JPH09139214A - Current collector sheet for battery and electrode using this current collector sheet - Google Patents

Current collector sheet for battery and electrode using this current collector sheet

Info

Publication number
JPH09139214A
JPH09139214A JP7322287A JP32228795A JPH09139214A JP H09139214 A JPH09139214 A JP H09139214A JP 7322287 A JP7322287 A JP 7322287A JP 32228795 A JP32228795 A JP 32228795A JP H09139214 A JPH09139214 A JP H09139214A
Authority
JP
Japan
Prior art keywords
current collector
battery
powder particles
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7322287A
Other languages
Japanese (ja)
Inventor
Hiroyuki Iechi
洋之 家地
Toshiyuki Osawa
利幸 大澤
Okitoshi Kimura
興利 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP7322287A priority Critical patent/JPH09139214A/en
Publication of JPH09139214A publication Critical patent/JPH09139214A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To minimize the deterioration of charge and discharge capacity or the deterioration of load characteristic in the use of repeated charge and discharge by using a metal foil the surface of which is mechanically polished in such a manner that the surface temperature never exceeds 45 deg.C. SOLUTION: Prior to the application of an electrode active material mixture to a current collector sheet formed of a metal foil, the blasting for spraying powder particle to the current collector surface to mechanically polish it is performed in such a manner that the current collector surface never exceeds 45 deg.C, preferably 40 deg.C. In order to prevent the surface temperature of the metal foil from exceeding 45 deg.C, a feedback method by temperature sensor is employed. Since the adhesion is improved by penetrating the electrode active material mixture into the dimple structure formed on the metal foil surface by the blasting to enhance the adhesion between current collector and electrode active material, the electrode active material can be made hardly peeled from the sheet surface. Thus, the life of the battery can be extended.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電池用集電体シートお
よび該シートを使用した電極および電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current collector sheet for a battery, an electrode using the sheet and a battery.

【0002】[0002]

【従来技術およびその解決すべき課題】近年のエレクト
ロニクス分野の発展はめざましく、電子機器の小型化、
軽量化、高性能化の要求が著しい。電子機器の心臓と言
われる小型2次電池には、単位体積当たりまたは単位重
量当たりのエネルギー密度が大きく且つ長寿命の電池の
開発が望まれている。そのような中で、携帯電話、小型
OA機器、小型通信機などへのリチウムイオン2次電池
の用途展開が期待されている。従来、リチウムイオン2
次電池は、正極用或いは負極用の集電体に電極活物質を
含んだ合剤スラリーを塗った後に乾燥して製造してい
る。この製造方法により製造した電池は、集電体と電極
活物質の接着性が悪い場合には繰り返し充放電使用中に
集電体と電極活物質の接着界面に自然剥離が生じて集電
効率が低下するため、充放電容量の劣化や負荷特性の劣
化を起こすことが知られており、例えば特開平6−84
515公報では銅箔集電体と負極活物質との接着性に関
して、電極活物質自体の接着性を向上させるために、負
極活物質材料として黒鉛とコークスとの混合物質を使用
することによって、黒鉛の自己潤滑性を抑制して集電体
との接着性を向上させようとする方法が提案されてい
る。また、特開平6−84516公報では電極活物質自
体の接着性を向上させるために、上記以外の方法として
負極活物質材料に黒鉛とコールタールピッチとの混合物
質を使用することが提案されている。しかしながら、電
極活物質の接着性を向上させようとする特開平6−84
515公報や特開平6−84516公報による方法で、
十分な接着状態を得ることができなかった。とくに、電
池の充放電を繰り返した場合に、炭素結晶間へのイオン
のインターカレーション/デインターカレーションに伴
い、炭素の六角網平面間の膨張収縮が起こるため、塗布
した活物質が集電体表面から剥離してしまい長寿命の2
次電池を得ることができなかった。
2. Description of the Related Art The development of the electronics field in recent years has been remarkable, and miniaturization of electronic devices has
There is a great demand for weight reduction and higher performance. For a small secondary battery, which is called the heart of electronic equipment, it is desired to develop a battery having a large energy density per unit volume or unit weight and a long life. Under such circumstances, it is expected that lithium-ion secondary batteries will be applied to mobile phones, small OA devices, small communication devices and the like. Conventionally, lithium ion 2
The secondary battery is manufactured by applying a mixture slurry containing an electrode active material to a current collector for a positive electrode or a negative electrode and then drying the mixture slurry. In the battery manufactured by this manufacturing method, when the adhesion between the current collector and the electrode active material is poor, spontaneous peeling occurs at the bonding interface between the current collector and the electrode active material during repeated charge / discharge use, and the current collection efficiency is increased. It is known that the charging / discharging capacity and the load characteristics are deteriorated due to the decrease in the charging / discharging capacity.
Regarding the adhesion between the copper foil current collector and the negative electrode active material, Japanese Patent Application Laid-Open No. 515-515 discloses that a mixed material of graphite and coke is used as the negative electrode active material in order to improve the adhesion of the electrode active material itself. A method of suppressing the self-lubricating property of the above and improving the adhesiveness with the current collector has been proposed. In addition, in JP-A-6-84516, in order to improve the adhesiveness of the electrode active material itself, as a method other than the above, it is proposed to use a mixed material of graphite and coal tar pitch as the negative electrode active material. . However, JP-A-6-84 that attempts to improve the adhesion of the electrode active material.
In the method according to Japanese Patent Laid-Open No. 515 and Japanese Patent Laid-Open No. 6-84516
It was not possible to obtain a sufficient adhesion state. In particular, when the battery is repeatedly charged and discharged, the intercalation / deintercalation of ions between the carbon crystals causes expansion / contraction of the hexagonal mesh planes of the carbon, which causes the applied active material to collect current. Long life due to peeling from the body surface 2
I couldn't get the next battery.

【0003】一方、集電体自体の接着性を向上させよう
とする提案もある。例えば特開平7−135023公報
では、図1に示すように、金属箔1がリール6aから供
給されコロナ放電電極2により金属箔1の表面がコロナ
処理されコーター3により電極合剤スラリー4を一定の
厚さに塗布され乾燥炉5を通過することによりスラリー
が乾燥し、この後金属箔1はリール6bに巻き取られ
る。塗布に先立って集電体表面にコロナ放電処理を行う
ことによって、電池に用いる電極集電体となるCu,A
l,Niなどの金属箔表面の流動性の油分や汚れをイオ
ン化した雰囲気の作用により揮発離散させることで、集
電体と電極活物質の接着性を向上させ、繰り返し充放電
の使用において充放電容量の劣化や負荷特性の劣化を小
さく抑えようとする提案がなされている。一方、塗布に
先立って集電体表面にコロナ放電処理を採用する特開平
7−135023に関しても充放電特性の劣化や負荷特
性の劣化を抑えることは困難であった。つまり、集電体
と電極活物質の接着性を向上させるための手段として、
金属箔表面の流動性の油分や汚れを除去しただけでは満
足な接着性は得られない。また、本来コロナ放電は導体
間の電場が平等でないときに火花放電をするよりも前に
表面の電場の大きなところに部分的に絶縁破壊が起こっ
て現れる発光放電現象であり、圧力の低くない気体中の
放電はそのほとんどが火花放電であることが多く、特開
平7−135023では格別の配慮をしない限りは大気
中での放電(火花放電)を利用して集電体表面を処理す
ることになってしまうため、放電を起こすのに必要な最
小電圧が大きくなってしまう。このため大きな電源を製
造設備として準備しなくてはならなかった。或いは、小
さな電源を用いた場合には、金属箔の供給速度を犠牲に
して集電体表面を処理せざるを得ないことから生産性が
悪かった。さらに火花放電では、導体間の電場が一様で
環境温度が一定であるならば、火花放電発生のための最
小電圧は電極間距離と気体の圧力の積の関数で定められ
る(パッシェンの法則)ため、集電体を連続処理するた
めに金属箔が移動しているような場合には、電極間距離
が変動するので放電の最小電圧が変動してしまい、集電
体に対して均一な表面処理ができなくなってしまう。従
って、集電体と電極活物質の接着力が集電体面内でばら
ついてしまう。結果的にこのような方法により電池を製
造した場合には、部分的に活物質が集電体表面から剥離
して集電効率が不揃いになってしまうため、充放電特性
の劣化や負荷特性の劣化を抑えることは困難であった。
On the other hand, there is also a proposal to improve the adhesiveness of the current collector itself. For example, in Japanese Unexamined Patent Publication No. 7-135023, as shown in FIG. 1, the metal foil 1 is supplied from a reel 6a, the surface of the metal foil 1 is corona-treated by a corona discharge electrode 2, and a coater 3 is used to make the electrode mixture slurry 4 uniform. The slurry is dried by being applied to a thickness and passing through the drying furnace 5, after which the metal foil 1 is wound on the reel 6b. By performing corona discharge treatment on the surface of the current collector prior to coating, Cu, A, which becomes the electrode current collector used in the battery,
The adhesiveness between the current collector and the electrode active material is improved by the volatilization and dispersion of the fluid oil and dirt on the surface of the metal foil such as l and Ni by the action of the ionized atmosphere, and the charge and discharge are used in the repeated charge and discharge. Proposals have been made to reduce the deterioration of capacity and the deterioration of load characteristics. On the other hand, it has been difficult to suppress deterioration of charge / discharge characteristics and deterioration of load characteristics also in JP-A-7-135023 in which corona discharge treatment is applied to the current collector surface prior to coating. That is, as a means for improving the adhesiveness between the current collector and the electrode active material,
Satisfactory adhesiveness cannot be obtained simply by removing fluid oil and dirt on the surface of the metal foil. Originally, corona discharge is a light-emission discharge phenomenon that occurs when a large electric field on the surface causes a partial dielectric breakdown before spark discharge when the electric field between conductors is not equal. Most of the inside discharges are often spark discharges, and in Japanese Patent Laid-Open No. 7-135023, the surface of the current collector is treated by using discharges (spark discharges) in the atmosphere unless special consideration is given. Therefore, the minimum voltage required to cause discharge increases. For this reason, a large power source had to be prepared as a manufacturing facility. Alternatively, when a small power source is used, the productivity is poor because the current collector surface must be treated at the expense of the metal foil supply rate. Furthermore, in spark discharges, if the electric field between conductors is uniform and the environment temperature is constant, the minimum voltage for spark discharge generation is determined by the product of the distance between the electrodes and the gas pressure (Paschen's law). Therefore, when the metal foil is moved to continuously process the current collector, the distance between the electrodes fluctuates and the minimum discharge voltage fluctuates. It becomes impossible to process. Therefore, the adhesive force between the current collector and the electrode active material varies within the surface of the current collector. As a result, when a battery is manufactured by such a method, the active material is partially peeled from the surface of the current collector, resulting in uneven current collection efficiency, which results in deterioration of charge / discharge characteristics and load characteristics. It was difficult to suppress the deterioration.

【0004】[0004]

【目的】本発明は従来技術の課題を解決して、集電体と
電極活物質の接着性が良好で集電効率が高く、繰り返し
充放電の使用において充放電容量の劣化や負荷特性の劣
化を小さく抑えた電池と該電池の製造に使用する集電体
シートおよび電極を提供することを目的とする。
An object of the present invention is to solve the problems of the prior art, and the adhesiveness between the current collector and the electrode active material is good, the current collection efficiency is high, and the charge / discharge capacity and load characteristics are deteriorated during repeated charge / discharge use. It is an object of the present invention to provide a battery having a small value, a current collector sheet and an electrode used for manufacturing the battery.

【0005】[0005]

【課題を解決すべき手段】本発明者らは、電極集電体表
面と電極活物質との接着性を向上させるためにアンカー
効果を促進させる手段として、粉末粒子を高圧で集電体
表面に吹き付けて機械的研磨処理するブラスト処理を採
用した場合、集電体表面を処理する際に粉末粒子の運動
エネルギーによって集電体表面温度が上昇してしまうた
めに、集電体表面の処理後に室温に冷却されていく際に
集電体自体に残留ひずみが形成されてしまい、電池を形
成した際に、電極活物質が集電体表面から剥離してしま
うことが、長寿命の電池を得ることができなかった要因
であることを知得し、本発明に到達した。すなわち、本
発明は金属箔からなる集電体シートに電極活物質合剤を
塗布するに先立って、前記集電体表面を45℃、好まし
くは40℃を越えないようにブラスト処理を行うことに
より、前記本発明の目的を達成することができた。従っ
て、45℃を越えて粉末粒子を高圧で集電体表面に吹き
付けてブラスト処理した後に、電極活物質合剤の塗布を
行っても、本発明の目的を達成することは困難である。
金属箔の表面温度が45℃を越えないようにするための
方法としては、温度センサーによるフィードバック方式
が考えられる。制御項目の1つとしては金属箔の送りス
ピードがあり、金属箔の表面温度が45℃を越えるよう
な場合には金属箔の送りスピードを速くし温度コントロ
ールを行う。前記温度コントロールの方法としては、他
にブラスト用吹き付け粉末の吹き付け圧力をコントロー
ルする方法が挙げられる。
Means for Solving the Problems As a means for promoting the anchor effect in order to improve the adhesion between the electrode current collector surface and the electrode active material, the present inventors have made powder particles on the current collector surface at high pressure. When blasting, which involves spraying and mechanical polishing, is adopted, the temperature of the current collector surface rises due to the kinetic energy of the powder particles when the current collector surface is treated, so the temperature of the current collector surface is reduced to room temperature after treatment. When the battery is formed, residual strain is formed on the current collector itself as it cools down, and the electrode active material peels off from the current collector surface when the battery is formed. The inventors of the present invention have reached the present invention by knowing that this is a factor that could not be achieved. That is, according to the present invention, prior to applying the electrode active material mixture to the current collector sheet made of metal foil, the current collector surface is subjected to blasting treatment so as not to exceed 45 ° C., preferably 40 ° C. The above-mentioned object of the present invention can be achieved. Therefore, it is difficult to achieve the object of the present invention even if the electrode active material mixture is applied after the powder particles are sprayed onto the surface of the current collector at a high pressure over 45 ° C and blasted.
A feedback method using a temperature sensor is conceivable as a method for preventing the surface temperature of the metal foil from exceeding 45 ° C. One of the control items is the feeding speed of the metal foil, and when the surface temperature of the metal foil exceeds 45 ° C., the feeding speed of the metal foil is increased to control the temperature. As another method of controlling the temperature, a method of controlling the spray pressure of the spray powder for blasting may be mentioned.

【0006】以下、本発明を具体的に説明する。本発明
で使用する金属箔としては、SUS、Cu、Al、Ni
等が挙げられる。またブラスト処理により前記金属箔表
面に高圧で吹き付ける粉末としては、SiO2、Al2
3、SiC等の粉末粒子、ガラスビーズが挙げられる。
前記金属箔表面は前記のように45℃以下、好ましくは
40℃以下でブラスト処理することにより電極活物質合
剤との接着に適した状態に改善される。すなわち、ブラ
スト処理によって金属箔表面に形成されたディンプル構
造に電極活物質合剤が入り込むことによる接着性の向
上、いわゆるアンカー効果を促進して集電体と電極活物
質との接着性を向上させることができる。本発明におけ
るブラスト処理は、種々の態様で行うことができる。例
えば、 下記実施例2で実験的に検証された53μm(#2
20)〜177μm(#80)、好ましくは74μm
(#150)〜125μm(#100)の範囲の粒径の
1種類の粉末粒子を使用して乾式ブラストする方法、 2種類以上の粒径の粉末粒子を大きな粒径の粉末粒
子から小さな粒径の粉末粒子を用いて、段階的にブラス
トする方法、例えば下記実施例2で実験的に検証された
第1回目のブラスト処理に関しては粉末粒子径が74μ
m(#150)〜125μm(#100)の間、好まし
くは74μm(#150)〜105μm(#120)の
間の粉末粒子、かつ第2回目のブラスト処理に関しては
粉末粒子径が26μm(#500)〜40μm(#32
0)の間、好ましくは26μm(#500)〜31μm
(#400)の間の粉末粒子を使用して乾式ブラストす
る方法、 2種類以上の粒径の粉末粒子を同時にブラスト処理
する方法、例えば前記の大きな粒径の粉末粒子と小さ
な粒径の粉末粒子とを同時に用いてブラストする方法、 前記〜のブラスト処理を水を用いて行う湿式ブ
ラストする方法等が挙げられる。
Hereinafter, the present invention will be described specifically. As the metal foil used in the present invention, SUS, Cu, Al, Ni
And the like. Further, as the powder to be sprayed at high pressure on the surface of the metal foil by the blasting treatment, SiO 2 , Al 2 O
3 , powder particles of SiC or the like, and glass beads.
By subjecting the surface of the metal foil to the blast treatment at 45 ° C. or lower, preferably 40 ° C. or lower, the state suitable for adhesion to the electrode active material mixture is improved. That is, the adhesive property is improved by the electrode active material mixture entering the dimple structure formed on the surface of the metal foil by the blast treatment, that is, the so-called anchor effect is promoted to improve the adhesive property between the current collector and the electrode active material. be able to. The blast process in the present invention can be performed in various modes. For example, the experimentally verified 53 μm (# 2
20) to 177 μm (# 80), preferably 74 μm
Method of dry blasting using one kind of powder particles having a particle size in the range of (# 150) to 125 μm (# 100), powder particles having two or more kinds of particle diameters from powder particles having a large particle diameter to a small particle diameter. In the method of stepwise blasting using the powder particles of, for example, the first blast treatment experimentally verified in Example 2 below, the powder particle diameter is 74 μm.
m (# 150) to 125 μm (# 100), preferably 74 μm (# 150) to 105 μm (# 120), and a powder particle size of 26 μm (# 500) for the second blasting treatment. ) -40 μm (# 32
0), preferably 26 μm (# 500) to 31 μm
Method of dry blasting using powder particles between (# 400), method of simultaneously blasting powder particles of two or more kinds of particle diameters, for example powder particles of large particle diameter and powder particles of small particle diameter Examples of the method include a method of blasting with and using, and a method of wet blasting in which the blasting treatments 1 to 3 described above are performed with water.

【0007】前記の方法は、1種類の粒径の粉末粒子
を使用して乾式ブラストにより行うので、簡単に金属箔
のブラスト処理を行うことができる。前記の方法は、
大きな粒径の粉末粒子によって形成された大きなディン
プル内に、小さな粒径の粉末粒子によって形成された小
さなデンプルが形成されるために、金属箔表面と電極活
物質との接着性をさらに向上させることができる。前記
の方法は、前記の方法と同様な効果を奏することが
でき、かつ前記の方法に比較して処理時間の短縮を図
ることができる。前記の湿式ブラスト法によると、粉
末粒子を水と混合して使用するため、集電体表面の温度
が45℃を越えないようにすることが容易になる。前記
〜のブラスト処理方法で処理した集電体シートは、
図7に示すように該シートをロール状に巻き取ることな
く、ブラスト処理した直後に電極活物質合剤を塗布する
ことにより電極を製造することが、生産性が高く且つ電
極活物質と集電体との接着強度が強く、繰り返し充放電
の使用において剥離せず、充放電容量や負荷特性の劣化
が少ない電池、特に2次電池が提供できるので好まし
い。
Since the above method is carried out by dry blasting using powder particles of one kind of particle diameter, the blasting treatment of the metal foil can be easily carried out. The above method
To further improve the adhesion between the metal foil surface and the electrode active material, because the small dimples formed by the small-sized powder particles are formed inside the large dimples formed by the large-sized powder particles. You can The above method can achieve the same effect as the above method, and can shorten the processing time as compared with the above method. According to the above-mentioned wet blasting method, powder particles are used by being mixed with water, so that it becomes easy to prevent the temperature of the current collector surface from exceeding 45 ° C. The current collector sheet processed by the blasting method of above,
As shown in FIG. 7, the electrode can be manufactured by applying the electrode active material mixture immediately after the blast treatment without winding the sheet into a roll, which has high productivity and can collect the electrode active material and the current. It is preferable because it can provide a battery, particularly a secondary battery, which has a high adhesive strength with the body, does not peel off during repeated charge / discharge use, and has little deterioration in charge / discharge capacity and load characteristics.

【0008】[0008]

【実施例】以下、本発明を実施例により詳細に説明す
る。
EXAMPLES The present invention will be described in detail below with reference to examples.

【0009】実施例1 本発明の集電体シートおよび電極ならびに該電極を使用
した電池の製造方法の一例である。20μm厚のSUS
私有伝隊金属箔表面に1種類のAl23粉末粒子74μ
m径(#150)を高圧で吹き付けた。その際の集電体
表面温度と室温に戻った際のSUS集電体金属箔変形量
の関係を図2に示す。図2に示すように、変形量はAl
23粉末粒子を高圧で吹き付けた際の集電体表面温度が
高くなるにつれて増加し、45℃近傍の温度で急激に増
加する。前記各集電体表面温度で表面処理したSUS集
電体表面に正極材料として、主剤の五酸化バナジウム
(V25)51.3gとポリアニリン(PANI)5.
7gおよび溶媒としてN−メチルピロリドン(NMP)
43.0gからなる電極活物質合剤を50μmの厚さで
塗布して乾燥した後、ピール試験により接着力の評価を
行い、その結果を下表1に示した。なお、各サンプルの
集電体表面温度は以下の通りである。 No.1:30℃ No.5:50℃ No.2:35℃ No.6:55℃ No.3:40℃ No.4:45℃
Example 1 This is an example of the current collector sheet and electrode of the present invention, and a method for producing a battery using the electrode. 20μm thick SUS
One type of Al 2 O 3 powder particles 74μ on the surface of a privately owned metal foil
The m diameter (# 150) was sprayed at high pressure. FIG. 2 shows the relationship between the surface temperature of the current collector at that time and the amount of deformation of the SUS current collector metal foil when returning to room temperature. As shown in FIG. 2, the deformation amount is Al
It increases as the surface temperature of the current collector when the 2 O 3 powder particles are sprayed at high pressure increases, and sharply increases at a temperature near 45 ° C. 4. As a positive electrode material, 51.3 g of vanadium pentoxide (V 2 O 5 ) as a main component and polyaniline (PANI) were used as a positive electrode material on the surface of the SUS current collector surface-treated at the surface temperature of each current collector.
7 g and N-methylpyrrolidone (NMP) as solvent
The electrode active material mixture consisting of 43.0 g was applied to a thickness of 50 μm and dried, and then the adhesive strength was evaluated by a peel test. The results are shown in Table 1 below. The surface temperature of the current collector of each sample is as follows. No. 1: 30 ° C No. 5: 50 ° C. No. 2: 35 ° C. No. 6: 55 ° C. No. 3: 40 ° C. No. 4: 45 ℃

【0010】[0010]

【表1】 ○:剥離なし △:部分的に剥離あり ×:剥離 前表1の試験結果から明らかなように、剥離のないサン
プルは、No.1、2、3であり集電体表面温度が40
℃を超えたNo.4では部分的に剥離が見られた。集電
体表面温度が45℃を越えたNo.5、6では大きな剥
離が見られた。図3は、前記の各サンプルの体積エネル
ギー密度を示しており、No.1、2、3は体積エネル
ギー密度の点でも良好であった。
[Table 1] ◯: No peeling Δ: Partial peeling X: Peeling As is clear from the test results in Table 1 above, the samples without peeling were No. 1, 2, 3 and current collector surface temperature is 40
No. In No. 4, peeling was partially observed. The surface temperature of the current collector exceeded 45 ° C. Large peeling was observed in Nos. 5 and 6. FIG. 3 shows the volume energy density of each of the above-mentioned samples. 1, 2, and 3 were also good in terms of volume energy density.

【0011】実施例2 表2は、SUS電極集電体金属箔シートを種々の粒子径
のAl23粉末粒子を用いてブラスト処理した後に、S
US電極集電体金属箔シート上に正極材料の主剤が五酸
化バナジウム(V25)51.3gとポリアニリン(P
ANI)5.7g及び溶媒としてN−メチルピロリドン
(NMP)43.0gからなる電極活物質合剤を50μ
m塗布して乾燥した後ピール試験により接着力の評価を
行い、その結果を下表2に示した。
Example 2 Table 2 shows that after blasting a SUS electrode current collector metal foil sheet with Al 2 O 3 powder particles of various particle sizes,
On the metal foil sheet of the US electrode current collector, the main component of the positive electrode material was vanadium pentoxide (V 2 O 5 ) 51.3 g and polyaniline (P
50 μm of an electrode active material mixture composed of 5.7 g of ANI) and 43.0 g of N-methylpyrrolidone (NMP) as a solvent.
After coating and drying, the adhesive strength was evaluated by a peel test, and the results are shown in Table 2 below.

【表2】 ○:剥離なし △:部分的に剥離あり ×:剥離 前表2の試験結果から粉末粒子径が53μm(#22
0)〜177μm(#80)の間で接着強度が大きくな
っていることがわかる。好ましくは、接着剥離のない7
4μm(#150)〜125μm(#100)が望まし
い。
[Table 2] ◯: No peeling Δ: Partial peeling X: Peeling From the test results in Table 2 above, the powder particle size was 53 μm (# 22
It can be seen that the adhesive strength increases between 0) and 177 μm (# 80). Preferably, there is no adhesion peeling 7
4 μm (# 150) to 125 μm (# 100) is desirable.

【0012】実施例3 前記実施例2で集電体より電極活物質の剥がれの少ない
粒子径であることが判明した粉末粒子径が53μm(#
220)〜177μm(#80)の間の種々の粒径のA
23粉末粒子を用いてSUS電極集電体金属箔シート
表面を第1回目のブラスト処理した。このブラスト処理
した金属箔シートの表面状態を図4の断面模式図で示
す。図4に示すように金属箔シートの表面には無秩序で
はあるが、ほぼ均一なディンプルAが形成され、電極活
物質との接着性を向上させ得るアンカー効果が促進され
ることが解る。次に前記第1回目のブラスト処理で用い
た粉末粒子径より小さい種々の粉末粒子径を有するAl
23粉末を用いて金属箔シートの第2回目のブラスト処
理を行った。この第2回目のブラスト処理により、第2
回目のブラスト処理後の金属箔シートの断面模式図であ
る図5に示すように、第1回目のブラスト処理で形成さ
れた図4に示す比較的大きなディンプルAの中に、さら
に小さなディンプルBが形成されアンカー効果がより増
大するので、さらに電極活物質との接着性が向上され得
ることが得る。前記2回のブラスト処理を行った金属箔
シート上に、正極材料として主剤の五酸化バナジウム
(V25)51.3g、ポリアニリン(PANI)5.
7g及び溶媒としてN−メチルピロリドン(NMP)4
3.0gからなる電極活物質合剤を50μm塗布して乾
燥した後ピール試験による接着力の評価を行い、その結
果を表3に示す。
Example 3 In Example 2, it was found that the particle size of the electrode active material was smaller than that of the current collector, so that the powder particle size was 53 μm (#
A) with various particle sizes between 220) and 177 μm (# 80)
The surface of the metal foil sheet of the SUS electrode current collector was blasted for the first time by using 1 2 O 3 powder particles. The surface condition of this blasted metal foil sheet is shown in a schematic sectional view of FIG. As shown in FIG. 4, it can be seen that although the surface of the metal foil sheet is disordered, substantially uniform dimples A are formed, and the anchor effect that can improve the adhesiveness with the electrode active material is promoted. Next, Al having various powder particle sizes smaller than the powder particle size used in the first blasting treatment is used.
A second blasting treatment of the metal foil sheet was performed using 2 O 3 powder. By this second blasting process, the second
As shown in FIG. 5, which is a schematic cross-sectional view of the metal foil sheet after the first blasting treatment, smaller dimples B are included in the relatively large dimples A shown in FIG. 4 formed by the first blasting treatment. Since the formed anchor effect is further increased, it is possible to further improve the adhesiveness with the electrode active material. 5. On the metal foil sheet that has been subjected to the two blast treatments, 51.3 g of the main component vanadium pentoxide (V 2 O 5 ) as a positive electrode material, polyaniline (PANI) 5.
7 g and N-methylpyrrolidone (NMP) 4 as solvent
The electrode active material mixture consisting of 3.0 g was applied in an amount of 50 μm and dried, and then the adhesive strength was evaluated by a peel test. The results are shown in Table 3.

【0013】[0013]

【表3】 ○:剥離なし △:部分的に剥離あり ×:剥離 前表3の結果から、第1回目のブラスト処理に関しては
74μm(#150)〜125μm(#100)の間
で、また第2回目のブラスト処理に関しては粉末粒子径
が26μm(#500)〜40μm(#320)の間で
接着強度が大きくなっていることがわかる。特に第1回
目のブラスト処理に関しては粉末粒径が74μm(#1
50)〜105μm(#120)の間で、かつ第2回目
のブラスト処理に関しては粉末粒子径が26μm(#5
00)〜31μm(#400)の間のものが好ましい。
[Table 3] ◯: No peeling Δ: Partial peeling X: Peeling From the results in Table 3 above, the first blasting treatment was performed between 74 μm (# 150) and 125 μm (# 100), and the second blasting was performed. Regarding the treatment, it can be seen that the adhesive strength increases when the powder particle size is 26 μm (# 500) to 40 μm (# 320). Especially for the first blasting process, the powder particle size is 74 μm (# 1
50) to 105 μm (# 120), and for the second blasting treatment, the powder particle size is 26 μm (# 5).
It is preferably between 00) and 31 μm (# 400).

【0014】実施例4 74μm(#150)と31μm(#400)及び10
5μm(#120)と31μm(#400)のAl23
粉末粒子をそれぞれ同時に用いてSUS電極集電体表面
を乾式ブラスト処理した後に、主剤の五酸化バナジウム
(V25)51.3g、ポリアニリン(PANI)5.
7g及び溶媒としてN−メチルピロリドン(NMP)4
3.0gからなる電極活物質合剤を50μm塗布して正
極を作製した。この正極とカーボンを負極活物質を主剤
に用いた負極とを用いてリチウム二次電池を作製し、そ
のサイクル特性を調べた。充電条件は、0.5C、37
V、3H、放電条件は0.5C、2.5Vで行った。そ
の結果を図6に示す。同図に示す結果から、ブラスト処
理したものは処理しなかったものに比べて体積エネルギ
ー密度が高く、繰り返し回数が100回においては処理
したものが90%であるのに対して処理しなかったもの
は83%であった。
Example 4 74 μm (# 150) and 31 μm (# 400) and 10
5 μm (# 120) and 31 μm (# 400) Al 2 O 3
After dry-blasting the surface of the SUS electrode current collector by simultaneously using powder particles, 51.3 g of the main component, vanadium pentoxide (V 2 O 5 ), polyaniline (PANI) 5.
7 g and N-methylpyrrolidone (NMP) 4 as solvent
A positive electrode was prepared by applying an electrode active material mixture consisting of 3.0 g to a thickness of 50 μm. A lithium secondary battery was prepared using this positive electrode and a negative electrode using carbon as the main component of the negative electrode active material, and its cycle characteristics were examined. Charging condition is 0.5C, 37
V, 3H and discharge conditions were 0.5 C and 2.5 V. FIG. 6 shows the result. From the results shown in the figure, the volume energy density of the blast-treated sample was higher than that of the untreated sample, and 90% of the samples were treated when the number of repetitions was 100, but not treated. Was 83%.

【0015】以下、本発明の実施態様を示す。 1. 表面温度が45℃、好ましくは40℃を越えない
ように機械的に表面を研磨処理した金属箔からなること
を特徴とする電池用集電体シート。 2. 研磨処理がブラスト処理である前記1記載の電池
用集電体シート。 3. ブラスト処理が湿式ブラスト処理である前記1ま
たは2の電池用集電体シート。 4. ブラスト処理が乾式ブラスト処理である前記1ま
たは2の電池用集電体シート。 5. ブラスト処理を53μm(#220)〜177μ
m(#80)、好ましくは74μm(#150)〜12
5μm(#100)の範囲の1種類の粒径を有する粉末
粒子を用いて行った前記1ないし4の電池用集電体シー
ト。 6. ブラスト処理を粒径の大きな種類の粉末粒子から
粒径の小さな種類の粉末粒子へ、段階的に2種類以上の
粉末粒子を用いて行った前記1ないし4の電池用集電体
シート。
The embodiments of the present invention will be described below. 1. A current collector sheet for a battery, comprising a metal foil whose surface is mechanically polished so that the surface temperature does not exceed 45 ° C, preferably 40 ° C. 2. 2. The battery current collector sheet as described in 1 above, wherein the polishing treatment is a blast treatment. 3. The current collector sheet for a battery according to 1 or 2, wherein the blast treatment is a wet blast treatment. 4. The current collector sheet for a battery according to 1 or 2 above, wherein the blast treatment is a dry blast treatment. 5. Blast treatment is 53μm (# 220) -177μ
m (# 80), preferably 74 μm (# 150) to 12
The current collector sheet for a battery according to any one of 1 to 4 above, which is carried out by using powder particles having one kind of particle diameter in the range of 5 μm (# 100). 6. The battery current collector sheet according to any one of 1 to 4 above, wherein the blast treatment is performed from powder particles having a large particle diameter to powder particles having a small particle diameter in a stepwise manner by using two or more kinds of powder particles.

【0016】7. ブラスト処理を粒径の異なる2種類
以上の粉末粒子を同時に用いて行った前記1ないし4の
電池用集電体シート。 8. ブラスト処理を粒径の大きな種類の粉末粒子が7
4μm(#150)〜125μm(#100)、好まし
くは74μm(#150)〜105μm(#120)の
粒径のものであり、また粒径の小さな種類の粉末粒子が
26μm(#500)〜40μm(#320)、好まし
くは26μm(#150)〜31μm(#400)であ
る粒径の異なる2種類の粉末粒子である前記4または5
の電池用集電体シート。 9. 前記1〜8の電池用集電体シートよりなる群から
選ばれた電池用集電体シートに電極活物質合剤を塗布し
たものである電池用電極。 10. 前記9の電極を用いた電池。 11. 電池が二次電池である前記10の電池。 12. 二次電池がリチウム二次電池である前記11の電
池。 13. 前記1〜8の電池用集電体シートをロール状に巻
き取ることなく、ブラスト処理した直後に電極活物質を
塗布することを特徴とする電池用電極の製造法。 14. 金属箔からなる集電体に電極活物質合剤を塗布す
るために、金属箔集電体の供給がアンワインダー、テン
ションローラー、ヒートローラーおよびリワインダーか
らなるロールツーロールであって、電極活物質合剤を塗
布する前に金属箔集電体の表面を研磨処理できるように
構成されたことを特徴とす電極の製造装置。
[7] The current collector sheet for a battery according to any one of 1 to 4 above, wherein the blast treatment is carried out by simultaneously using two or more kinds of powder particles having different particle sizes. 8. Blasting is performed with powder particles of large particle size 7
4 μm (# 150) to 125 μm (# 100), preferably 74 μm (# 150) to 105 μm (# 120) with a particle size of 26 μm (# 500) to 40 μm. (# 320), and preferably 4 μm (# 150) to 31 μm (# 400), which are two types of powder particles having different particle diameters.
Current collector sheet for batteries. 9. An electrode for a battery, which is obtained by applying an electrode active material mixture onto a battery current collector sheet selected from the group consisting of the battery current collector sheets 1 to 8 above. Ten. A battery using the electrode of 9 above. 11. 10. The battery according to 10 above, wherein the battery is a secondary battery. 12. 11. The battery according to 11 above, wherein the secondary battery is a lithium secondary battery. 13. A method for producing a battery electrode, characterized in that the electrode active material is applied immediately after blasting without rolling up the battery current collector sheet of 1 to 8 in a roll shape. 14. In order to apply the electrode active material mixture to the current collector made of metal foil, the supply of the metal foil current collector is a roll-to-roll consisting of an unwinder, a tension roller, a heat roller and a rewinder. An apparatus for manufacturing an electrode, characterized in that the surface of a metal foil current collector can be polished before applying the agent.

【0017】[0017]

【効果】【effect】

1.請求項1、2および3 残留ひずみを低減した集電体金属箔シートであるため、
該シート表面から電極活物質が剥離し難い電極を作製す
ることができるので、該電極を使用することにより長寿
命の電池を得ることができる。 2.請求項4、5および6 集電体表面に形成された大きなディンプル内に小さなデ
ィンプルが形成されている集電体シートであるため、さ
らに集電体表面から電極活物質が剥離し難い電極を作製
することができるので、より長寿命の電池を得ることが
できる。 3.請求項7 集電体と電極活物質の接着性が良好で集電効率が高い電
池用電極である。
1. Claims 1, 2 and 3 Because the collector metal foil sheet has reduced residual strain,
Since an electrode in which the electrode active material does not easily peel off from the surface of the sheet can be produced, a long-life battery can be obtained by using the electrode. 2. Claims 4, 5 and 6 Since the current collector sheet has small dimples formed in large dimples formed on the surface of the current collector, an electrode in which the electrode active material is not easily peeled off from the surface of the current collector is produced. Therefore, a battery with a longer life can be obtained. 3. A seventh aspect of the present invention is an electrode for a battery, which has good adhesion between the current collector and the electrode active material and has high current collection efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の電極用集電体シートのブラスト処理装置
の1例の概略図である。
FIG. 1 is a schematic view of an example of a conventional blasting apparatus for a collector sheet for electrodes.

【図2】集電体表面ブラスト処理時の集電体表面温度と
変形量データを示す図である。
FIG. 2 is a diagram showing current collector surface temperature and deformation amount data during current collector surface blasting.

【図3】実施例1の電極集電体シートを使用したサンプ
ル電池の体積エネルギーを示す図である。
FIG. 3 is a diagram showing volume energy of a sample battery using the electrode current collector sheet of Example 1.

【図4】実施例3による1種類のAl23粉末粒子を用
いてブラスト処理した後のSUS電極集電体表面状態を
表す断面模式図である。
FIG. 4 is a schematic cross-sectional view showing the surface state of a SUS electrode current collector after blasting using one type of Al 2 O 3 powder particles according to Example 3.

【図5】実施例3による2種類のAl23粉末粒子を用
いてブラスト処理した後のSUS電極集電体表面状態を
表す断面模式図である。
5 is a schematic cross-sectional view showing a surface state of a SUS electrode current collector after blasting is performed using two types of Al 2 O 3 powder particles according to Example 3. FIG.

【図6】実施例4で試作した電池のサイクル特性データ
を示す図である。
FIG. 6 is a diagram showing cycle characteristic data of a battery prototyped in Example 4;

【図7】電極用集電体表面を機械的にブラスト処理した
直後に電極活物質合剤を前記シートに塗布する電極製造
装置の一例を示す図である。
FIG. 7 is a diagram showing an example of an electrode manufacturing apparatus that applies an electrode active material mixture onto the sheet immediately after mechanically blasting the surface of the electrode current collector.

【符号の説明】[Explanation of symbols]

1 金属箔 2 コロナ放電電極 3 コーター 4 電極合剤スラリー 5 乾燥炉 6a リール 6b リール 20 電極集電体ロール 21 集電体金属箔シート 22 集電体表面処理部 23 テンションローラー 24 電極活物質合剤供給吐出部 25 電極活物質合剤膜厚制御ブレード 26 ヒートローラ 27a アンワインダー 27b リワインダー 1 Metal Foil 2 Corona Discharge Electrode 3 Coater 4 Electrode Mixture Slurry 5 Drying Furnace 6a Reel 6b Reel 20 Electrode Current Collector Roll 21 Current Collector Metal Foil Sheet 22 Current Collector Surface Treatment Section 23 Tension Roller 24 Electrode Active Material Mixture Supply and discharge part 25 Electrode active material mixture film thickness control blade 26 Heat roller 27a Unwinder 27b Rewinder

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 表面温度が45℃を越えないように機械
的に表面を研磨処理した金属箔からなることを特徴とす
る電池用集電体シート。
1. A current collector sheet for a battery, comprising a metal foil whose surface is mechanically polished so that the surface temperature does not exceed 45 ° C.
【請求項2】 研磨処理がブラスト処理である請求項1
記載の電池用集電体シート。
2. The polishing process is a blast process.
A current collector sheet for a battery as described above.
【請求項3】 ブラスト処理を53μm(#220)〜
177μm(#80)の範囲の1種類の粒径を有する粉
末粒子を用いて行った請求項2記載の電池用集電体シー
ト。
3. A blasting treatment of 53 μm (# 220) to
The current collector sheet for a battery according to claim 2, which is obtained by using powder particles having one kind of particle diameter in the range of 177 μm (# 80).
【請求項4】 ブラスト処理を粒径の大きな種類の粉末
粒子から粒径の小さな種類の粉末粒子へ、段階的に2種
類以上の粉末粒子を用いて行った請求項2記載の電池用
集電体シート。
4. The current collector for a battery according to claim 2, wherein the blasting treatment is performed in stages from powder particles of a large particle size to powder particles of a small particle size by using two or more powder particles in a stepwise manner. Body sheet.
【請求項5】 ブラスト処理を粒径の異なる2種類以上
の粉末粒子を同時に用いて行った請求項2記載の電池用
集電体シート。
5. The current collector sheet for a battery according to claim 2, wherein the blast treatment is carried out by simultaneously using two or more kinds of powder particles having different particle diameters.
【請求項6】 ブラスト処理を粒径の大きな種類の粉末
粒子が74μm(#150)〜125μm(#100)
の粒径のものであり、また粒径の小さな種類の粉末粒子
が26μm(#500)〜40μm(#320)である
粒径の異なる2種類の粉末粒子である請求項4または5
記載の電池用集電体シート。
6. A blasting treatment for powder particles of a large particle size range of 74 μm (# 150) to 125 μm (# 100)
6. The powder particles having a small particle size, and the powder particles having a small particle size are two kinds of powder particles having different particle sizes of 26 μm (# 500) to 40 μm (# 320).
A current collector sheet for a battery as described above.
【請求項7】 請求項1、2、3、4、5および6記載
の電池用集電体シートよりなる群から選ばれた電池用集
電体シートに電極活物質合剤を塗布したものである電池
用電極。
7. A battery current collector sheet selected from the group consisting of the battery current collector sheets according to claim 1, 2, 3, 4, 5 and 6, and coated with an electrode active material mixture. A battery electrode.
JP7322287A 1995-11-16 1995-11-16 Current collector sheet for battery and electrode using this current collector sheet Pending JPH09139214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7322287A JPH09139214A (en) 1995-11-16 1995-11-16 Current collector sheet for battery and electrode using this current collector sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7322287A JPH09139214A (en) 1995-11-16 1995-11-16 Current collector sheet for battery and electrode using this current collector sheet

Publications (1)

Publication Number Publication Date
JPH09139214A true JPH09139214A (en) 1997-05-27

Family

ID=18141957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7322287A Pending JPH09139214A (en) 1995-11-16 1995-11-16 Current collector sheet for battery and electrode using this current collector sheet

Country Status (1)

Country Link
JP (1) JPH09139214A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002509341A (en) * 1997-12-12 2002-03-26 ミネソタ マイニング アンド マニュファクチャリング カンパニー Apparatus and method for treating cathode material provided on thin film substrate
JP2007103197A (en) * 2005-10-05 2007-04-19 Sony Corp Negative electrode, and battery
JP2007149612A (en) * 2005-11-30 2007-06-14 Sony Corp Anode and battery
JP2011040568A (en) * 2009-08-11 2011-02-24 Shin Kobe Electric Mach Co Ltd Method and device for manufacturing electrode current collector for energy storage device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002509341A (en) * 1997-12-12 2002-03-26 ミネソタ マイニング アンド マニュファクチャリング カンパニー Apparatus and method for treating cathode material provided on thin film substrate
JP4959050B2 (en) * 1997-12-12 2012-06-20 スリーエム カンパニー Cathode material processing apparatus and method provided on thin film substrate
JP2007103197A (en) * 2005-10-05 2007-04-19 Sony Corp Negative electrode, and battery
JP2007149612A (en) * 2005-11-30 2007-06-14 Sony Corp Anode and battery
JP2011040568A (en) * 2009-08-11 2011-02-24 Shin Kobe Electric Mach Co Ltd Method and device for manufacturing electrode current collector for energy storage device

Similar Documents

Publication Publication Date Title
JP3444769B2 (en) Aluminum foil for current collector and manufacturing method thereof, current collector, secondary battery and electric double layer capacitor
JP4116784B2 (en) Negative electrode coating composition, negative electrode plate, method for producing the same, and nonaqueous electrolyte secondary battery
KR20100127730A (en) High energy density lithium secondary battery
EP2897200B1 (en) Porous complex, and method for preparing same
KR101809189B1 (en) Metal foil, metal foil manufacturing method and electrode manufacturing method using the same
CN108615854B (en) Silicon-based lithium ion battery negative electrode active material and preparation and application thereof
JP4831946B2 (en) Non-aqueous electrolyte battery
CN112820847A (en) Silicon-based negative electrode material and preparation method thereof, lithium ion battery and electric appliance
KR20040012601A (en) Electrolytic copper foil and electrolytic copper foil for current collector of secondary cell
JP2002170556A (en) Method for manufacturing electrode plate of secondary battery
JPH09139214A (en) Current collector sheet for battery and electrode using this current collector sheet
JPH1021928A (en) Electrode material for secondary battery
CN112563451A (en) Positive plate and battery
JP4326162B2 (en) Method for manufacturing lithium secondary battery
JP2004127799A (en) Positive electrode plate for battery, its manufacturing method, and secondary battery
JPWO2003103076A1 (en) Conductive material mixed electrode active material, electrode structure, secondary battery, and method of manufacturing conductive material mixed electrode active material
WO2018180088A1 (en) Rolled copper foil for lithium ion battery current collector and lithium ion battery
JPH1167277A (en) Lithium secondary battery
JP2002298847A (en) Positive electrode active material for nonaqueous electrolyte battery, and method for manufacturing the same
KR101154771B1 (en) Rechargeable battery with nonaqueous electrolyte and process for producing the rechargeable battery
JP5232813B2 (en) Charging method of lithium ion secondary battery
JP2004273181A (en) Electrode plate for battery
JPH11260354A (en) Manufacture of battery
JP4997701B2 (en) Electrode plate manufacturing method and electrode plate
WO2021100272A1 (en) Secondary battery and method for producing same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040608