JPH09137932A - Method and apparatus for removing harmful component - Google Patents

Method and apparatus for removing harmful component

Info

Publication number
JPH09137932A
JPH09137932A JP29403795A JP29403795A JPH09137932A JP H09137932 A JPH09137932 A JP H09137932A JP 29403795 A JP29403795 A JP 29403795A JP 29403795 A JP29403795 A JP 29403795A JP H09137932 A JPH09137932 A JP H09137932A
Authority
JP
Japan
Prior art keywords
harmful components
zone
desorption
adsorbent layer
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29403795A
Other languages
Japanese (ja)
Inventor
Satoshi Ikeda
悟志 池田
Hiroshi Ichiyanagi
宏 一柳
Setsuo Inoue
節夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP29403795A priority Critical patent/JPH09137932A/en
Publication of JPH09137932A publication Critical patent/JPH09137932A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To accomplish adsorption of malodor and harmful components in an exhaust gas and a desorption/regeneration treatment of an adsorbent by a method wherein an adsorbent layer mounted in a reaction container moves freely among an adsorption zone, a desorption layer and a cooling zone to adsorb or desorb the harmful components and the harmful components are removed by catalytic combustion. SOLUTION: A reaction container 3 mounted in an adsorbent layer 4 is divided into an adsorption zone 5 to adsorb harmful components, a desorption zone 7 to desorb the harmful components and a cooling zone 6 not effecting adsorption or desorption. In the adsorption zone 5, the harmful components contained in an exhaust gas 1 is adsorbed by an adsorbent layer 4 comprising a heat resistant inorganic compound, in the desorption zone 7, the harmful components adsorbed undergoes a desorption by desorbing air 14 heated passing through the adsorption layer 4 to generate a gas containing the harmful components concentrated. The gas containing the harmful components concentrated is burned and removed in a catalytic layer 15 for combustion. In the cooling zone 6, the gas is passed through the adsorbent layer 4 again and discharged outside the system as disposed exhaust gas 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は排ガス中の悪臭、有
害成分を吸着し、脱着して、触媒燃焼を行い有害成分を
除去する方法と装置に係り、特に排ガス中に含まれる悪
臭成分や有害成分を除去するのに好適な吸着と触媒燃焼
を組み合わせた有害成分の除去方法およびそれを実施す
る装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for adsorbing and desorbing malodorous and harmful components in exhaust gas and performing catalytic combustion to remove the harmful components, and particularly to the malodorous components and harmful components contained in the exhaust gas. The present invention relates to a method for removing harmful components, which combines adsorption and catalytic combustion suitable for removing components, and an apparatus for carrying out the method.

【0002】[0002]

【従来の技術】化学工業等の反応工程から排出される排
ガスや、樹脂、合板、半導体等の製造工程(焼成、乾
燥、洗浄)から排出される排ガス、あるいは塗装工程の
焼き付け、乾燥工程から排出される排ガス中には、微量
の悪臭成分や有害成分が含まれている。化学工業におい
ては、原料の分解ガスや、未収率分としての一酸化炭
素、炭化水素、酢酸などの有機酸類、あるいはアルデヒ
ド類等がその代表的なものとして含まれる。樹脂等の製
造工程や、塗装工程からは溶剤として使われているトル
エンやアセトン等のアルコール系芳香族炭化水素等が排
ガス中に含まれている。これらの成分を含む排ガスは、
そのまま排気されると悪臭を発することや、人的に有害
であることなどから、公害防止の観点より排気前に、事
前に脱臭し、無害化する処理設備が設けられている。こ
れらの悪臭、有害成分を含む排ガスを処理する従来技術
として、吸着法、吸収法、燃焼酸化法の三つに大別され
る処理方法がある。この中の吸着法は、シリカゲル、ア
ルミナゲル、ゼオライト、粘土鉱物、活性炭等の吸着力
を利用し除去する方法である。また、吸収法は処理対象
物質の化学反応性(酸塩基反応等)を利用する方法であ
り、アンモニア、アミン類等の塩基性化合物には酸によ
る洗浄が、また、酸性のメルカプタン類にはアルカリ洗
浄が有効に用いられる。また、次亜塩素酸、塩素、過マ
ンガン酸カリウム等の水溶液は強い酸化剤であり、これ
ら水溶液を用いて吸収、酸化分解する方法もある。ま
た、燃焼酸化法は直接燃焼法と触媒燃焼法に大別され
る。直接燃焼法は、一般に補助燃料を用いて排ガスを加
熱し、800℃以上の温度で排ガス中の悪臭、有害成分
を燃焼し、二酸化炭素と水にする方法である。触媒燃焼
法は、触媒の酸化作用により500℃、あるいはそれ以
下の比較的低温で排ガス中の悪臭、有害成分を燃焼する
ものである。これらの処理方法は、排ガスの条件や経済
性を考慮して選定されるが、吸着法は、排ガス中の除去
成分が微量(ppm以下)の場合に適しており、除去成
分の量が増えれば比例して寿命も低下し、短時間での吸
着剤の再生や交換が必要となる。また、吸着剤の再生時
には、吸着した除去成分が脱着され排出されるため、後
流での除去処理が必要となる。吸収法は、使用する吸収
液に選択性があるため、種類の違った除去成分を含む排
ガスの処理には向いておらず、また、吸収液や排水の後
処理も必要となる。これらのことより、悪臭、有害成分
の除去方法として、燃焼酸化法による処理方法が広く採
用されており、最近では触媒燃焼法が、直接燃焼法に比
べ助燃料の節減や2次公害の原因となるNOxの生成が
無い等の利点があるため、注目され採用されるようにな
ってきた。図2は、従来技術における触媒燃焼方式の一
例を示すフローである。図において、排ガスファン2に
より吸引された排ガス1(排ガス1が加圧状態で導入さ
れる場合は、排ガスファン2は不要の場合もある)は、
熱交換器17に入る。熱交換器17で、排ガス1は自己
の燃焼処理排ガス16との熱交換により加熱され、予熱
排ガス18となって触媒燃焼炉19へ導かれる。この触
媒燃焼炉19の前流には、装置起動時の予熱排ガス18
の予熱(加熱)および熱交換器17で必要温度まで加熱
されない場合のバックアップ加熱のための助燃バーナ1
0を有した排ガス予熱装置24が設けられている。この
触媒燃焼方式の排ガス処理装置の場合、燃焼用触媒層1
5の入口部で予熱排ガス18中の成分に応じた燃焼用触
媒層15の着火温度まで予熱排ガス18の予熱が必要で
あり、そこで初めて燃焼用触媒層15は活性化され触媒
燃焼を開始する。この予熱排ガス18の予熱温度は大略
150〜400℃程度であり、この予熱排ガス18の予
熱を熱交換器17と排ガス予熱装置24が受け持つ、排
ガス予熱装置24の助燃バーナ10は、助燃料11と燃
焼空気ファン12により空気13を供給し、気相燃焼に
より火炎を形成して予熱排ガス18を予熱する。助燃料
11としてはLPG、天然ガス、都市ガスあるいは軽
油、灯油などの良質油が使用される。触媒燃焼炉19内
には、燃焼用触媒層15が設けられており、予熱排ガス
18は燃焼用触媒層15を通過時、触媒の酸化作用によ
り低温で悪臭成分、有害成分を燃焼させ、無公害な燃焼
処理排ガス16となって熱交換器17で排ガス1に廃熱
を与え、さらに、その後流で廃熱回収装置25で熱回収
されたのち、煙突20より排気21される。燃焼用触媒
層15の入口予熱温度のコントロールは、燃焼用触媒層
15の入口の温度調節計22により助燃料11の量をコ
ントロール弁23により調整し、助燃バーナ10の燃焼
量調整により行われる。この触媒燃焼方式は、直接燃焼
法に比べ助燃料11の低減が可能であるが、除去成分の
着火温度以上に、燃焼用触媒層15を通過する全排ガス
を加熱する必要があり、大容量の排ガスの場合、運転費
用にかかる助燃料11の負担は小さいとは言えない。こ
のため熱交換器17を設置し、排ガスの燃焼熱により触
媒入口側の予熱排ガス18を加熱することで運転中の助
燃料11の消費量を低減する等の対応が取られている。
しかし、この熱交換器17も、排ガス中の除去成分の割
合が比較的多く、燃焼による温度上昇が100℃以上見
込める場合には十分な効果が発揮される。悪臭、有害成
分には、アンモニア、アミン類、アルデヒド類、チオー
ル類等のように微量(ppm以下)含まれるだけで強い
臭気を示すものもある。これらを微量含む予熱排ガス1
8の場合には、燃焼による温度上昇もほとんど期待でき
ないため、熱交換器17による排ガス加熱の効果は少な
い。この悪臭、有害成分を微量含む予熱排ガス18を、
助燃料11の消費量を低減し、かつ効率よく処理する方
法として、アンモニア、アミン類、アルデヒド類、チオ
ール類等の悪臭、有害成分を含有する排ガスの流通する
煙道や配管に、前段に耐熱性の無機質吸着剤を、後段に
燃焼用触媒を配設し、前段の吸着剤に悪臭、有害成分を
吸着させて濃縮した後、該吸着剤を加熱して悪臭、有害
成分を脱着して濃度の高い有害成分を後段の燃焼用触媒
で除去する方法であり、有害成分を吸着した吸着剤を、
後段の燃焼用触媒の熱を利用して再生加熱するため、経
済性に優れ、また、吸着剤と熱交換器とを一体化するこ
とにより装置のコンパクト化を図ったものである。耐熱
性の無機質吸着剤としては、アルミナ、シリカ、シリカ
−アルミナ、マグネシアの他、各種の粘土鉱物およびゼ
オライト等であり、比表面積が大きく吸着容量の大きな
ものを使用する。また、燃焼用触媒としては、アルミナ
に白金やパラジウム等の貴金属、および/または、マン
ガン、鉄、コバルト、銅等の卑金属を担持したものが用
いられる。図3は、吸着法と触媒燃焼法とを組み合わせ
た方式の脱臭装置の一例を示すフローである。脱臭装置
は、熱交換器17と一体化された耐熱性の無機質吸着剤
層4、排ガス予熱装置24、燃焼用触媒層15からな
る。悪臭、有害成分を含有した排ガス1は、上記吸着剤
層4に導入される。この吸着剤層4が飽和吸着状態に達
する前に、助燃バーナ10を有する排ガス予熱装置24
を起動し、燃焼用触媒層15を加熱して、燃焼用触媒層
15が活性化し作用する温度にまで昇温する。燃焼用触
媒層15の廃熱は、熱交換器17を介して吸着剤層4に
伝えられる。吸着剤層4の温度上昇により脱着された悪
臭物質は燃焼用触媒層15で燃焼除去される。上記吸着
剤層4は、熱交換器17と一体化したものである。排ガ
ス予熱装置24は常時起動せず、耐熱性の無機質吸着剤
層4に排ガス1を通すことで、排ガス1中の悪臭、有害
成分を吸着除去し、熱交換器17を通り排気する。耐熱
性の無機質吸着剤層4の加熱、脱着処理は上記吸着剤層
4が飽和吸着状態に近づいた時にのみ、排ガス予熱装置
24の起動を行うものである。
2. Description of the Related Art Exhaust gas emitted from reaction processes such as chemical industry, exhaust gas from manufacturing processes (baking, drying, cleaning) of resins, plywood, semiconductors, etc. The exhaust gas that is generated contains a trace amount of offensive odor components and harmful components. In the chemical industry, decomposition gases of raw materials, organic acids such as carbon monoxide, hydrocarbons, acetic acid and the like, aldehydes and the like, which are unrecovered, are included as typical ones. The exhaust gas contains alcoholic aromatic hydrocarbons such as toluene and acetone which are used as a solvent in the manufacturing process of resins and the like, and in the painting process. Exhaust gas containing these components,
Since it emits a foul odor if it is exhausted as it is, and is harmful to humans, there is provided a treatment facility for deodorizing and detoxifying it before exhausting from the viewpoint of pollution prevention. As a conventional technique for treating the exhaust gas containing these bad odors and harmful components, there are treatment methods roughly classified into an adsorption method, an absorption method and a combustion oxidation method. The adsorption method among them is a method of removing silica gel, alumina gel, zeolite, clay minerals, activated carbon and the like by using the adsorption force. In addition, the absorption method is a method that utilizes the chemical reactivity (acid-base reaction, etc.) of the substance to be treated. Basic compounds such as ammonia and amines should be washed with an acid, and acidic mercaptans should be washed with an alkali. Cleaning is effectively used. Further, an aqueous solution of hypochlorous acid, chlorine, potassium permanganate or the like is a strong oxidant, and there is a method of absorbing and oxidatively decomposing using such an aqueous solution. Further, the combustion oxidation method is roughly classified into a direct combustion method and a catalytic combustion method. The direct combustion method is a method in which exhaust gas is generally heated using an auxiliary fuel, and the bad odor and harmful components in the exhaust gas are burned at a temperature of 800 ° C. or higher to produce carbon dioxide and water. The catalytic combustion method is a method of burning offensive odors and harmful components in exhaust gas at a relatively low temperature of 500 ° C. or lower due to the oxidizing action of the catalyst. These treatment methods are selected in consideration of the exhaust gas conditions and economic efficiency, but the adsorption method is suitable when the amount of the removal component in the exhaust gas is a minute amount (ppm or less), and if the amount of the removal component increases, Proportionately, the life will be shortened, and it will be necessary to regenerate or replace the adsorbent in a short time. Further, when the adsorbent is regenerated, the adsorbed removal component is desorbed and discharged, so that a removal treatment in a downstream is required. The absorption method is not suitable for treating exhaust gas containing different types of removal components because the absorption liquid to be used has selectivity, and also requires post-treatment of the absorption liquid and waste water. For these reasons, the combustion oxidation method has been widely adopted as a method for removing malodors and harmful components. Recently, the catalytic combustion method is considered to be a cause of saving auxiliary fuel and secondary pollution as compared with the direct combustion method. Since it has advantages such as no generation of NOx, it has come to be noticed and adopted. FIG. 2 is a flow chart showing an example of a catalytic combustion method in the conventional technique. In the figure, the exhaust gas 1 sucked by the exhaust gas fan 2 (when the exhaust gas 1 is introduced in a pressurized state, the exhaust gas fan 2 may not be necessary),
Enter the heat exchanger 17. In the heat exchanger 17, the exhaust gas 1 is heated by heat exchange with its own combustion treatment exhaust gas 16 and becomes preheated exhaust gas 18 and is guided to the catalytic combustion furnace 19. In the upstream of the catalytic combustion furnace 19, the preheated exhaust gas 18 at the time of starting the apparatus is
Burner 1 for preheating (heating) and backup heating when the heat exchanger 17 does not heat to the required temperature
An exhaust gas preheating device 24 having zero is provided. In the case of this catalytic combustion type exhaust gas treatment device, the combustion catalyst layer 1
It is necessary to preheat the preheated exhaust gas 18 to the ignition temperature of the combustion catalyst layer 15 according to the components in the preheated exhaust gas 18 at the inlet of No. 5, and the combustion catalyst layer 15 is activated for the first time to start catalytic combustion. The preheating temperature of the preheating exhaust gas 18 is approximately 150 to 400 ° C., and the auxiliary combustion burner 10 of the exhaust gas preheating device 24 in which the heat exchanger 17 and the exhaust gas preheating device 24 are responsible for preheating the preheating exhaust gas 18 is the auxiliary fuel 11. Air 13 is supplied by the combustion air fan 12 to form a flame by gas phase combustion to preheat the preheated exhaust gas 18. As the auxiliary fuel 11, LPG, natural gas, city gas or high-quality oil such as light oil or kerosene is used. A catalyst layer 15 for combustion is provided in the catalytic combustion furnace 19, and when the preheated exhaust gas 18 passes through the catalyst layer 15 for combustion, it burns offensive odor components and harmful components at a low temperature due to the oxidizing action of the catalyst, thus causing no pollution. The exhaust gas 1 becomes exhaust gas 16 by the heat exchanger 17 and is exhausted 21 from the chimney 20 after being recovered by the exhaust heat recovery device 25 in the subsequent flow. The inlet preheating temperature of the combustion catalyst layer 15 is controlled by adjusting the amount of the auxiliary fuel 11 by the control valve 23 by the temperature controller 22 at the inlet of the combustion catalyst layer 15 and adjusting the combustion amount of the auxiliary combustion burner 10. This catalytic combustion method can reduce the amount of the auxiliary fuel 11 as compared with the direct combustion method, but it is necessary to heat all the exhaust gas passing through the combustion catalyst layer 15 to the ignition temperature of the removed component or more, and thus the large capacity is required. In the case of exhaust gas, the burden of the auxiliary fuel 11 on the operating cost cannot be said to be small. Therefore, measures such as installing the heat exchanger 17 and heating the preheated exhaust gas 18 on the catalyst inlet side by the combustion heat of the exhaust gas to reduce the consumption of the auxiliary fuel 11 during operation have been taken.
However, this heat exchanger 17 also exhibits a sufficient effect when the ratio of the removed components in the exhaust gas is relatively large and the temperature increase due to combustion can be expected to be 100 ° C. or more. Some offensive odors and harmful components, such as ammonia, amines, aldehydes, and thiols, have a strong odor even if they are contained in a very small amount (ppm or less). Preheated exhaust gas 1 containing a small amount of these
In the case of 8, since the temperature rise due to combustion can hardly be expected, the effect of heating the exhaust gas by the heat exchanger 17 is small. The preheated exhaust gas 18 containing a trace amount of this odor and harmful components,
As a method of reducing the consumption amount of the auxiliary fuel 11 and efficiently treating it, heat resistance is provided in the preceding stage in a flue or a pipe through which exhaust gas containing a bad odor or harmful components such as ammonia, amines, aldehydes and thiols flows. Volatile inorganic adsorbent, a combustion catalyst is placed in the latter part, and the adsorbent in the first part adsorbs the malodorous and harmful components to concentrate it, and then the adsorbent is heated to desorb the malodorous and harmful components and the concentration. It is a method of removing harmful components with a high degree of combustion by a combustion catalyst in the latter stage,
Since it is regenerated and heated by utilizing the heat of the combustion catalyst in the latter stage, it is excellent in economic efficiency, and the adsorbent and the heat exchanger are integrated to make the apparatus compact. Examples of the heat-resistant inorganic adsorbent include alumina, silica, silica-alumina, magnesia, various clay minerals and zeolites, and those having a large specific surface area and a large adsorption capacity are used. Further, as the combustion catalyst, a catalyst in which a precious metal such as platinum or palladium and / or a base metal such as manganese, iron, cobalt or copper is supported on alumina is used. FIG. 3 is a flow showing an example of a deodorizing device of a system in which an adsorption method and a catalytic combustion method are combined. The deodorizing device includes a heat-resistant inorganic adsorbent layer 4, which is integrated with the heat exchanger 17, an exhaust gas preheating device 24, and a combustion catalyst layer 15. The exhaust gas 1 containing a foul odor and a harmful component is introduced into the adsorbent layer 4. Before the adsorbent layer 4 reaches the saturated adsorption state, the exhaust gas preheating device 24 having the auxiliary burner 10 is provided.
Is started to heat the combustion catalyst layer 15 to raise the temperature to a temperature at which the combustion catalyst layer 15 is activated and acts. The waste heat of the combustion catalyst layer 15 is transferred to the adsorbent layer 4 via the heat exchanger 17. The malodorous substance desorbed by the temperature rise of the adsorbent layer 4 is burned and removed by the combustion catalyst layer 15. The adsorbent layer 4 is integrated with the heat exchanger 17. The exhaust gas preheating device 24 does not always start up, but the exhaust gas 1 is passed through the heat-resistant inorganic adsorbent layer 4 to adsorb and remove the malodorous and harmful components in the exhaust gas 1, and exhaust through the heat exchanger 17. The heating and desorption treatment of the heat-resistant inorganic adsorbent layer 4 is to start the exhaust gas preheating device 24 only when the adsorbent layer 4 approaches the saturated adsorption state.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術は、前段
の耐熱性の無機質吸着剤層と、後段の燃焼用触媒層の組
み合わせにより、脱着操作時のみ助燃料を使用するた
め、助燃料の消費量を大幅に低減可能とした。しかし、
脱着操作時にも悪臭、有害成分を含む排ガスを上記吸着
剤層に供給しているため、上記有害成分を燃焼除去する
排ガス量の低減には繋がらず、後段の燃焼用触媒層は、
触媒燃焼方式の場合の触媒量と同量必要であり、また上
記吸着剤層も、同量あるいは1/2程度の大きな容積を
必要とし、触媒量および吸着剤の低減には繋がらなかっ
た。また、排ガス中の悪臭、有害成分の含有割合の変動
によって、上記吸着剤の飽和状態に達するまでの時間が
変わるため、吸着剤層の加熱による脱着処理の時期の判
断が難しいという問題があった。
The above-mentioned prior art uses the auxiliary fuel only during the desorption operation due to the combination of the heat-resistant inorganic adsorbent layer in the former stage and the combustion catalyst layer in the latter stage. The amount can be reduced significantly. But,
Even during the desorption operation, the bad odor, because the exhaust gas containing the harmful components is supplied to the adsorbent layer, it does not lead to the reduction of the exhaust gas amount for burning and removing the harmful components, the combustion catalyst layer of the latter stage,
The amount of catalyst required is the same as in the case of the catalytic combustion system, and the adsorbent layer also requires a large volume of the same amount or about ½, which does not lead to reduction of the amount of catalyst and adsorbent. Further, there is a problem that it is difficult to judge the time of desorption treatment by heating the adsorbent layer because the time until the saturated state of the adsorbent is changed due to the foul odor in the exhaust gas and the change in the content ratio of the harmful component. .

【0004】本発明の目的は、上記従来技術における問
題点を解消するものであって、排ガス中の悪臭、有害成
分の吸着と、飽和吸着状態に近づいた吸着剤の脱着再生
処理とを同時に、連続して行うことができ、かつ脱着し
た濃度の高い小容量の悪臭、有害成分を、少ない燃焼用
触媒層で有効に燃焼除去することができ、また悪臭、有
害成分のリークが無く、吸着、脱着、触媒燃焼と、同時
に連続して行える排ガス中の有害成分の除去方法および
コンパクトな構造の安価で維持費の安い有害成分の除去
装置を提供することにある。
An object of the present invention is to solve the above-mentioned problems in the prior art. At the same time, the adsorption of malodorous and harmful components in exhaust gas and the desorption / regeneration treatment of the adsorbent which has reached a saturated adsorption state are carried out simultaneously. It can be carried out continuously, and can remove the small amount of deodorized and high-concentration malodor and harmful components effectively by combustion with a small combustion catalyst layer. It is an object of the present invention to provide a method for removing harmful components in exhaust gas, which can be continuously carried out simultaneously with desorption and catalytic combustion, and a device for removing harmful components with a compact structure, which is inexpensive and inexpensive to maintain.

【0005】[0005]

【課題を解決するための手段】本発明の有害成分の除去
方法および装置は、基本的には、耐熱性の無機質吸着剤
層を内装する反応容器を、悪臭、有害成分を吸着する吸
着ゾーンと、上記成分を脱着する脱着ゾーンと、上記吸
着ゾーンと脱着ゾーンとの間に、吸着も脱着もされない
冷却ゾーンとに分割し、さらに、吸着ゾーンを、冷却ゾ
ーンを介して脱着ゾーンで取り囲む構造となし、また、
上記吸着剤層は、上記各ゾーン間を、少なくとも吸着ゾ
ーンより上記吸着剤層に吸着した有害成分が脱着ゾーン
までは移動し、かつ吸着、脱着ゾーン間を往復移動する
構造となし、脱着ガス流路の後流にのみ燃焼用触媒層を
配置するものである。本発明は、上記本発明の目的を達
成するために、具体的には特許請求の範囲に記載のよう
な構成とするものである。すなわち、本発明は請求項1
に記載のように、排ガス中に含まれるアンモニア、アミ
ン類、アルデヒド類またはチオール類等の悪臭、有害成
分を、吸着剤層により吸着し、該吸着した有害成分を脱
着した後、触媒燃焼により除去する方法において、吸着
剤層を内装する反応容器を、有害成分を吸着する吸着ゾ
ーンと、有害成分を脱着する脱着ゾーンと、上記吸着ゾ
ーンと脱着ゾーンとの間に、吸着または脱着を行わない
冷却ゾーンとに分割し、吸着剤層が上記各ゾーン間を自
在に移動可能に構成して、上記有害成分の吸着または脱
着を行い、脱着した有害成分を触媒燃焼し除去する方法
であって、上記排ガス中に含まれる有害成分を耐熱性の
無機質からなる吸着剤層により吸着する工程と、上記吸
着剤層により吸着された有害成分を、加熱した空気また
は所定のガスにより脱着して、濃縮された有害成分を含
むガスを生成する工程と、上記濃縮された有害成分を含
む脱着ガスを燃焼用触媒層により燃焼除去する工程を、
少なくとも連続的に行う有害成分の除去方法とするもの
である。このように、一つの吸着剤層を吸着部と脱着部
とに大別し、希薄な濃度の有害成分を耐熱性の無機質吸
着剤層で飽和濃度近くに吸着する操作と、これを比較的
少量の加熱空気(ガス)で脱着して高濃度の有害成分を
含む空気(ガス)を生成して触媒燃焼する操作を、排ガ
ス中の有害成分の吸着操作と分離して行うことができる
ので、脱着(または吸着)に用いる吸着剤の量は全体の
吸着剤量の1/2以下(数%ないし50%以下)でよ
く、また脱着用の空気(ガス)も少量でよいので装置の
コストおよび維持費は安価となる。さらに、冷却ゾーン
を設けているから脱着ゾーンで加熱された吸着剤層は、
冷却ゾーンで十分に冷却されるので、吸着ゾーンにおい
て有害成分は十分に吸着され、排ガス中の悪臭、有害成
分のリークが生じない効果がある。また、本発明は請求
項2に記載のように、悪臭、有害成分を含有する排ガス
が流通する煙道や配管に、該有害成分を吸着、濃縮する
耐熱性の無機質からなる吸着剤層を設け、該吸着剤層を
加熱して吸着した有害成分を脱着し、後流の燃焼用触媒
層で燃焼して除去する有害成分の除去装置であって、吸
着剤層を内装する反応容器を、上記有害成分を吸着する
吸着ゾーンと、上記有害成分を脱着する脱着ゾーンと、
さらに上記吸着ゾーンと脱着ゾーンとの間に、吸着また
は脱着も行わない冷却ゾーンとに分割し、吸着剤層が上
記各ゾーン間を自在に移動可能な構造に構成し、上記脱
着した有害成分を触媒燃焼する燃焼用触媒層を少なくと
も備えた有害成分の除去装置とするものである。このよ
うな構造とすることにより、上記請求項1に示す有害成
分の除去方法を効果的に実現させることができると共
に、安価で維持費の安い、高性能の有害成分の除去装置
が得られる。また、本発明は請求項3に記載のように、
請求項2において、吸着剤層を内装する反応容器は、吸
着ゾーンを、冷却ゾーンを介して脱着ゾーンで囲む構造
とした有害成分の除去装置とするものである。このよう
な構造とすることにより、脱着ゾーンで加熱された吸着
剤層は、冷却ゾーンにおいて十分に冷却されるから、吸
着ゾーンにおいて有害成分がリークすることがなく、上
記請求項2の共通の効果に加えて、安価で信頼性の高
い、有害成分の除去装置が得られる。また、本発明は請
求項4に記載のように、請求項2において、吸着剤層
は、該吸着剤層を内装する反応容器の各ゾーン間を、少
なくとも有害成分を吸着した吸着剤層を脱着ゾーンにま
で移動し、かつ上記吸着剤層を吸着ゾーンと脱着ゾーン
との間を往復移動する構造とした有害成分の除去装置と
するものである。このような構造とすることにより、吸
着ゾーンで排ガス中の有害成分を十分に吸着剤層により
吸着し、これを脱着ゾーンに確実に移動して脱着操作を
行うことができるので、上記請求項2の共通の効果に加
えて、信頼性の高い有害成分の除去装置を実現すること
ができる。また、本発明は請求項5に記載のように、請
求項2ないし請求項4のいずれか1項において、脱着ゾ
ーンに位置する有害成分を吸着した吸着剤層のみを加熱
し、有害成分を濃縮した状態で脱着した後、脱着ガス流
路の後流にのみ燃焼用触媒層を配設し、有害成分を燃焼
除去する有害成分の除去装置とするものである。このよ
うな構造とすることにより、有害成分を吸着した吸着剤
層のみを加熱して、有害成分を高濃度に含む比較的少量
の脱着ガスが生成でき、少ない燃焼用触媒で効果的に燃
焼除去することができると共に、かつ高温の浄化ガスが
得られるので、これを脱着ガスの一部として用いること
も可能となり、上記請求項2の共通の効果に加え、安価
で維持費の安い有害成分の除去装置が得られる。また、
本発明は請求項6に記載のように、請求項2ないし請求
項5のいずれか1項において、連続的に吸着、脱着およ
び燃焼除去を行う手段を備えた有害成分の除去装置とす
るものである。このように、連続して吸着、脱着および
触媒燃焼除去を行うことにより、比較的少ない吸着剤層
および燃焼用触媒層で、有害成分を吸着、脱着、そして
触媒燃焼を行って効果的に有害成分を除去することが可
能となるので、上記請求項2の共通の効果に加え、コン
パクトで、安価で維持費の安い有害成分の除去装置を実
現することができる。
The method and apparatus for removing harmful components of the present invention basically comprises a reaction vessel containing a heat-resistant inorganic adsorbent layer and an adsorption zone for adsorbing malodorous and harmful components. A desorption zone for desorbing the components, and a cooling zone that is neither adsorbed nor desorbed between the adsorption zone and the desorption zone, and further, the adsorption zone is surrounded by the desorption zone through the cooling zone. None, again
The adsorbent layer has a structure in which the harmful components adsorbed to the adsorbent layer move at least from the adsorption zone to the desorption zone, and reciprocate between the adsorption and desorption zones between the zones, and the desorption gas flow The combustion catalyst layer is arranged only in the wake of the passage. In order to achieve the above-mentioned object of the present invention, the present invention is specifically configured as described in the claims. That is, the present invention relates to claim 1.
As described in 1, the ammonia, amines, aldehydes, thiols, and other malodorous and harmful components contained in the exhaust gas are adsorbed by the adsorbent layer, the adsorbed harmful components are desorbed, and then removed by catalytic combustion. In the method, the reaction vessel containing the adsorbent layer is cooled without adsorption or desorption between the adsorption zone for adsorbing harmful components, the desorption zone for desorbing harmful components, and the adsorption zone and desorption zone. A method of adsorbing or desorbing the harmful components by catalytically burning and removing the desorbed harmful components, wherein the adsorbent layer is configured to be freely movable between the zones. The step of adsorbing the harmful components contained in the exhaust gas with the adsorbent layer made of a heat-resistant inorganic material and the harmful components adsorbed by the adsorbent layer with heated air or a predetermined gas. Desorbed by the steps of generating a gas containing concentrated harmful components, a step of burning off the combustion catalyst layer desorption gas containing harmful components is the concentration,
This is a method of removing harmful components at least continuously. In this way, one adsorbent layer is roughly divided into an adsorption part and a desorption part, and an operation of adsorbing a dilute concentration of harmful components near the saturation concentration with a heat-resistant inorganic adsorbent layer, and a relatively small amount of this The desorption with the heated air (gas) to generate the air (gas) containing a high concentration of harmful components and the catalytic combustion can be performed separately from the adsorption of the harmful components in the exhaust gas. The amount of adsorbent used for (or adsorption) may be 1/2 or less (several% to 50% or less) of the total amount of adsorbent, and desorption air (gas) may be small, so the cost and maintenance of the device The cost will be low. Further, since the cooling zone is provided, the adsorbent layer heated in the desorption zone is
Since it is sufficiently cooled in the cooling zone, harmful components are sufficiently adsorbed in the adsorption zone, and there is an effect that a bad odor in exhaust gas and leakage of harmful components do not occur. Further, according to the present invention, as described in claim 2, an adsorbent layer made of a heat-resistant inorganic material for adsorbing and concentrating the harmful components is provided in a flue or a pipe through which exhaust gas containing a malodorous or harmful component flows. A device for removing harmful components, which heats the adsorbent layer to desorb the adsorbed harmful components, and burns and removes the adsorbent layers in a downstream catalyst layer for combustion, wherein An adsorption zone for adsorbing harmful components, and a desorption zone for desorbing the harmful components,
Further, between the adsorption zone and the desorption zone, it is divided into a cooling zone which does not adsorb or desorb, and the adsorbent layer is structured to be freely movable between the zones to remove the desorbed harmful components. A device for removing harmful components, which comprises at least a combustion catalyst layer for catalytic combustion. With such a structure, it is possible to effectively realize the method of removing harmful components described in claim 1, and obtain a high-performance device for removing harmful components that is inexpensive and has low maintenance cost. Further, according to the present invention, as described in claim 3,
In the second aspect, the reaction vessel containing the adsorbent layer is an apparatus for removing harmful components in which the adsorption zone is surrounded by the desorption zone via the cooling zone. With such a structure, since the adsorbent layer heated in the desorption zone is sufficiently cooled in the cooling zone, no harmful component leaks in the adsorption zone, and the common effect of the above-mentioned claim 2 is obtained. In addition, an inexpensive and highly reliable device for removing harmful components can be obtained. Further, according to the present invention, as described in claim 4, in claim 2, the adsorbent layer is desorbed between the respective zones of the reaction vessel containing the adsorbent layer, at least the adsorbent layer having adsorbed harmful components. This is a device for removing harmful components, which has a structure of moving to the zone and moving the adsorbent layer back and forth between the adsorption zone and the desorption zone. With such a structure, harmful components in the exhaust gas can be sufficiently adsorbed by the adsorbent layer in the adsorption zone and can be reliably moved to the desorption zone for desorption operation. In addition to the common effects of, it is possible to realize a highly reliable device for removing harmful components. Further, according to the present invention, as described in claim 5, in any one of claims 2 to 4, only the adsorbent layer adsorbing the harmful component located in the desorption zone is heated to concentrate the harmful component. After desorption in such a state, the catalyst layer for combustion is disposed only in the downstream of the desorption gas flow path to provide a harmful component removing device that burns and removes harmful components. With such a structure, only the adsorbent layer that has adsorbed harmful components can be heated to generate a relatively small amount of desorbed gas containing high concentration of harmful components, and the combustion catalyst can be effectively removed with less combustion catalyst. Since it is possible to obtain a high-temperature purified gas, it is possible to use this as a part of the desorption gas. A removal device is obtained. Also,
According to a sixth aspect of the present invention, in any one of the second to fifth aspects, the present invention provides a harmful component removing device including means for continuously adsorbing, desorbing, and burning and removing. is there. In this way, by performing continuous adsorption, desorption and catalytic combustion removal, the harmful components are effectively adsorbed, desorbed and catalytically burned with relatively few adsorbent layers and combustion catalyst layers. Therefore, in addition to the common effect of claim 2, it is possible to realize a device for removing harmful components that is compact, inexpensive, and low in maintenance cost.

【0006】本発明の吸着剤層を内装した反応容器は、
吸着ゾーン、脱着ゾーン、吸着も脱着もされない冷却ゾ
ーンに分割されており、また、耐熱性の無機質吸着剤層
は、上記各ゾーン間を、少なくとも吸着ゾーンから脱着
ゾーンまでの間を往復移動するため、吸着ゾーンに位置
する上記吸着剤層は、排ガスの通過により悪臭、有害成
分を吸着により濃縮することができ、この有害成分を吸
着した吸着剤層の部分を、往復移動により脱着ゾーンに
移動させると、加熱した脱着空気(浄化した排ガス、窒
素等のガスでも良い)により、吸着、濃縮した悪臭、有
害成分が脱着され、濃度の高い有害成分を含んだ脱着ガ
スが得られる。これを、脱着ゾーンの後段に配設されて
いる燃焼用触媒で悪臭、有害成分を燃焼除去することが
できる。そして、脱着した上記吸着剤層の部分は、再び
往復移動により吸着ゾーンへ戻り排ガス中の除去成分を
吸着、濃縮する。これにより排ガス中の悪臭、有害成分
の吸着除去と、吸着剤の脱着再生処理とを連続して同時
に行うことができるメリットがある。また、脱着ゾーン
は吸着剤層全体の数%〜50%以下でよく、排ガス中の
有害成分の吸着と分離して脱着操作ができるため、脱着
用空気(ガス)は、処理する排ガス量に比べて極めて少
量で足りることになり、かつ燃焼用触媒の量も少なくて
済む。さらに、吸着ゾーンは、冷却ゾーンを介して脱着
ゾーンを設けた構造とすることにより、脱着ゾーンで加
熱された吸着剤層は、冷却ゾーンで十分に冷却されるた
め、悪臭、有害成分が吸着除去されずにリークすること
はない。
The reaction vessel containing the adsorbent layer of the present invention is
It is divided into an adsorption zone, a desorption zone, and a cooling zone that is neither adsorbed nor desorbed, and the heat-resistant inorganic adsorbent layer reciprocates between the above-mentioned zones, at least from the adsorption zone to the desorption zone. The adsorbent layer located in the adsorption zone can condense offensive odors and harmful components by the passage of exhaust gas by adsorption, and the portion of the adsorbent layer that has adsorbed this harmful component is moved to the desorption zone by reciprocating movement. By heating desorbed air (which may be purified exhaust gas, gas such as nitrogen), the absorbed and concentrated malodor and harmful components are desorbed, and a desorbed gas containing a high concentration of harmful components is obtained. The odor and harmful components can be burned and removed by a combustion catalyst arranged in the latter stage of the desorption zone. Then, the desorbed portion of the adsorbent layer returns to the adsorption zone by reciprocating movement again to adsorb and concentrate the removed component in the exhaust gas. As a result, there is an advantage in that the malodor and harmful components in the exhaust gas can be removed by adsorption and the adsorbent desorption / regeneration process can be continuously performed at the same time. Further, the desorption zone may be several% to 50% or less of the entire adsorbent layer, and desorption operation can be performed by separating from the adsorption of harmful components in the exhaust gas. Therefore, a very small amount will suffice, and the amount of combustion catalyst will be small. Furthermore, the adsorption zone has a structure in which a desorption zone is provided via a cooling zone, so that the adsorbent layer heated in the desorption zone is sufficiently cooled in the cooling zone, and thus malodor and harmful components are adsorbed and removed. It will not leak without it.

【0007】[0007]

【発明の実施の形態】図1(a)、(b)は、本発明の
実施の形態の一例である有害成分の除去装置の構造を示
す模式図であり、図1(b)は、図1(a)のA−A矢
視図であり、吸着ゾーン5、冷却ゾーン6、脱着ゾーン
7の上部から見た断面図である。図において、排ガスフ
ァン2により吸引された排ガス1(排ガス1が必要加圧
状態で導入される場合は排ガスファン2は不要となるこ
ともある)は、吸着剤層を内装する反応容器3の吸着ゾ
ーン5に導入される。吸着剤層を内装する反応容器3内
の耐熱性の無機質吸着剤4は、往復移動が可能な構造と
なっており、油圧または空気圧の制御により、ピストン
9が耐熱性の無機質吸着剤層4と共に往復移動する。吸
着剤層を内装する反応容器3に導入された排ガス1は、
上記吸着剤層4を通過する際に、排ガス1中の悪臭、有
害成分を吸着する。耐熱性の無機質吸着剤層4を通過し
て浄化された排ガス1は、冷却ゾーン6に導入され、冷
却ゾーン6に位置する吸着剤層4を再び通過し、処理排
ガス8として系外に排出される。一方、脱着ゾーン7に
は、助燃バーナ10を有する排ガス予熱装置24が設置
され、助燃料11と燃焼空気ファン12からの空気13
を、助燃バーナ10により燃焼させて、吸着剤層4を必
要温度に加熱できる脱着空気14が常時供給されてい
る。吸着ゾーン5で、悪臭、有害成分を吸着した吸着剤
層4は、移動して脱着ゾーン7に入り、脱着空気14に
より加熱される。加熱された吸着剤層4は、吸着剤層4
を通過する脱着空気14により、吸着されている悪臭、
有害成分を脱着し、吸着剤層4より分離排気される。脱
着ゾーン7の後流には、燃焼用触媒層15が設けられて
おり、有害成分を含んだ脱着空気14は、燃焼用触媒1
5を通過時に、触媒の酸化作用により比較的低温で悪臭
成分、有害成分は燃焼され、浄化された燃焼処理排ガス
16となって系外へ排出される。脱着ゾーン7で、悪
臭、有害成分を脱着し、再生された吸着剤層4は、移動
して再び吸着ゾーン5に入り、排ガス1中の悪臭、有害
成分を再び吸着する。吸着剤層4は、吸着、脱着が行わ
れる全領域に対し、上記吸着、脱着操作を繰り返し行う
構造となっている。有害成分の除去装置の構造は、吸着
剤層を内装する反応容器3は、吸着ゾーン5、脱着ゾー
ン7、吸着ゾーン5と脱着ゾーン7の間にある冷却ゾー
ン6からなり、脱着ゾーン7は、冷却ゾーンを介して、
吸着ゾーン5を取り囲む構造としている。また、吸着剤
層を内装する反応容器3内の耐熱性の無機質吸着剤層4
は、往復移動が可能となるようにピストン9を設け、油
圧または空気圧を利用して上記吸着剤層4を移動させ
る。この際、吸着剤層4は、上記各ゾーン間を、少なく
とも吸着ゾーン5にて吸着剤層4が吸着した悪臭、有害
成分を脱着ゾーン7にまで移動できる構造となってい
る。この構造を持つことにより、吸着ゾーン5にて吸着
剤層4に吸着、濃縮された悪臭、有害成分は、必ず脱着
ゾーン7にまで移動し、脱着空気14により吸着剤層4
の悪臭、有害成分は脱着される。また、吸着ゾーン5と
脱着ゾーン7との間に、冷却ゾーン6を設けることによ
り、脱着ゾーン7で加温された吸着剤層4が移動する際
に、冷却ゾーン6を通る処理排ガス8により冷却され、
吸着ゾーン5に移動した時には悪臭、有害成分が吸着可
能な温度にまで十分に冷却されている。すなわち、冷却
ゾーン6は処理排ガス8が通過するため、この領域から
の悪臭、有害成分のリークは全く起こらない。さらに、
ピストン9により吸着剤層4の往復移動を可能にしたこ
とで、排ガス1中の悪臭、有害成分の吸着除去と、悪
臭、有害成分が吸着され飽和吸着状態に近づいた吸着剤
層の脱着再生処理とを同時に連続して行うことができ
る。一方、悪臭、有害成分は脱着の際には、処理排ガス
8の流路とは別の流路となるため、脱着空気量は排ガス
量と比べて少量で済むことになり、 燃焼用触媒層15
の容量も少なくて済む。また、脱着ゾーン7の吸着剤層
4からは悪臭、有害成分の高濃度の脱着ガスが発生する
ため、燃焼用触媒層15通過後の燃焼処理排ガス16は
高温となるので脱着空気14の一部として再利用するこ
とが可能である。本発明によれば、吸着剤層を内装する
反応容器を、吸着ゾーン、脱着ゾーン、冷却ゾーンに区
分したことにより、かつ/また、吸着剤層を往復移動さ
せることにより、排ガス中の悪臭、有害成分の吸着除去
と、悪臭、有害成分を吸着し飽和吸着状態に近づいた吸
着剤層の脱着再生処理とを同時に連続して行うことがで
きる。また、脱着を排ガスの吸着と分離して行うことが
できるため、脱着用空気は排ガス量に比べて著しく少量
でこと足りることになり、また燃焼用触媒の容量も少な
くて済み、さらに、燃焼処理排ガス16は高温となり、
脱着空気14の一部として再利用することができる。
1 (a) and 1 (b) are schematic views showing the structure of a harmful component removing apparatus, which is an example of an embodiment of the present invention, and FIG. FIG. 1A is a sectional view taken along the line A-A of FIG. In the figure, the exhaust gas 1 sucked by the exhaust gas fan 2 (the exhaust gas fan 2 may be unnecessary when the exhaust gas 1 is introduced in a required pressurization state) is the adsorption of the reaction vessel 3 containing the adsorbent layer. Introduced into Zone 5. The heat-resistant inorganic adsorbent 4 in the reaction vessel 3 having the adsorbent layer inside is structured to be capable of reciprocating movement, and the piston 9 together with the heat-resistant inorganic adsorbent layer 4 is controlled by controlling hydraulic pressure or air pressure. Move back and forth. The exhaust gas 1 introduced into the reaction vessel 3 containing the adsorbent layer is
When passing through the adsorbent layer 4, the malodorous and harmful components in the exhaust gas 1 are adsorbed. The exhaust gas 1 that has been purified by passing through the heat-resistant inorganic adsorbent layer 4 is introduced into the cooling zone 6, passes through the adsorbent layer 4 located in the cooling zone 6 again, and is discharged outside the system as the treated exhaust gas 8. It On the other hand, an exhaust gas preheating device 24 having an auxiliary combustion burner 10 is installed in the desorption zone 7, and the auxiliary fuel 11 and the air 13 from the combustion air fan 12 are provided.
Is constantly supplied with desorption air 14 capable of heating the adsorbent layer 4 to a required temperature by burning the adsorbent layer 4 with the auxiliary combustion burner 10. The adsorbent layer 4 that has adsorbed the malodorous and harmful components in the adsorption zone 5 moves into the desorption zone 7 and is heated by the desorption air 14. The heated adsorbent layer 4 is the adsorbent layer 4
The deodorizing air 14 passing through the
The harmful components are desorbed and separated and exhausted from the adsorbent layer 4. A combustion catalyst layer 15 is provided in the downstream of the desorption zone 7, and the desorption air 14 containing harmful components is used for the combustion catalyst 1
When passing through 5, the odorous components and harmful components are burned at a relatively low temperature due to the oxidizing action of the catalyst, and the purified combustion treatment exhaust gas 16 is discharged to the outside of the system. In the desorption zone 7, the bad odor and harmful components are desorbed, and the regenerated adsorbent layer 4 moves and enters the adsorption zone 5 again to adsorb the bad odor and harmful components in the exhaust gas 1 again. The adsorbent layer 4 has a structure in which the above-described adsorption and desorption operations are repeated for the entire area where adsorption and desorption are performed. The structure of the device for removing harmful components is such that the reaction vessel 3 containing the adsorbent layer is composed of an adsorption zone 5, a desorption zone 7, and a cooling zone 6 between the adsorption zone 5 and the desorption zone 7. Through the cooling zone,
It has a structure surrounding the adsorption zone 5. In addition, the heat-resistant inorganic adsorbent layer 4 in the reaction vessel 3 containing the adsorbent layer
Is provided with a piston 9 so as to be able to reciprocate, and moves the adsorbent layer 4 using hydraulic pressure or air pressure. At this time, the adsorbent layer 4 has a structure capable of moving the malodorous and harmful components adsorbed by the adsorbent layer 4 at least in the adsorption zone 5 to the desorption zone 7 between the respective zones. With this structure, the malodorous and harmful components adsorbed and concentrated on the adsorbent layer 4 in the adsorption zone 5 always move to the desorption zone 7, and the desorption air 14 causes the adsorbent layer 4 to desorb.
The offensive odor and harmful components are desorbed. Further, by providing the cooling zone 6 between the adsorption zone 5 and the desorption zone 7, when the adsorbent layer 4 heated in the desorption zone 7 moves, it is cooled by the treated exhaust gas 8 passing through the cooling zone 6. Is
When it moves to the adsorption zone 5, it is sufficiently cooled to a temperature at which it can adsorb malodorous and harmful components. That is, since the treated exhaust gas 8 passes through the cooling zone 6, no bad odor or leakage of harmful components from this region occurs. further,
By enabling the reciprocating movement of the adsorbent layer 4 by the piston 9, the adsorption and removal of the malodor and harmful components in the exhaust gas 1 and the desorption / regeneration process of the adsorbent layer that has adsorbed the malodor and harmful components and is close to the saturated adsorption state. And can be performed continuously at the same time. On the other hand, when the odor and harmful components are desorbed, the flow path is different from the flow path of the treated exhaust gas 8. Therefore, the amount of desorbed air is smaller than the exhaust gas amount, and the combustion catalyst layer 15
It requires less capacity. Further, since a bad odor and a high concentration of desorption gas of harmful components are generated from the adsorbent layer 4 in the desorption zone 7, the combustion treatment exhaust gas 16 after passing through the combustion catalyst layer 15 has a high temperature, so that a part of the desorption air 14 is generated. Can be reused as. According to the present invention, the reaction vessel containing the adsorbent layer is divided into an adsorption zone, a desorption zone, and a cooling zone, and / or by moving the adsorbent layer back and forth, a bad odor in the exhaust gas, harmful Adsorption and removal of components, and desorption / regeneration processing of the adsorbent layer that has adsorbed a malodorous or harmful component and is close to a saturated adsorption state can be simultaneously performed continuously. In addition, since desorption can be performed separately from adsorption of exhaust gas, desorption air can be significantly smaller than the amount of exhaust gas, and the capacity of the combustion catalyst can be small. 16 becomes hot,
It can be reused as part of the desorption air 14.

【0008】[0008]

【発明の効果】本発明は請求項1に記載のように、排ガ
ス中に含まれるアンモニア、アミン類、アルデヒド類ま
たはチオール類等の悪臭、有害成分を、吸着剤層により
吸着し、該吸着した有害成分を脱着した後、触媒燃焼に
より除去する方法において、吸着剤層を内装する反応容
器を、有害成分を吸着する吸着ゾーンと、有害成分を脱
着する脱着ゾーンと、上記吸着ゾーンと脱着ゾーンとの
間に、吸着または脱着を行わない冷却ゾーンとに分割
し、吸着剤層が上記各ゾーン間を自在に移動可能に構成
して、上記有害成分の吸着または脱着を行い、脱着した
有害成分を触媒燃焼し除去する方法である。このよう
に、一つの吸着剤層を吸着部と脱着部とに大別し、希薄
な濃度の有害成分を耐熱性の無機質吸着剤層で飽和濃度
近くに吸着する操作と、これを比較的少量の加熱空気
(ガス)で脱着して高濃度の有害成分を含む空気(ガ
ス)を生成して触媒燃焼する操作を、排ガス中の有害成
分の吸着操作と分離して行うことができるので、脱着
(または吸着)に用いる吸着剤の量は全体の吸着剤量の
1/2以下(数%ないし50%以下)でよく、また脱着
用の空気(ガス)も少量でよいので装置のコストおよび
維持費は安価となり、さらに冷却ゾーンを設けているか
ら、脱着ゾーンで加熱された吸着剤層は冷却ゾーンで十
分に冷却されるので吸着ゾーンにおいて有害成分は十分
に吸着され、排ガス中の悪臭、有害成分のリークは生じ
ない効果がある。また、本発明は請求項2に記載のよう
に、悪臭、有害成分を含有する排ガスが流通する煙道や
配管に、該有害成分を吸着、濃縮する耐熱性の無機質か
らなる吸着剤層を設け、該吸着剤層に吸着した有害成分
を脱着して、後流の燃焼用触媒で燃焼して除去する有害
成分の除去装置であって、吸着剤層を内装する反応容器
を、上記有害成分を吸着する吸着ゾーンと、上記有害成
分を脱着する脱着ゾーンと、さらに上記吸着ゾーンと脱
着ゾーンとの間に、吸着または脱着も行わない冷却ゾー
ンとに分割し、吸着剤層が上記各ゾーン間を自在に移動
可能な構造に構成し、上記脱着した有害成分を燃焼する
触媒層を少なくとも備えた有害成分の除去装置とするも
のである。このような構造とすることにより、上記請求
項1に示す有害成分の除去方法を効果的に実現させるこ
とができ、安価で維持費の安い高性能の有害成分の除去
装置が得られる。また、本発明は請求項3に記載のよう
に、請求項2において、吸着剤層を内装する反応容器
は、吸着ゾーンを、冷却ゾーンを介して脱着ゾーンで囲
む構造とした有害成分の除去装置とするものである。こ
のような構造とすることにより、脱着ゾーンで加熱され
た吸着剤層は、冷却ゾーンにおいて十分に冷却されるか
ら、吸着ゾーンにおいて有害成分がリークすることがな
く、上記請求項2の共通の効果に加えて、安価で信頼性
の高い有害成分の除去装置が得られる。また、本発明は
請求項4に記載のように、請求項2において、吸着剤層
は、該吸着剤層を内装する反応容器の各ゾーン間を、少
なくとも有害成分を吸着した吸着剤層は脱着ゾーンにま
で移動し、かつ上記吸着剤層は、吸着ゾーンと脱着ゾー
ンとの間を往復移動する構造とした有害成分の除去装置
とするものである。このような構造とすることにより、
吸着ゾーンで排ガス中の有害成分を十分に吸着剤層によ
り吸着し、これを脱着ゾーンに確実に移動して脱着操作
を行うことができるので、上記請求項2の共通の効果に
加えて、信頼性の高い有害成分の除去装置を実現するこ
とができる。また、本発明は請求項5に記載のように、
請求項2ないし請求項4のいずれか1項において、脱着
ゾーンに位置する有害成分を吸着した吸着剤層のみを加
熱し、有害成分を濃縮した状態で脱着した後、脱着ガス
流路の後流にのみ燃焼用触媒層を配設し、有害成分を燃
焼除去する有害成分の除去装置とするものである。この
ような構造とすることにより、有害成分を吸着した吸着
剤層のみを加熱して、有害成分を高濃度に含む比較的少
量の脱着ガスが生成でき、少ない燃焼用触媒で効果的に
燃焼除去することができると共に、高温の浄化ガスが得
られるので、これを脱着ガスの一部として用いることが
可能となり、上記請求項2の共通の効果に加え、安価で
維持費の安い有害成分の除去装置が得られる。また、本
発明は請求項6に記載のように、請求項2ないし請求項
5のいずれか1項において、連続的に吸着、脱着および
燃焼除去を行う手段を備えた有害成分の除去装置とする
ものである。このように、連続して吸着、脱着および触
媒燃焼除去を行うことにより、比較的少ない吸着剤層お
よび燃焼用触媒層で、有害成分を吸着、脱着、そして触
媒燃焼を行い効果的に除去することが可能となるので、
上記請求項2の共通の効果に加え、コンパクトで、安価
で維持費の安い有害成分の除去装置を実現することがで
きる。本発明の吸着剤層を内装した反応容器は、吸着ゾ
ーン、脱着ゾーン、吸着も脱着もされない冷却ゾーンに
分割されており、また、耐熱性の無機質吸着剤層は、上
記各ゾーン間を、少なくとも吸着ゾーンから脱着ゾーン
までの間を往復移動するため、吸着ゾーンに位置する上
記吸着剤層は、排ガスの通過により悪臭、有害成分を吸
着により濃縮することができ、この有害成分を吸着した
吸着剤層の部分を、往復移動により脱着ゾーンに移動さ
せると、加熱した脱着空気(浄化した排ガス、窒素等の
ガスでも良い)により、吸着、濃縮した悪臭、有害成分
が脱着され、濃度の高い有害成分を含んだ脱着ガスが得
られる。これを、脱着ゾーンの後段に配設されている燃
焼用触媒で悪臭、有害成分を燃焼除去することができ
る。そして、脱着した上記吸着剤層の部分は、再び往復
移動により吸着ゾーンへ戻り排ガス中の除去成分を吸
着、濃縮する。これにより排ガス中の悪臭、有害成分の
吸着除去と、吸着剤の脱着再生処理とを、連続して同時
に行うことができるメリットがある。また、脱着ゾーン
は吸着剤層全体の数%〜50%以下でよく、排ガス中の
有害成分の吸着とは分離して脱着操作でがきるため、脱
着用空気(ガス)は、処理する排ガス量に比べて極めて
少量で足りることになり、かつ燃焼用触媒の量も少なく
て済む。さらに、吸着ゾーンは、冷却ゾーンを介して脱
着ゾーンを設けた構造とすることにより、脱着ゾーンで
加熱された吸着剤層は冷却ゾーンで十分に冷却されるこ
とになり、吸着ゾーンにおいて悪臭、有害成分が吸着除
去されずにリークすることはない。
According to the present invention, as described in claim 1, the odorous and harmful components such as ammonia, amines, aldehydes or thiols contained in the exhaust gas are adsorbed by the adsorbent layer and adsorbed. After desorption of harmful components, in a method of removing by catalytic combustion, a reaction vessel containing an adsorbent layer, an adsorption zone for adsorbing harmful components, a desorption zone for desorbing harmful components, the adsorption zone and desorption zone In the meantime, it is divided into a cooling zone that does not adsorb or desorb, and the adsorbent layer is configured to be freely movable between the above-mentioned zones to adsorb or desorb the harmful components and remove the desorbed harmful components. It is a method of burning the catalyst to remove it. In this way, one adsorbent layer is roughly divided into an adsorption part and a desorption part, and an operation of adsorbing a dilute concentration of harmful components near the saturation concentration with a heat-resistant inorganic adsorbent layer, and a relatively small amount of this The desorption with the heated air (gas) to generate the air (gas) containing a high concentration of harmful components and the catalytic combustion can be performed separately from the adsorption of the harmful components in the exhaust gas. The amount of adsorbent used for (or adsorption) may be 1/2 or less (several% to 50% or less) of the total amount of adsorbent, and desorption air (gas) may be small, so the cost and maintenance of the device The cost is low, and since the cooling zone is provided, the adsorbent layer heated in the desorption zone is sufficiently cooled in the cooling zone, so that the harmful components are sufficiently adsorbed in the adsorption zone, and the odor and odor in the exhaust gas Has the effect of not leaking components Further, according to the present invention, as described in claim 2, an adsorbent layer made of a heat-resistant inorganic material for adsorbing and concentrating the harmful components is provided in a flue or a pipe through which exhaust gas containing a malodorous or harmful component flows. A device for removing harmful components that desorbs and removes the harmful components adsorbed to the adsorbent layer and burns them with a downstream catalyst for combustion to remove the harmful components from the reaction vessel containing the adsorbent layer. The adsorption zone for adsorbing, the desorption zone for desorbing the harmful components, and further between the adsorption zone and the desorption zone, divided into a cooling zone not adsorbed or desorbed, the adsorbent layer between the respective zones. An apparatus for removing harmful components, which is structured to be freely movable and has at least a catalyst layer for burning the desorbed harmful components. With such a structure, the method for removing harmful components described in claim 1 can be effectively realized, and a high-performance device for removing harmful components that is inexpensive and has low maintenance costs can be obtained. Further, according to the present invention as set forth in claim 3, in claim 2, the reaction vessel having an adsorbent layer therein has a structure in which an adsorption zone is surrounded by a desorption zone via a cooling zone. It is what With such a structure, since the adsorbent layer heated in the desorption zone is sufficiently cooled in the cooling zone, no harmful component leaks in the adsorption zone, and the common effect of the above-mentioned claim 2 is obtained. In addition, an inexpensive and highly reliable device for removing harmful components can be obtained. Further, according to the present invention, as described in claim 4, in claim 2, the adsorbent layer is desorbed between the zones of the reaction vessel containing the adsorbent layer, at least the adsorbent layer having adsorbed harmful components. The adsorbent layer moves to the zone, and the adsorbent layer is a device for removing harmful components having a structure of reciprocating between the adsorption zone and the desorption zone. By adopting such a structure,
In the adsorption zone, the harmful components in the exhaust gas can be sufficiently adsorbed by the adsorbent layer, and the adsorbent layer can be reliably moved to the desorption zone to perform the desorption operation. It is possible to realize a device for removing harmful components having high properties. Further, according to the present invention, as described in claim 5,
In any one of Claims 2 thru | or 4, only the adsorbent layer which adsorbed the harmful component located in the desorption zone is heated, and after desorbing in the state which concentrated the harmful component, the desorption gas flow path wake A combustion catalyst layer is provided only on the above to form a harmful component removing device that burns and removes harmful components. With such a structure, only the adsorbent layer that has adsorbed harmful components can be heated to generate a relatively small amount of desorbed gas containing high concentration of harmful components, and the combustion catalyst can be effectively removed with less combustion catalyst. Since it is possible to obtain a high-temperature purified gas, it becomes possible to use this as a part of the desorption gas, and in addition to the common effect of the above-mentioned claim 2, the removal of harmful components which are inexpensive and inexpensive to maintain The device is obtained. Further, as described in claim 6, the present invention provides the harmful component removing device according to any one of claims 2 to 5, which comprises means for continuously performing adsorption, desorption and combustion removal. It is a thing. In this way, by carrying out continuous adsorption, desorption, and catalytic combustion removal, it is possible to effectively remove harmful components by adsorption, desorption, and catalytic combustion with a relatively small amount of adsorbent layer and combustion catalyst layer. Is possible,
In addition to the common effects of the second aspect, it is possible to realize a compact, inexpensive, low maintenance cost harmful substance removing device. The reaction vessel containing the adsorbent layer of the present invention is divided into an adsorption zone, a desorption zone, and a cooling zone that is neither adsorbed nor desorbed, and the heat-resistant inorganic adsorbent layer is at least between the zones. Since it moves back and forth between the adsorption zone and the desorption zone, the adsorbent layer located in the adsorption zone can condense offensive odors and harmful components by adsorption of exhaust gas. When the layer part is moved to the desorption zone by reciprocating movement, the heated desorption air (purified exhaust gas, gas such as nitrogen may be adsorbed and concentrated odor, harmful components are desorbed, and high concentration of harmful components A desorption gas containing is obtained. The odor and harmful components can be burned and removed by a combustion catalyst arranged in the latter stage of the desorption zone. Then, the desorbed portion of the adsorbent layer returns to the adsorption zone by reciprocating movement again to adsorb and concentrate the removed component in the exhaust gas. As a result, there is an advantage that the bad odor and harmful components in the exhaust gas can be removed by adsorption and the adsorbent desorption / regeneration process can be continuously performed simultaneously. Further, the desorption zone may be several% to 50% or less of the whole adsorbent layer, and the desorption operation can be performed separately from the adsorption of harmful components in the exhaust gas, so the desorption air (gas) is the amount of exhaust gas to be treated. Compared with the above, a very small amount will be sufficient, and the amount of the combustion catalyst will be small. In addition, the adsorption zone has a structure in which a desorption zone is provided via a cooling zone, so that the adsorbent layer heated in the desorption zone is sufficiently cooled in the cooling zone, and the odor and harmful odor in the adsorption zone are reduced. The components will not leak without being absorbed and removed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態で例示した有害成分の除去
装置の構成を示す模式図。
FIG. 1 is a schematic diagram showing a configuration of a harmful component removing device exemplified in an embodiment of the present invention.

【図2】従来の触媒燃焼式脱臭装置の構成の一例を示す
模式図。
FIG. 2 is a schematic diagram showing an example of the configuration of a conventional catalytic combustion type deodorizing device.

【図3】従来の吸着と触媒燃焼を組み合わせた脱臭装置
の構成の一例を示す模式図。
FIG. 3 is a schematic diagram showing an example of the configuration of a conventional deodorizing device that combines adsorption and catalytic combustion.

【符号の説明】[Explanation of symbols]

1…排ガス 2…排ガスファン 3…吸着剤層を内装する反応容器 4…耐熱性の無機質吸着剤層 5…吸着ゾーン 6…冷却ゾーン 7…脱着ゾーン 8…処理排ガス 9…ピストン 10…助燃バーナ 11…助燃料 12…燃焼空気ファン 13…空気 14…脱着空気 15…燃焼用触媒層 16…燃焼処理排ガス 17…熱交換器 18…予熱排ガス 19…触媒燃焼炉 20…煙突 21…排気 22…温度調節計 23…コントロール弁 24…排ガス予熱装置 25…廃熱回収装置 DESCRIPTION OF SYMBOLS 1 ... Exhaust gas 2 ... Exhaust gas fan 3 ... Reaction container containing an adsorbent layer 4 ... Heat-resistant inorganic adsorbent layer 5 ... Adsorption zone 6 ... Cooling zone 7 ... Desorption zone 8 ... Treatment exhaust gas 9 ... Piston 10 ... Combustion burner 11 ... auxiliary fuel 12 ... combustion air fan 13 ... air 14 ... desorption air 15 ... combustion catalyst layer 16 ... combustion processing exhaust gas 17 ... heat exchanger 18 ... preheating exhaust gas 19 ... catalytic combustion furnace 20 ... chimney 21 ... exhaust 22 ... temperature control Total 23 ... Control valve 24 ... Exhaust gas preheating device 25 ... Waste heat recovery device

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】排ガス中に含まれるアンモニア、アミン
類、アルデヒド類またはチオール類等の悪臭、有害成分
を、吸着剤層により吸着し、該吸着した有害成分を脱着
した後、触媒燃焼により除去する方法において、 吸着剤層を内装する反応容器を、有害成分を吸着する吸
着ゾーンと、有害成分を脱着する脱着ゾーンと、上記吸
着ゾーンと脱着ゾーンとの間に、吸着または脱着を行わ
ない冷却ゾーンとに分割し、吸着剤層が上記各ゾーン間
を自在に移動可能に構成して、排ガス中の上記有害成分
の吸着または脱着を行い、脱着した有害成分を触媒燃焼
し除去する方法であって、 上記排ガス中に含まれる有害成分を耐熱性の無機質から
なる吸着剤層により吸着する工程と、 上記吸着剤層により吸着された有害成分を、加熱した空
気または所定のガスにより脱着して、濃縮された有害成
分を含むガスを生成する工程と、 上記濃縮された有害成分を含む脱着ガスを燃焼用触媒層
により燃焼除去する工程を、少なくとも連続的に行うこ
とを特徴とする有害成分の除去方法。
1. A odorous or harmful component such as ammonia, amines, aldehydes or thiols contained in exhaust gas is adsorbed by an adsorbent layer, and the adsorbed harmful component is desorbed and then removed by catalytic combustion. In the method, a reaction vessel containing an adsorbent layer is provided with an adsorption zone for adsorbing harmful components, a desorption zone for desorbing harmful components, and a cooling zone for performing no adsorption or desorption between the adsorption zone and the desorption zone. And a method in which the adsorbent layer is configured to be freely movable between the respective zones to adsorb or desorb the harmful components in the exhaust gas, and to catalytically remove the desorbed harmful components. A step of adsorbing a harmful component contained in the exhaust gas by an adsorbent layer made of a heat-resistant inorganic material, a harmful component adsorbed by the adsorbent layer, heated air or a predetermined amount. And a step of generating a gas containing a concentrated harmful component by desorption with a gas and a step of burning and removing the desorbed gas containing the concentrated harmful component by a combustion catalyst layer at least continuously. How to remove harmful components.
【請求項2】悪臭、有害成分を含有する排ガスが流通す
る煙道または配管に、排ガス中の有害成分を吸着し濃縮
する耐熱性の無機質からなる吸着剤層を設置し、該吸着
剤層に吸着された有害成分を脱着して、後流の燃焼用触
媒で燃焼して除去する有害成分の除去装置であって、吸
着剤層を内装する反応容器を、有害成分を吸着する吸着
ゾーンと、有害成分を脱着する脱着ゾーンと、さらに吸
着ゾーンと脱着ゾーンとの間に、吸着または脱着も行わ
ない冷却ゾーンとに分割し、吸着剤層が上記各ゾーン間
を自在に移動可能な構造とし、脱着した有害成分を燃焼
除去する触媒層を少なくとも備えたことを特徴とする有
害成分の除去装置。
2. A heat-resistant inorganic adsorbent layer for adsorbing and concentrating harmful components in exhaust gas is installed in a flue or pipe through which exhaust gas containing malodorous and harmful components flows, and the adsorbent layer is provided with the adsorbent layer. A device for removing harmful components that desorbs adsorbed harmful components and burns with a downstream catalyst for combustion to remove the adsorbent layer, a reaction container having an adsorbent zone for adsorbing the harmful components, Desorption zone for desorbing harmful components, further between the adsorption zone and the desorption zone, divided into a cooling zone that also does not adsorb or desorb, the adsorbent layer with a structure that can move freely between the above zones, A device for removing harmful components, comprising at least a catalyst layer for burning and removing the desorbed harmful components.
【請求項3】請求項2において、吸着剤層を内装する反
応容器は、吸着ゾーンを、冷却ゾーンを介して脱着ゾー
ンで囲む構造としたことを特徴とする有害成分の除去装
置。
3. The apparatus for removing harmful components according to claim 2, wherein the reaction vessel containing the adsorbent layer has a structure in which the adsorption zone is surrounded by a desorption zone through a cooling zone.
【請求項4】請求項2において、吸着剤層は、該吸着剤
層を内装する反応容器の各ゾーン間を、少なくとも有害
成分を吸着した吸着剤層は脱着ゾーンにまで移動できる
構成となし、かつ上記吸着剤層は、吸着ゾーンと脱着ゾ
ーンとの間を自在に往復移動する構造としたことを特徴
とする有害成分の除去装置。
4. The adsorbent layer according to claim 2, wherein the adsorbent layer having at least harmful components adsorbed therein can be moved to the desorption zone between the zones of the reaction vessel containing the adsorbent layer. The adsorbent layer has a structure in which it reciprocates freely between the adsorption zone and the desorption zone.
【請求項5】請求項2ないし請求項4のいずれか1項に
おいて、脱着ゾーンに位置する有害成分を吸着した吸着
剤層のみを加熱して、有害成分を高濃度に含む脱着ガス
を生成した後、脱着ガス流路の後流にのみ燃焼用触媒層
を設置し、有害成分を燃焼除去する手段を有することを
特徴とする有害成分の除去装置。
5. The desorption gas according to any one of claims 2 to 4, wherein only the adsorbent layer adsorbing the harmful component located in the desorption zone is heated to generate a desorbed gas containing the harmful component in a high concentration. After that, a device for removing harmful components is provided, in which a catalyst layer for combustion is installed only in the wake of the desorption gas flow path, and means for burning and removing harmful components is provided.
【請求項6】請求項2ないし請求項5のいずれか1項に
おいて、連続的に吸着、脱着および触媒による燃焼除去
を行う手段を備えたことを特徴とする有害成分の除去装
置。
6. A device for removing harmful components according to any one of claims 2 to 5, further comprising means for continuously performing adsorption, desorption, and combustion removal by a catalyst.
JP29403795A 1995-11-13 1995-11-13 Method and apparatus for removing harmful component Pending JPH09137932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29403795A JPH09137932A (en) 1995-11-13 1995-11-13 Method and apparatus for removing harmful component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29403795A JPH09137932A (en) 1995-11-13 1995-11-13 Method and apparatus for removing harmful component

Publications (1)

Publication Number Publication Date
JPH09137932A true JPH09137932A (en) 1997-05-27

Family

ID=17802459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29403795A Pending JPH09137932A (en) 1995-11-13 1995-11-13 Method and apparatus for removing harmful component

Country Status (1)

Country Link
JP (1) JPH09137932A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107174922A (en) * 2017-05-11 2017-09-19 杭州澳欣健康管理有限公司 A kind of closed waste gas circulation processing system of air film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107174922A (en) * 2017-05-11 2017-09-19 杭州澳欣健康管理有限公司 A kind of closed waste gas circulation processing system of air film

Similar Documents

Publication Publication Date Title
KR101309714B1 (en) The treating system of odors and volatile organic compounds simultaneously
KR101311269B1 (en) ENERGY EFFECTIVE APPARATUS FOR REMOVING VOCs AND VOCs REMOVING METHOD USING THE SAME
KR101250940B1 (en) The treating system of odors and volatile organic compounds simultaneously
KR102176906B1 (en) Apparatus for removing bad smell of ascon and method the same
KR20080097500A (en) The treating system of odors and volatile organic compounds simultaneously
CN111151094A (en) Regeneration and purification method for organic polluted waste gas
KR100324035B1 (en) Catalytic Incinerator with Dual-function Catalysts of Adsorption and Oxidation for VOCs Removal
CN101920152B (en) Method for treating organic matters in large-capacity industrial waste gas
KR101996411B1 (en) Pulsed-heatable VOC removal catalyst system
KR100889639B1 (en) Apparatus for destruction of volatile organic compounds
KR100582718B1 (en) Method and equipment for continuous vacuum thermal regeneration of adsorbent and recovery of adsorbate
JPH09137932A (en) Method and apparatus for removing harmful component
KR20020057852A (en) A Method for Recovery and Removal of Volatile Organic Compounds, and An Apparatus Using the Method
JP2001090931A (en) Deodorizing device
JP3819587B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
KR100561253B1 (en) A system for catalytic oxidation of vocs
KR200287399Y1 (en) An Apparatus for Recovery and Removal of Volatile Organic Compounds
CN110624360A (en) VOCs waste gas purification device, purification method and purification system
JPH1157392A (en) Treatment of waste gas and device therefor
KR102572767B1 (en) Volatile Organic Compound Reduction System and Reduction Method
KR20240002282A (en) System for Removing Harmful Gas and Odor
KR100473646B1 (en) An apparatus for combustion with adsorption and concentration of volatile organic compound gas
JPH0975670A (en) Treatment of organic pollutant
SU1773456A1 (en) Device for cleaning waste gases from combustible components
JPH0684141U (en) Deodorizer