大高さの比率が
25以上であるとともに、該微小構造体は構成時に表面
に付着した液体を、所定化合物の液体あるいは超臨界流
体に溶解せしめ温度を所定化合物の臨界温度以上に保っ
た状態で圧力を臨界圧力以下に低下せしめて該超臨界流
体をガス化して除去されたことを特徴とする素子。
7. A method of coating a photosensitive material on a solid substrate, exposing the same,
A microstructure formed through processes such as development, etching, and cleaning, wherein the microstructure has a convex portion with respect to the substrate surface or a width of a portion of the continuous two or more concave portions bonded to the substrate, Alternatively, the ratio of the maximum height of the convex portion or the concave portion from the substrate surface in the micrometer unit to the square of the smaller value in the micrometer unit between the two adjacent convex portions or the concave portion is 25 or more, the microstructure dissolves the liquid adhering to the surface at the time of construction in a liquid of a predetermined compound or a supercritical fluid, and keeps the temperature below the critical temperature of the predetermined compound, and the pressure is kept below the critical pressure. An element characterized in that the supercritical fluid is reduced and gasified to be removed.
JP29677695A 1995-11-15 1995-11-15 Surface treating method and apparatus and element obtained from them Pending JPH09139374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29677695A JPH09139374A (en) 1995-11-15 1995-11-15 Surface treating method and apparatus and element obtained from them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29677695A JPH09139374A (en) 1995-11-15 1995-11-15 Surface treating method and apparatus and element obtained from them

Publications (1)

Publication Number Publication Date
JPH09139374A true JPH09139374A (en) 1997-05-27

Family

ID=17837992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29677695A Pending JPH09139374A (en) 1995-11-15 1995-11-15 Surface treating method and apparatus and element obtained from them

Country Status (1)

Country Link
JP (1) JPH09139374A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192990A (en) * 1997-09-16 1999-04-06 Ebara Corp Plating pretreatment
KR20020010955A (en) * 2000-07-31 2002-02-07 임교빈 Method for cleaning of semiconductor elements and apparatus thereof
WO2002016673A1 (en) * 2000-08-24 2002-02-28 Hideo Yoshida Electrochemical treating method such as electroplating and electrochemical reaction device therefor
US6358673B1 (en) 1998-09-09 2002-03-19 Nippon Telegraph And Telephone Corporation Pattern formation method and apparatus
JP2002324778A (en) * 2001-04-25 2002-11-08 Sony Corp Surface processing method
KR100400194B1 (en) * 1999-12-06 2003-10-01 니폰 덴신 덴와 가부시끼가이샤 Supercritical Drying Method and Supercritical Drying Apparatus
US6691430B2 (en) 2002-03-25 2004-02-17 Dainippon Screen Mfg. Co., Ltd. High-pressure drying apparatus, high-pressure drying method and substrate processing apparatus
US6703316B2 (en) 2001-04-27 2004-03-09 Kabushiki Kaisha Kobe Seiko Sho Method and system for processing substrate
WO2004081255A1 (en) * 2003-01-27 2004-09-23 Tokyo Electron Limited Semiconductor device
US6841031B2 (en) 2001-07-27 2005-01-11 Dainippon Screen Mfg. Co., Ltd. Substrate processing apparatus equipping with high-pressure processing unit
KR100494257B1 (en) * 2001-04-24 2005-06-13 가부시키가이샤 고베 세이코쇼 Process for drying an object having microstructure and the object obtained by the same
US7033089B2 (en) 2002-11-19 2006-04-25 Hitachi Science Systems, Ltd. Method of developing a resist film and a resist development processor
CN100355016C (en) * 2003-12-22 2007-12-12 索尼株式会社 Process for producing a movable structure and etchant for silicon oxide film
JP2011192835A (en) * 2010-03-15 2011-09-29 Toshiba Corp Supercritical drying method and supercritical drying apparatus
JP2012204656A (en) * 2011-03-25 2012-10-22 Toshiba Corp Supercritical drying method of semiconductor substrate

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192990A (en) * 1997-09-16 1999-04-06 Ebara Corp Plating pretreatment
US6358673B1 (en) 1998-09-09 2002-03-19 Nippon Telegraph And Telephone Corporation Pattern formation method and apparatus
US6554507B2 (en) 1998-09-09 2003-04-29 Nippon Telegraph And Telephone Corporation Pattern formation method and apparatus
KR100400194B1 (en) * 1999-12-06 2003-10-01 니폰 덴신 덴와 가부시끼가이샤 Supercritical Drying Method and Supercritical Drying Apparatus
KR20020010955A (en) * 2000-07-31 2002-02-07 임교빈 Method for cleaning of semiconductor elements and apparatus thereof
US6793793B2 (en) 2000-08-24 2004-09-21 Hideo Yoshida Electrochemical treating method such as electroplating and electrochemical reaction device therefor
WO2002016673A1 (en) * 2000-08-24 2002-02-28 Hideo Yoshida Electrochemical treating method such as electroplating and electrochemical reaction device therefor
KR100494257B1 (en) * 2001-04-24 2005-06-13 가부시키가이샤 고베 세이코쇼 Process for drying an object having microstructure and the object obtained by the same
JP2002324778A (en) * 2001-04-25 2002-11-08 Sony Corp Surface processing method
US6703316B2 (en) 2001-04-27 2004-03-09 Kabushiki Kaisha Kobe Seiko Sho Method and system for processing substrate
US6841031B2 (en) 2001-07-27 2005-01-11 Dainippon Screen Mfg. Co., Ltd. Substrate processing apparatus equipping with high-pressure processing unit
US6691430B2 (en) 2002-03-25 2004-02-17 Dainippon Screen Mfg. Co., Ltd. High-pressure drying apparatus, high-pressure drying method and substrate processing apparatus
US7033089B2 (en) 2002-11-19 2006-04-25 Hitachi Science Systems, Ltd. Method of developing a resist film and a resist development processor
US7179000B2 (en) 2002-11-19 2007-02-20 Hitachi Science Systems, Ltd. Method of developing a resist film and a resist development processor
WO2004081255A1 (en) * 2003-01-27 2004-09-23 Tokyo Electron Limited Semiconductor device
CN100355016C (en) * 2003-12-22 2007-12-12 索尼株式会社 Process for producing a movable structure and etchant for silicon oxide film
JP2011192835A (en) * 2010-03-15 2011-09-29 Toshiba Corp Supercritical drying method and supercritical drying apparatus
JP2012204656A (en) * 2011-03-25 2012-10-22 Toshiba Corp Supercritical drying method of semiconductor substrate
US9437416B2 (en) 2011-03-25 2016-09-06 Kabushiki Kaisha Toshiba Supercritical drying method for semiconductor substrate

Similar Documents

Publication Publication Date Title
JPH09139374A (en) Surface treating method and apparatus and element obtained from them
KR100397455B1 (en) Semiconductor ultra-fine particle cleaner
US4817652A (en) System for surface and fluid cleaning
US6158446A (en) Ultra-low particle semiconductor cleaner
CN104919574B (en) The nothing with pollutant removal for high-aspect-ratio semiconductor device structure sticks drying process
US5634978A (en) Ultra-low particle semiconductor method
US7343922B2 (en) Wafer drying apparatus
KR100372094B1 (en) Apparatus and Method for Drying
EP0419464A1 (en) Process for surface and fluid cleaning
US20040221875A1 (en) Cleaning method
US5958146A (en) Ultra-low particle semiconductor cleaner using heated fluids
US6920703B2 (en) Microstructure drying treatment method and its apparatus and its high pressure vessel
JP4042412B2 (en) Cleaning and drying method
JP2661854B2 (en) Supercritical fluid contamination monitor
TW200308011A (en) Substrate processing apparatus and substrate processing method
US6045621A (en) Method for cleaning objects using a fluid charge
US20090084754A1 (en) Method and system for manufacturing microstructure
JP3982791B2 (en) High pressure processing equipment
KR100516644B1 (en) Substrate processing method and substrate processing apparatus
JP2005072568A (en) Method and device for cleaning microstructure, semiconductor device and manufacturing method therefor, and mictostructure and manufacturing method therefor
JP3289035B2 (en) Semiconductor wafer cleaning method
JP4342896B2 (en) Fine structure drying method and apparatus
JP2004088095A (en) Washing method
Bansal Control of time-dependent contamination during bonding of semiconductor and optical substrates
WO2000024687A1 (en) Method and apparatus for cleaning objects using dilute ammonium bearing solutions