JPH09139130A - Power equipment component - Google Patents

Power equipment component

Info

Publication number
JPH09139130A
JPH09139130A JP7294122A JP29412295A JPH09139130A JP H09139130 A JPH09139130 A JP H09139130A JP 7294122 A JP7294122 A JP 7294122A JP 29412295 A JP29412295 A JP 29412295A JP H09139130 A JPH09139130 A JP H09139130A
Authority
JP
Japan
Prior art keywords
epoxy resin
power equipment
insulating material
inorganic insulating
equipment component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7294122A
Other languages
Japanese (ja)
Inventor
Noriyuki Shoji
範行 庄司
Mitsuo Shimazaki
光雄 島崎
Kensuke Umeyama
謙介 梅山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP7294122A priority Critical patent/JPH09139130A/en
Publication of JPH09139130A publication Critical patent/JPH09139130A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G5/00Installations of bus-bars
    • H02G5/06Totally-enclosed installations, e.g. in metal casings
    • H02G5/066Devices for maintaining distance between conductor and enclosure
    • H02G5/068Devices for maintaining distance between conductor and enclosure being part of the junction between two enclosures

Landscapes

  • Insulating Bodies (AREA)
  • Gas-Insulated Switchgears (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power equipment component exhibiting excellent electric insulation property even in a high electric stress condition by providing a section comprizing a layer made of an inorganic insulation material interposed between an epoxy resin molding and an electroconductive member. SOLUTION: An inorganic insulating material layer 22 is formed between an electroconductive member 21 and an epoxy resin molding 13. A material for the inorganic insulating material layer 22 is selected out of a group comprizing liquid glass, SiO2 , Al2 , O3 , TiN, and TiO2 . The electroconductive member 21, which constitutes high voltage parts and installation parts, is formed of a metal, an electroconductive resin, and an electroconductive paint, while the epoxy resin molding 13 is composed of an epoxy resin, a curing agent, a filler, and other additives. This power equipment component exhibits excellent electric insulation property even in a high electric stress condition, promotes miniaturization of power equipment, and can improve reliability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、各種ケーブル付属
品、ガス絶縁開閉器(Gas Insulating Switch 、GI
S)用スペーサ、碍子、変圧器等の電力機器部品に関す
る。
TECHNICAL FIELD The present invention relates to various cable accessories, gas-insulated switches (GIs), and GIs.
S) Spacers, insulators, transformers, and other power equipment components.

【0002】[0002]

【従来の技術およびその課題】一般に、電力機器部品
は、エポキシ樹脂で構成される部材(エポキシ樹脂成形
体)と、導電性材料で構成される高圧部および接地部
(導電性部材)とが一体化している構成を有する。この
ため、電力機器部品においては、エポキシ樹脂と導電性
材料とが接する接合部が存在する。このような接合部を
有する電力機器部品として、例えばCVケーブル用プレ
ハブジョイントやGISスペーサ等が挙げられる。この
ような電力機器部品におけるエポキシ樹脂成形体は、一
般に、無機充填材を配合したエポキシ樹脂を注型法やイ
ンジェクション法等で成形することにより形成される。
2. Description of the Related Art In general, electric power equipment parts include a member (epoxy resin molded body) made of epoxy resin, and a high-voltage portion and a ground portion (conductive member) made of a conductive material, which are integrated. It has a structured structure. Therefore, in the electric power equipment component, there is a joint where the epoxy resin and the conductive material are in contact with each other. Examples of power equipment parts having such a joint include a prefabricated joint for CV cables and a GIS spacer. The epoxy resin molded body in such a power device component is generally formed by molding an epoxy resin mixed with an inorganic filler by a casting method, an injection method or the like.

【0003】また、従来の電力機器部品においては、エ
ポキシ樹脂成形体と導電性部材との間に銀系やカーボン
系の導電性塗料からなる層を設けて、エポキシ樹脂成形
体と導電性部材との間の接着性を向上させたり、電界を
緩和させたり、エポキシ樹脂成形体および導電性部材の
被接触面の平滑化を図ったりしている。
Further, in the conventional electric power equipment parts, a layer made of a silver-based or carbon-based conductive paint is provided between the epoxy resin molded body and the conductive member to form the epoxy resin molded body and the conductive member. The adhesiveness between the two is improved, the electric field is relaxed, and the contact surfaces of the epoxy resin molded body and the conductive member are smoothed.

【0004】ところで、近年、省スペースの観点から、
電力機器に対しても小型化の要請が高まっている。ま
た、送電効率を向上させる観点から、送電電圧の上昇に
対する要求も高まっている。これらのことから、電力機
器部品に加わる電気的ストレスが高まる傾向にある。こ
のような、いわゆるハイストレス化が進むと、電力機器
部品により高い絶縁性能が要求される。この絶縁性能
は、エポキシ樹脂の絶縁破壊特性だけで決定されるので
なく、導電性部材における電極形状や電極材料等の影響
を受けるため、電力機器部品全体としての構成が重要と
なる。
By the way, in recent years, from the viewpoint of space saving,
There is an increasing demand for miniaturization of electric power equipment. Further, from the viewpoint of improving power transmission efficiency, there is an increasing demand for higher power transmission voltage. For these reasons, electrical stress applied to electric power equipment parts tends to increase. With such progress of so-called high stress, power equipment parts are required to have high insulation performance. This insulation performance is determined not only by the dielectric breakdown characteristics of the epoxy resin, but is also influenced by the electrode shape, electrode material, etc. of the conductive member, so the configuration of the entire power equipment component is important.

【0005】絶縁性能に大きな影響を与える要因の一つ
として、導電性材料と絶縁性材料の接合部の構造があ
り、従来から様々な構造が検討されている。しかしなが
ら、従来の構造では、近年のハイストレス化への対応が
困難な状況になっており、接合部の構造の改善が望まれ
ている。本発明はかかる点に鑑みてなされたものであ
り、電気的ストレスが高い状態でも優れた電気絶縁性を
発揮する電力機器部品を提供することを目的とする。
One of the factors that greatly affects the insulating performance is the structure of the joint between the conductive material and the insulating material, and various structures have been studied so far. However, with the conventional structure, it is difficult to cope with the recent increase in stress, and improvement of the structure of the joint is desired. The present invention has been made in view of the above points, and an object of the present invention is to provide a power equipment component that exhibits excellent electrical insulation even in a state where electrical stress is high.

【0006】[0006]

【課題を解決するための手段】本発明者らは、電力機器
部品の絶縁破壊の原因がエポキシ樹脂成形体と導電性部
材との間の界面付近に存在することに着目し、この界面
付近を改良することにより絶縁破壊に耐え得る電力機器
部品の構造を提供することを見出し本発明をするに至っ
た。
The inventors of the present invention have noticed that the cause of the dielectric breakdown of electric power equipment parts is near the interface between the epoxy resin molding and the conductive member, and The present invention has been found to provide a structure of a power device component that can withstand dielectric breakdown by improvement, and has completed the present invention.

【0007】すなわち、本発明は、エポキシ樹脂成形体
と導電性部材との間に無機絶縁性材料からなる層を介し
てなる部分を有することを特徴とする電力機器部品を提
供する。
That is, the present invention provides a power equipment component characterized by having a portion formed by interposing a layer made of an inorganic insulating material between an epoxy resin molding and a conductive member.

【0008】本発明において、エポキシ樹脂成形体は、
エポキシ樹脂、硬化剤、充填材、およびその他の添加材
から構成されたエポキシ樹脂組成物を真空注型法、加圧
ゲル法、インジェクション法等の方法により所定形状に
成形されたものであり、その構成材料の種類や成形方法
は特に限定されない。
In the present invention, the epoxy resin molding is
An epoxy resin, a curing agent, a filler, and an epoxy resin composition composed of other additives are molded into a predetermined shape by a method such as a vacuum casting method, a pressure gel method, and an injection method. The type of constituent material and the molding method are not particularly limited.

【0009】エポキシ樹脂成形体を構成するエポキシ樹
脂としては、ビスフェノールA型エポキシ樹脂、ビスフ
ェノールF型エポキシ樹脂、脂環式エポキシ樹脂、ノボ
ラック型エポキシ樹脂等が挙げられる。
Examples of the epoxy resin forming the epoxy resin molded body include bisphenol A type epoxy resin, bisphenol F type epoxy resin, alicyclic epoxy resin and novolac type epoxy resin.

【0010】エポキシ樹脂成形体を構成する硬化剤とし
ては、脂肪族ポリアミン、芳香族ポリアミン、ポリアミ
ドアミン等のポリアミン系硬化剤、無水ヘキサヒドロフ
タル酸、無水メチルテトラヒドロフタル酸等の酸無水物
系硬化剤、フェノールノボラック、クレゾールノボラッ
ク等のフェノール系硬化剤、三フッ化ホウ素等のルイス
酸もしくはそれらの塩類、ジシアンジアミド類等が挙げ
られる。
As the curing agent constituting the epoxy resin molded article, polyamine type curing agents such as aliphatic polyamine, aromatic polyamine and polyamidoamine, acid anhydride type curing agents such as hexahydrophthalic anhydride and methyltetrahydrophthalic anhydride. Agents, phenolic hardeners such as phenol novolac and cresol novolac, Lewis acids such as boron trifluoride or salts thereof, dicyandiamides and the like.

【0011】エポキシ樹脂成形体に含まれる充填材とし
ては、シリカ、アルミナ、ドロマイト、水酸化アルミ
ナ、ガラス粉、ガラス繊維等を挙げることができる。ま
た、エポキシ樹脂成形体に含まれるその他の添加剤とし
ては、硬化促進剤、可塑剤、希釈剤、着色剤等を挙げる
ことができる。
Examples of the filler contained in the epoxy resin molding include silica, alumina, dolomite, alumina hydroxide, glass powder, glass fiber and the like. Further, examples of other additives contained in the epoxy resin molded body include a curing accelerator, a plasticizer, a diluent and a colorant.

【0012】本発明において、導電性部材とは、電力機
器部品の高圧部および設置部を構成するものであり、金
属、導電性樹脂、導電性塗料により形成することができ
る。本発明において、無機絶縁性材料としては、水ガラ
ス、SiO2 、Al23、TiN、TiO2 等を挙げ
ることができる。この無機絶縁性材料を用いて層を形成
する方法としては、物理的気相成長法(PVD)、化学
的気相成長法(CVD)、ゾル−ゲル法等を挙げること
ができる。
In the present invention, the conductive member constitutes the high-voltage portion and the installation portion of the power equipment part, and can be formed of metal, conductive resin, or conductive paint. In the present invention, examples of the inorganic insulating material include water glass, SiO 2 , Al 2 O 3 , TiN, and TiO 2 . Examples of the method for forming a layer using this inorganic insulating material include physical vapor deposition (PVD), chemical vapor deposition (CVD), and sol-gel method.

【0013】また、この層の厚さは、無機絶縁性材料の
種類により異なるが、1μm程度であれば本発明の効果
が得られる。なお、具体的には、無機絶縁性材料が水ガ
ラスである場合には、層の厚さは約0.8μmであって
も効果を発揮する。
Although the thickness of this layer varies depending on the type of the inorganic insulating material, the effect of the present invention can be obtained if the thickness is about 1 μm. In addition, specifically, when the inorganic insulating material is water glass, the effect is exhibited even when the layer thickness is about 0.8 μm.

【0014】この無機絶縁性材料層を形成する場合は、
下層となる導電性部材を構成する導電性材料や導電性塗
料、またはエポキシ樹脂成形体を構成するエポキシ樹脂
に熱的あるいは化学的に悪影響を与えない方法で形成す
る必要がある。
When forming this inorganic insulating material layer,
It is necessary to form it by a method that does not have a thermal or chemical adverse effect on the conductive material or the conductive coating material forming the lower conductive member, or the epoxy resin forming the epoxy resin molded body.

【0015】本発明の電力機器部品を製造する方法とし
ては、例えば、所望形状の導電性部材を作製し、少なく
ともその被接触面の表面上に無機絶縁性材料層を上述し
た方法で形成し、これを金型内に設置し、金型内にエポ
キシ樹脂を注型する方法や、所望形状のエポキシ樹脂成
形体を作製し、少なくともその被接触面の表面上に無機
絶縁性材料層を上述した方法で形成し、さらにその上に
導電性塗料を塗布する方法等が挙げられる。
As a method for producing the electric power equipment component of the present invention, for example, a conductive member having a desired shape is produced, and an inorganic insulating material layer is formed on at least the surface of the contacted surface by the above-mentioned method, This is set in a mold, a method of casting an epoxy resin in the mold, or an epoxy resin molded body of a desired shape is prepared, and the inorganic insulating material layer is at least formed on the surface of the contacted surface. Examples of the method include a method of forming by a method and further applying a conductive paint on it.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して具体的に説明する。図1は本発明の電
力機器部品の一例を示す概略図であり、具体的には、C
Vケーブルのプレハブジョイントを示す。図中11はC
Vケーブルを示す。このプレハブジョイントは、CVケ
ーブル11の接続部11aを設けるものであり、CVケ
ーブル11上にストレスコーン12を介してエポキシユ
ニット(エポキシ樹脂成形体)13が設けられ、その上
に銀系導電性塗料からなる導電性塗料層14が設けられ
てなるものである。
Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a schematic view showing an example of a power equipment component of the present invention, specifically, C
The prefabricated joint of V cable is shown. 11 in the figure is C
A V cable is shown. This prefabricated joint is to provide a connecting portion 11a of the CV cable 11, an epoxy unit (epoxy resin molded body) 13 is provided on the CV cable 11 via a stress cone 12, and a silver-based conductive paint is provided thereon. A conductive paint layer 14 made of is provided.

【0017】このプレハブジョイントにおけるエポキシ
樹脂成形体と導電性部材との界面(a部)は、図2に示
すような構成となっている。すなわち、導電性部材であ
るアルミニウム中心電極21上に無機絶縁性材料層22
が形成されており、無機絶縁性材料層22上にエポキシ
ユニット13が形成されている。
The interface (a portion) between the epoxy resin molded body and the conductive member in this prefabricated joint has a structure as shown in FIG. That is, the inorganic insulating material layer 22 is formed on the aluminum center electrode 21 which is a conductive member.
And the epoxy unit 13 is formed on the inorganic insulating material layer 22.

【0018】上記構成を有するプレハブジョイントにお
いては、アルミニウム中心電極21とエポキシユニット
13との間に無機絶縁性材料層22が介在しているの
で、電気的ストレスが高い状態でも優れた電気絶縁性を
発揮する。
In the prefabricated joint having the above-mentioned structure, since the inorganic insulating material layer 22 is interposed between the aluminum center electrode 21 and the epoxy unit 13, the excellent electrical insulating property can be obtained even under a high electric stress condition. Demonstrate.

【0019】また、図3は本発明の電力機器部品の他の
例を示す概略図であり、具体的には、GISスペーサを
示す。このGISスペーサにおいては、高圧部の導電性
材料であるアルミニウムおよび接地部の導電性材料であ
る真鍮金網で構成される中心導体31とエポキシ樹脂か
らなるスペーサ本体32との間に無機絶縁性材料層33
が介在している。この場合においても、無機絶縁性材料
層33の存在により、電気的ストレスが高い状態でも優
れた電気絶縁性を発揮する。
Further, FIG. 3 is a schematic view showing another example of the electric power equipment component of the present invention, specifically, a GIS spacer. In this GIS spacer, an inorganic insulating material layer is provided between a center conductor 31 composed of aluminum which is a conductive material of a high voltage portion and a brass wire mesh which is a conductive material of a ground portion and a spacer body 32 made of an epoxy resin. 33
Is interposed. Even in this case, the presence of the inorganic insulating material layer 33 provides excellent electric insulation even in a state where electric stress is high.

【0020】次に、本発明の実施例について説明する。 (実施例1)まず、アルミニウムA5056を用いてア
ルミニウム中心電極を作製し、その表面上に水ガラスを
塗布し、130℃、2時間の加熱処理を施して水ガラス
を硬化させて厚さ1μmのガラス層を形成した。
Next, examples of the present invention will be described. (Example 1) First, an aluminum center electrode was prepared using aluminum A5056, water glass was applied on the surface thereof, and heat treatment was performed at 130 ° C for 2 hours to cure the water glass to a thickness of 1 µm. A glass layer was formed.

【0021】次いで、このアルミニウム中心電極を金型
内に設置し、エポキシ樹脂;アラルダイトCT200
(チバガイギー社製、商品名)100重量部、無水フタ
ル酸(新日鉄化学社製)30重量部、およびシリカ粉末
(石英粉 3H 長瀬産業社製)200重量部の組成を
有するエポキシ樹脂材料を用い、真空注型法により図1
に示すプレハブジョイント用エポキシ樹脂成形体を作製
した。
Next, this aluminum center electrode is placed in a mold, and an epoxy resin; Araldite CT200 is used.
An epoxy resin material having a composition of 100 parts by weight (manufactured by Ciba Geigy, trade name), 30 parts by weight of phthalic anhydride (manufactured by Nippon Steel Chemical Co., Ltd.), and 200 parts by weight of silica powder (quartz powder 3H, manufactured by Nagase & Co., Ltd.) is used. Figure 1 by the vacuum casting method
The epoxy resin molded body for prefabricated joint shown in was produced.

【0022】さらに、エポキシ樹脂成形体の外周には、
銀系導電性塗料;ドータイトD−753(藤倉化成社
製、商品名)を厚さ20〜30μmで塗布し、80℃、
2時間の加熱処理を施して硬化させた。 (実施例2)まず、アルミニウムA5056を用いてア
ルミニウム中心電極を作製し、このアルミニウム中心電
極を金型内に設置し、実施例1と同様のエポキシ樹脂材
料を用い、真空注型法により図1に示すプレハブジョイ
ント用エポキシ樹脂成形体を作製した。
Further, on the outer periphery of the epoxy resin molding,
Silver-based conductive paint; DOTITE D-753 (manufactured by Fujikura Kasei Co., Ltd., product name) is applied at a thickness of 20 to 30 μm, and the temperature is 80 ° C.
It was subjected to heat treatment for 2 hours to be cured. (Example 2) First, an aluminum center electrode was prepared using aluminum A5056, the aluminum center electrode was placed in a mold, and the same epoxy resin material as in Example 1 was used. The epoxy resin molded body for prefabricated joint shown in was produced.

【0023】次いで、エポキシ樹脂成形体の表面上に水
ガラスを塗布し、80℃、5時間の加熱処理を施して水
ガラスを硬化させて厚さ1μmのガラス層を形成した。
さらに、エポキシ樹脂成形体の外周には、銀系導電性塗
料;ドータイトD−753(藤倉化成社製、商品名)を
厚さ20〜30μmで塗布し、80℃、2時間の加熱処
理を施して硬化させた。 (比較例)まず、アルミニウムA5056を用いてアル
ミニウム中心電極を作製した。次いで、このアルミニウ
ム中心電極を金型内に設置し、実施例1と同様のエポキ
シ樹脂材料を用い、真空注型法により図1に示すプレハ
ブジョイント用エポキシ樹脂成形体を作製した。
Next, water glass was applied on the surface of the epoxy resin molded body and heat-treated at 80 ° C. for 5 hours to cure the water glass to form a glass layer having a thickness of 1 μm.
Furthermore, a silver-based conductive paint; DOTITE D-753 (manufactured by Fujikura Kasei Co., Ltd., product name) is applied to the outer periphery of the epoxy resin molded body at a thickness of 20 to 30 μm, and heat treatment is performed at 80 ° C. for 2 hours. Cured. Comparative Example First, an aluminum center electrode was produced using aluminum A5056. Next, this aluminum center electrode was placed in a mold, and the same epoxy resin material as in Example 1 was used to produce an epoxy resin molded body for prefabricated joint shown in FIG. 1 by a vacuum casting method.

【0024】さらに、エポキシ樹脂成形体の外周には、
銀系導電性塗料;ドータイトD−753(藤倉化成社
製、商品名)を厚さ20〜30μmで塗布し、80℃、
2時間の加熱処理を施して硬化させた。
Further, on the outer periphery of the epoxy resin molding,
Silver-based conductive paint; DOTITE D-753 (manufactured by Fujikura Kasei Co., Ltd., product name) is applied at a thickness of 20 to 30 μm, and the temperature is 80 ° C.
It was subjected to heat treatment for 2 hours to be cured.

【0025】上記実施例1,2および比較例のエポキシ
樹脂成形体にゴムストレスコーン、CVケーブル等を組
み込みプレハブジョイントを作製した。これらのプレハ
ブジョイントについて絶縁破壊試験を行った。その結果
を下記第1表に示す。なお、絶縁破壊試験は、50Hz
の交流電圧を100kVから5kV/5分のステップで
昇圧して行い、破壊した電圧を破壊部の厚さで除した値
を絶縁破壊強度として示した。
Prefabricated joints were manufactured by incorporating rubber stress cones, CV cables and the like into the epoxy resin moldings of Examples 1 and 2 and Comparative Example. A dielectric breakdown test was performed on these prefabricated joints. The results are shown in Table 1 below. In addition, the dielectric breakdown test is 50Hz
The alternating voltage was increased from 100 kV in steps of 5 kV / 5 minutes, and the value obtained by dividing the broken voltage by the thickness of the broken portion was shown as the dielectric breakdown strength.

【0026】[0026]

【表1】 [Table 1]

【0027】第1表から分かるように、本発明の電力機
器部品(実施例1,2)は、電気的ストレスが高い状態
でも優れた電気絶縁性を発揮した。一方、従来の電力機
器部品(比較例)は、電気的ストレスが高い状態では電
気絶縁性に劣るものであった。
As can be seen from Table 1, the electric power equipment parts (Examples 1 and 2) of the present invention exhibited excellent electric insulation even in the state where the electric stress was high. On the other hand, the conventional electric power equipment component (comparative example) was inferior in electrical insulation in the state where the electrical stress was high.

【0028】[0028]

【発明の効果】以上説明したように本発明の電力機器部
品は、エポキシ樹脂成形体と導電性部材との間に無機絶
縁性材料からなる層を介してなる部分を有するので、電
気的ストレスが高い状態でも優れた電気絶縁性を発揮す
る。また、本発明の電力機器部品は、電力機器の小型化
を促進し、しかも信頼性を向上させることができる。
As described above, the electric power equipment component of the present invention has the portion formed by interposing the layer made of the inorganic insulating material between the epoxy resin molded body and the conductive member, so that electric stress is not generated. Excellent electrical insulation even in high condition. Further, the electric power equipment component of the present invention can promote miniaturization of the electric power equipment and improve reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る電力機器部品の一例を示す概略
図。
FIG. 1 is a schematic diagram showing an example of a power device component according to the present invention.

【図2】図1におけるa部を示す拡大図。FIG. 2 is an enlarged view showing part a in FIG.

【図3】本発明に係る電力機器部品の他の例を示す概略
図。
FIG. 3 is a schematic view showing another example of a power equipment component according to the present invention.

【符号の説明】[Explanation of symbols]

11…CVケーブル、11a…接続部、12…ストレス
コーン、13…エポキシユニット、14…導電性塗料
層、21…アルムニウム中心電極、22,33…無機絶
縁性材料層、31…中心導体、32…スペーサ本体。
11 ... CV cable, 11a ... Connection part, 12 ... Stress cone, 13 ... Epoxy unit, 14 ... Conductive paint layer, 21 ... Aluminum center electrode, 22, 33 ... Inorganic insulating material layer, 31 ... Center conductor, 32 ... Spacer body.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 エポキシ樹脂成形体と導電性部材との間
に無機絶縁性材料からなる層を介してなる部分を有する
ことを特徴とする電力機器部品。
1. A power device component comprising a portion formed by interposing a layer made of an inorganic insulating material between an epoxy resin molded body and a conductive member.
【請求項2】 前記無機絶縁性材料は、水ガラス、Si
2 、Al23 、TiN、およびTiO2 からなる群
より選ばれた材料である請求項1記載の電力機器部品。
2. The inorganic insulating material is water glass, Si
The electric power equipment component according to claim 1, which is a material selected from the group consisting of O 2 , Al 2 O 3 , TiN, and TiO 2 .
JP7294122A 1995-11-13 1995-11-13 Power equipment component Pending JPH09139130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7294122A JPH09139130A (en) 1995-11-13 1995-11-13 Power equipment component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7294122A JPH09139130A (en) 1995-11-13 1995-11-13 Power equipment component

Publications (1)

Publication Number Publication Date
JPH09139130A true JPH09139130A (en) 1997-05-27

Family

ID=17803584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7294122A Pending JPH09139130A (en) 1995-11-13 1995-11-13 Power equipment component

Country Status (1)

Country Link
JP (1) JPH09139130A (en)

Similar Documents

Publication Publication Date Title
JPS6245649B2 (en)
US3433893A (en) Cast electrical bushing
US3513253A (en) Cast condenser bushing having tubular metal coated mesh plates
KR0128378B1 (en) Commutator
CN106941032B (en) Insulator and its manufacturing method
JP2008141809A (en) Resin mold insulated conductor
JPH09139130A (en) Power equipment component
JP2005327580A (en) Insulating spacer and gas-insulation equipment
JPH0732528B2 (en) Cast insulator
JPH07161250A (en) Insulating member and sf6 gas insulation breaker
JP2948184B2 (en) Prefabricated junction box for CV cable
JP3108544B2 (en) Resin mold equipment and manufacturing method thereof
JP3963589B2 (en) Method for manufacturing power cable connection
CN1459804A (en) Corona-proof conductor
JPH0242017Y2 (en)
JP5072256B2 (en) Insulating spacer, manufacturing method thereof, and gas insulating switchgear using the same
JP2571483B2 (en) Method for forming a conductive layer on an epoxy resin insulating molded article
JPH09180561A (en) Gas insulation equipment
US3513080A (en) Coated sintered conductor
JP2000281880A (en) Epoxy resin composition for sulfur hexafluoride gas insulated switching device, coating agent and gas insulated switching device using the same
JPH1129727A (en) Insulating spacer
JPS5845249B2 (en) Electric field relaxation structure of insulators
JPH09231850A (en) Gas-insulated apparatus and electric insulation spacer for gas-insulated apparatus
CA1211806A (en) Gas insulated electrical apparatus having insulating supports made of bisphenol a-cycloaliphatic epoxy resins resistant to arced sf.sub.6
CN112271047A (en) Preparation and application of basin-type insulator with modified coating