JPH09137204A - Porous body metallic composite cylinder - Google Patents

Porous body metallic composite cylinder

Info

Publication number
JPH09137204A
JPH09137204A JP31592595A JP31592595A JPH09137204A JP H09137204 A JPH09137204 A JP H09137204A JP 31592595 A JP31592595 A JP 31592595A JP 31592595 A JP31592595 A JP 31592595A JP H09137204 A JPH09137204 A JP H09137204A
Authority
JP
Japan
Prior art keywords
metal
porous
metallic
cylinder
bodies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31592595A
Other languages
Japanese (ja)
Other versions
JP3162984B2 (en
Inventor
Masaru Sasaki
勝 佐々木
Ryutaro Motoki
龍太郎 元木
Atsushi Funakoshi
淳 船越
Takashi Nishi
隆 西
Akira Kosaka
晃 小阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOGO KAIHATSU KK
Kubota Corp
Original Assignee
SOGO KAIHATSU KK
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOGO KAIHATSU KK, Kubota Corp filed Critical SOGO KAIHATSU KK
Priority to JP31592595A priority Critical patent/JP3162984B2/en
Publication of JPH09137204A publication Critical patent/JPH09137204A/en
Application granted granted Critical
Publication of JP3162984B2 publication Critical patent/JP3162984B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a porous body metallic composite cylinder applicable to various uses by forming hot isotropic pressure sintered bodies having pore distributions different from each other by respective layers in a metallic cylinder having a concentric multiple structure. SOLUTION: A porous body metallic composite cylinder 1 is composed in such a manner that metallic porous bodies 5, 6 and 7 composed of hot isotropic pressure sintered bodies are formed in metallic cylinders 2, 3 and 4 having a multiple structure such as a concentric tripple structure. Concretely, the metallic cylinders 2, 3 and 4 formed of corrosion resistant metals such a stainless steel, titanium, alloys or the like are arranged into the shape of a concentric circle, and in the above, the metallic porous bodies 5, 6 and 7 having desired porosity and prescribed pore size are formed. As the sintering raw material powder of the metallic porous bodies 5, 6 and 7, stainless steel series, tool steel series, maraging steel series, high speed steel series, nonferrous metal series or the like are used. The porosity and pore size in the metallic porous bodies are regulated with the raw material, pressurizing temp., pressurizing force and treating time as regulating factors. At the time of digging grooves 3a and 3b of plural strips on the inner and outer circumferences of the metallic cylinders 2 to 4, the adhesive strength of the porous metallic bodies 5 to 7 can be increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、混合器、化学反応
筒、カッター、フィルター、金属触媒、防音材、含浸メ
タルなどに適用される多孔質体金属複合筒に関する。
TECHNICAL FIELD The present invention relates to a porous metal composite cylinder applied to a mixer, a chemical reaction cylinder, a cutter, a filter, a metal catalyst, a soundproofing material, an impregnated metal and the like.

【0002】[0002]

【従来の技術】金属多孔質体は、例えば、金属粉末にス
テンレス鋼の金属繊維を混入した混合物を所要形状に加
圧成形した後、加熱焼結処理する方法により製造されて
いる。或いは又、金属粉末にバインダや溶剤などを加え
てスラリーを調製した後、予備焼成でバインダや溶剤な
どを除去し、次に焼成による焼結を行う方法により製造
されている。また、金属多孔質体を気孔分布の異なる複
数の層からなる積層構造の複層多孔体として製造する方
法としては、金属粉末や金属繊維に、加熱消失性繊維を
異なる配合比率で混合した複数枚の成形体を加圧成形
し、その成形体を積層して加熱焼結処理する方法が提案
されている(特開昭63−171803号公報)。
2. Description of the Related Art A metal porous body is manufactured, for example, by a method in which a mixture of metal powder and stainless steel metal fibers is pressure-molded into a desired shape and then heated and sintered. Alternatively, it is produced by a method in which a binder, a solvent, etc. are added to metal powder to prepare a slurry, the binder, the solvent, etc. are removed by preliminary firing, and then sintering is performed by firing. In addition, as a method for producing a metal porous body as a multilayer porous body having a laminated structure composed of a plurality of layers having different pore distributions, a plurality of metal powders or metal fibers mixed with heat-dissipating fibers at different mixing ratios are used. A method has been proposed in which the molded body of (1) is pressure-molded, the molded bodies are laminated and heat-sintered (JP-A-63-171803).

【0003】[0003]

【発明が解決しようとする課題】従来の金属多孔質体の
製造方法は、原料粉末を加圧成形した後、成形体の焼結
処理を常圧焼結により行うものである。したがって金属
多孔質体の気孔率、気孔径などの気孔特性の制御が困難
である。また成形用のバインダーを混入して製造する多
孔質体の場合は、強度を確保し難く、また、複層多孔質
体では、積属界面の接合強度を確保することも容易でな
い。本発明は、気孔特性の異なる複数の多孔質金属体
が、その回りの金属円筒と一体となり、混合器、化学反
応筒、カッター、フィルター、金属触媒、防音材、含浸
メタルなど各種の用途に適用可能な多孔質体金属複合筒
を提供することを目的とする。
In the conventional method for producing a porous metal body, the raw material powder is pressure-molded and then the green body is sintered by pressureless sintering. Therefore, it is difficult to control the porosity, the pore size, and other pore characteristics of the porous metal body. Further, it is difficult to secure the strength in the case of a porous body produced by mixing a molding binder, and it is not easy to secure the bonding strength at the product-metal interface in a multilayer porous body. INDUSTRIAL APPLICABILITY The present invention is applied to various applications such as a mixer, a chemical reaction tube, a cutter, a filter, a metal catalyst, a soundproofing material, and an impregnated metal in which a plurality of porous metal bodies having different pore characteristics are integrated with the surrounding metal cylinder. An object is to provide a possible porous metal composite cylinder.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
め、請求項1に係る多孔質体金属複合筒は、同心円状に
配置された多重構造の金属円筒の中に、熱間等方加圧焼
結体からなる金属多孔質体を形成してなり、前記金属多
孔質体は、各層毎に気孔分布が異なっていることを特徴
としている。ここで、金属円筒は、その内外周側に複数
条の溝を穿設しても良く、この場合には、金属円筒と金
属多孔質体の接合強度を高めることができる。また、金
属円筒は、それぞれ軸方向に傾斜を有する円筒形として
も良い。なお、熱間等方加圧処理とは、圧力容器中に処
理材を挿入し、高温下においてガスを圧力媒体として高
い等方圧力を加えることにより、高温、高圧の相乗効果
を利用して、金属粉末の加圧焼結をする処理をいう。金
属粉末の材料は、使用環境からの要請(例えば耐食性、
耐摩耗性、放熱性)に応じて適宜に選択され、また、気
孔率なども多孔質体金属複合筒の用途に応じて適宜に決
定される。なお、高温・高圧に過ぎると気孔率が小さく
なり、一方、高温・高圧が不足すると粒子間の接着力に
欠けるので、使用する金属粉末などの種類に応じて、最
適な温度や圧力に調整する必要がある。
In order to achieve the above-mentioned object, a porous metal composite cylinder according to a first aspect of the present invention comprises a multi-structured metal cylinder arranged concentrically in a hot isotropy. A porous metal body made of a pressure-sintered body is formed, and the porous metal body is characterized in that the pore distribution is different for each layer. Here, the metal cylinder may be provided with a plurality of grooves on the inner and outer peripheral sides thereof, and in this case, the bonding strength between the metal cylinder and the metal porous body can be increased. Further, the metal cylinder may be a cylindrical shape having an inclination in the axial direction. In addition, the hot isostatic pressing process is a process in which a processing material is inserted into a pressure vessel, and a high isostatic pressure is applied using a gas as a pressure medium under a high temperature, thereby utilizing a synergistic effect of a high temperature and a high pressure. It refers to the process of sintering metal powder under pressure. The material of the metal powder is required by the environment of use (for example, corrosion resistance,
It is appropriately selected depending on the wear resistance and heat dissipation), and the porosity is also appropriately determined according to the application of the porous metal composite cylinder. If the temperature and pressure are too high, the porosity will decrease. On the other hand, if the temperature and pressure are insufficient, the adhesion between the particles will be insufficient. Therefore, adjust the temperature and pressure to the optimum values according to the type of metal powder used. There is a need.

【0005】[0005]

【発明の実施の形態】以下、実施例に基づいて、この発
明を更に詳細に説明する。図1(b)は、本発明に係る
多孔質体金属複合筒1を図示したものであり、図1
(a)や図2は、その構成要素を図示したものである。
図示の通り、この多孔質体金属複合筒1は、同心3重構
造からなる金属円筒の中に、熱間等方加圧焼結体からな
る金属多孔質体を形成して構成されている。具体的に
は、ステンレス、チタン、合金などの耐食性金属で形成
された大中小の金属円筒2,3,4を同心円状に配置
し、その中に所定の気孔率と所定の気孔径を有する金属
多孔質体5,6,7を形成して構成されている(図1参
照)。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail based on embodiments. FIG. 1B shows a porous metal composite cylinder 1 according to the present invention.
FIG. 2A and FIG. 2 show the constituent elements.
As shown in the figure, the porous metal-metal composite cylinder 1 is configured by forming a metal porous body made of a hot isostatic pressing sintered body in a metal cylinder having a concentric triple structure. Specifically, large, medium and small metal cylinders 2, 3 and 4 formed of corrosion resistant metal such as stainless steel, titanium and alloy are arranged concentrically, and a metal having a predetermined porosity and a predetermined pore diameter therein. It is configured by forming porous bodies 5, 6, and 7 (see FIG. 1).

【0006】金属多孔質体5,6,7の焼結原料粉末に
は、例えば、ステンレス鋼系(SUS304,SUS6
30など)、工具鋼系(SKD61,SKD11な
ど)、マルエージング鋼系(18Ni系、20Ni系な
ど)、高速度鋼(SKH51,SKH55など)、非鉄
金属系(アルミ合金、チタン合金など)の各種金属が使
用される。金属多孔質体の気孔率や気孔径は、必要に応
じて適宜に選択されるが、気孔率を7.0〜50.0
%、気孔径を500μm以下とする場合には、特願平6
−255228号の出願明細書に開示されたところによ
る。すなわち、気孔率や気孔径に対応した粒径の原料粉
末をカプセルに真空密封し、高緻密質の焼結体における
処理条件より、低温・低圧・短時間の処理条件にて熱間
等方加圧焼結(HIP)処理を行う。例えば、ステンレ
ス鋼や合金工具鋼系粉末を原料粉末とするHIP処理で
は、温度400〜800℃程度、加圧力50〜150M
Pa程度、処理時間0.5〜4Hr程度とし、高速度鋼
系粉末を原料粉末とする場合は、温度300〜800℃
程度、加圧力50〜150MPa程度、処理時間0.5
〜4Hr程度とする。なお、焼結体として得られる金属
多孔体の気孔率や気孔径は、加圧温度や加圧力や処理時
間などを制御因子として調整される。また、HIP処理
の後、融点の60〜90%の温度域に2〜10Hr程度
の時間保持する熱処理を施せば、焼結体の気孔率や気孔
径に実質的な変化を生じさせずに、粒子同志の結合を強
化することができる。
The sintering raw material powder for the porous metal bodies 5, 6, 7 is, for example, stainless steel type (SUS304, SUS6).
30), tool steel (SKD61, SKD11, etc.), maraging steel (18Ni, 20Ni, etc.), high-speed steel (SKH51, SKH55, etc.), non-ferrous metal (aluminum alloy, titanium alloy, etc.) Metal is used. The porosity and the pore diameter of the metal porous body are appropriately selected as necessary, but the porosity is 7.0 to 50.0.
%, When the pore diameter is 500 μm or less, Japanese Patent Application No.
-255228. That is, the raw material powder having a particle size corresponding to the porosity and the pore diameter is vacuum-sealed in a capsule, and hot isostatic treatment is performed at a low temperature, a low pressure, and a short processing time, compared with the processing conditions of a highly dense sintered body. Pressure sintering (HIP) processing is performed. For example, in HIP processing using stainless steel or alloy tool steel-based powder as a raw material powder, the temperature is about 400 to 800 ° C., and the pressure is 50 to 150 M.
When the high speed steel-based powder is used as the raw material powder, the temperature is 300 to 800 ° C.
Degree, pressure 50 to 150 MPa, processing time 0.5
Approximately 4 hours. The porosity and pore diameter of the metal porous body obtained as a sintered body are adjusted by controlling the pressurizing temperature, the pressurizing force, the processing time and the like. Further, after the HIP treatment, if a heat treatment for maintaining the temperature range of 60 to 90% of the melting point for about 2 to 10 hours is performed without substantially changing the porosity and the pore diameter of the sintered body, The bonding between particles can be strengthened.

【0007】多孔質体金属複合筒1は、上記のような方
法によって一体成形されるが、金属円筒2,3,4の内
外周側には、図1(a)のような、複数条の溝3a,3
bを穿設しても良く、この場合には金属円筒2,3,4
と金属多孔質体5,6,7の接合強度をより高めること
ができる。また、金属多孔質体5,6,7は、それぞれ
を、軸方向に多層構造としても良く、そうすれば、多孔
質体金属複合筒1の軸方向について気孔分布を異ならせ
ることができて好ましい。この場合、例えば、多孔質体
5〜7の上部から下部に向けて気孔率などを小さく形成
すれば良いが、その製造方法は、特願平7−11159
3号の明細書に開示したところによる。つまり、粒度や
材質の異なる複数種の金属粉末などを積層充填し、温度
0.2〜0.85mpK、加圧力0.5〜150MPa
の条件下で熱間等方加圧処理を行って複層金属多孔質体
7,8,9を製造すれば良い。なお、mpKは粉末の融
点(絶対温度)であって、異材種の粉末が積層充填され
る場合には、低融点粉末の融点をいう。また、粒度や材
質の異なる複数種の金属粉末などを積層充填し、冷間加
圧処理の後、熱間等方加圧処理を行うようにしても良
い。
The porous metal composite cylinder 1 is integrally molded by the above-mentioned method, but a plurality of strips as shown in FIG. 1 (a) are formed on the inner and outer peripheral sides of the metal cylinders 2, 3 and 4. Grooves 3a, 3
b may be bored, in this case, metal cylinders 2, 3, 4
It is possible to further increase the bonding strength between the metal porous body 5, 6, and 7. The porous metal bodies 5, 6 and 7 may each have a multilayer structure in the axial direction, which is preferable because the pore distribution can be made different in the axial direction of the porous metal composite cylinder 1. . In this case, for example, the porosity may be reduced from the upper part to the lower part of the porous bodies 5 to 7, but the manufacturing method thereof is described in Japanese Patent Application No. 7-11159.
As disclosed in the specification of No. 3. That is, a plurality of kinds of metal powders having different particle sizes and materials are stacked and filled, and the temperature is 0.2 to 0.85 mpK and the pressing force is 0.5 to 150 MPa.
The hot isostatic pressing treatment may be performed under the above condition to manufacture the multi-layer metal porous bodies 7, 8 and 9. Here, mpK is the melting point (absolute temperature) of the powder, and refers to the melting point of the low melting point powder when different kinds of powders are stacked and filled. Alternatively, a plurality of kinds of metal powders having different particle sizes and materials may be stacked and filled, and after the cold pressing, a hot isostatic pressing may be performed.

【0008】図3は、本発明に係る多孔質体金属複合筒
1を混合器に適用する場合の実施例を図示したものであ
る。この例では、金属円筒2A〜4Aの軸方向長さは、
小径円筒4Aが最も短く、大径円筒2Aが最も長くなっ
ている。また、各円筒2A〜4Aの中の金属多孔質体
5,6,7は、その終端部が内向き球面状に加工されて
いる。そして、各金属円筒2A〜4Aの上端面を揃える
ことにより、金属多孔質体5,6,7の終端部が、下向
きに段々と広がってゆく多段球面状となっている。この
多孔質体金属複合筒1を混合器に用いる場合には、金属
多孔質体の上部空隙部7a,6a,5aから、例えば3
種の気体A,B,Cをそれぞれ圧入させる。そして、圧
入された各気体A,B,Cは、多孔質体5〜7の微細空
洞を通って球面状の終端面から流出される。各多孔質体
5〜7の終端面は、それぞれ極微の噴出口(ノズル)を
形成しており、最上部に位置する多孔質体チャンバー7
の終端面からは気体Aが噴出される。そして、圧力噴射
された気体Aは、気圧が降下してミクロの渦流を形成す
る。同様に、気体Bや気体Cもミクロの渦流を形成する
が、多孔質体の多数の噴気口より噴射されるミクロの渦
は、集合して小渦となり、更に乱流渦となって、均一に
混合されることになる。
FIG. 3 shows an embodiment in which the porous metal composite cylinder 1 according to the present invention is applied to a mixer. In this example, the axial lengths of the metal cylinders 2A to 4A are
The small diameter cylinder 4A is the shortest and the large diameter cylinder 2A is the longest. Further, the end portions of the metal porous bodies 5, 6, 7 in the respective cylinders 2A to 4A are processed to be inward spherical surfaces. By aligning the upper end surfaces of the metal cylinders 2A to 4A, the end portions of the porous metal bodies 5, 6, 7 have a multi-step spherical shape that gradually expands downward. When this porous metal composite tube 1 is used in a mixer, for example, from the upper void portions 7a, 6a, 5a of the metal porous body to 3
The seed gases A, B, and C are each press-fitted. Then, each of the gases A, B, and C that have been press-fitted flows out from the spherical end surface through the fine cavities of the porous bodies 5 to 7. The end faces of the porous bodies 5 to 7 respectively form minute jet outlets (nozzles), and the porous body chamber 7 located at the uppermost position.
Gas A is ejected from the end surface of the. Then, the pressure-injected gas A has a reduced atmospheric pressure and forms a micro vortex. Similarly, the gas B and the gas C also form a micro vortex, but the micro vortices ejected from a large number of the fumaroles of the porous body aggregate into a small vortex and further become a turbulent vortex and become uniform. Will be mixed in.

【0009】以上、混合動作について説明したが、多孔
質体5〜7を形成する金属粉末に、Pt、Ag、Cu、
Zn、Cr、Niなどを選択してHIP焼結加工する
か、或いは、これらの金属をメッキ又は蒸着した金属粉
末をHIP焼結加工して金属触媒を形成すれば、各種の
反応機構を形成することができる。したがって単なる混
合器としてではなく、化学反応による重合反応、重縮合
反応の機構として使用することができる。例えば、天然
ガス、LPG、ナフサなどからメタノールを製造する場
合、Zn−CrまたはZn−Cr−Cu系触媒を用い2
50〜400℃、50〜300気圧で製造されるが、こ
れらの重合反応には、本発明の混合器を使用するのが安
全確実である。これは、多孔質体金属複合筒1の多孔質
体が微細な空洞を形成しているので、この微細な空洞を
通過する気体や液体が微細に細分されて、極めて短時間
(瞬間的)のうちに、混合又は接触重合が完了するため
である。また、中央の空隙部7aより液体Aを圧入し
て、このA液を、多孔質体によって細分し霧状に噴出さ
せると同時に、空隙部6a,5aよりガス体及び触媒な
どを噴射させて、瞬時に接触反応をさせることもでき
る。
The mixing operation has been described above. Pt, Ag, Cu, and the like are added to the metal powders forming the porous bodies 5 to 7.
Various reaction mechanisms are formed by selecting Zn, Cr, Ni or the like and performing HIP sintering processing, or by forming a metal catalyst by HIP sintering processing metal powder obtained by plating or vapor depositing these metals. be able to. Therefore, it can be used not only as a mixer but also as a mechanism of a polymerization reaction or a polycondensation reaction by a chemical reaction. For example, when methanol is produced from natural gas, LPG, naphtha, etc., a Zn-Cr or Zn-Cr-Cu based catalyst is used.
It is produced at 50 to 400 ° C. and 50 to 300 atm, and it is safe and reliable to use the mixer of the present invention for these polymerization reactions. This is because the porous body of the porous metal composite cylinder 1 forms a minute cavity, so that the gas or liquid passing through this minute cavity is finely subdivided, and the gas or liquid passes over an extremely short time (instantaneously). This is because the mixing or catalytic polymerization is completed in due course. Further, the liquid A is press-fitted through the central void 7a, and this liquid A is subdivided by the porous body and ejected in a mist state, and at the same time, the gas body and the catalyst are ejected from the voids 6a, 5a, It is also possible to make a contact reaction instantaneously.

【0010】図4は、本発明に係る多孔質体金属複合筒
1をカッターに適用する場合の実施例を図示したもので
ある。カッターを製造するには、HIP処理によって成
形された多孔質体金属複合筒1を、先ず、所要の厚さ
(2.5 mm〜5mm)に輪切りに切断してゆく。次に、最外
部の金属円筒2を除去して、中心部には開口7aを設け
る。また、金属多孔質体5の径方向に所要間隔に切り込
み5aを入れると共に、切り込み5aの終端には、割れ
止め防止の小孔5bを穿設する。そして、金属多孔質体
5の周方向に、ダイヤモンド粉末を練り込んだ合成樹脂
を接着して切削刃9を形成すれば、金属多孔質体を用い
たカッターが完成する(図4(b)参照)。なお、図4
の構成に変えて、中径金属筒3と中央の金属多孔質体7
とを設けないようにしても良い。この場合には、小径金
属筒4と大径金属筒2の間に金属多孔質体が形成される
ので、多孔質体金属複合筒1を輪切りに切断した後、最
外部の金属円筒2を除去して切削刃9を形成すれば、金
属多孔質体を用いたカッターが完成する。いずれにして
も、このカッターには、微細な気孔(空洞)が多く存在
しているので、カッター使用時の発熱が冷却水によって
有効に冷却され、カッターのひずみや変形を防止してい
る。また、このカッターは、多孔質体の吸音効果などに
よって切断時の防音効果が極めて大きい。
FIG. 4 shows an embodiment in which the porous metal composite cylinder 1 according to the present invention is applied to a cutter. In order to manufacture a cutter, the porous metal composite cylinder 1 formed by the HIP process is first cut into a required thickness (2.5 mm to 5 mm). Next, the outermost metal cylinder 2 is removed, and an opening 7a is provided at the center. Further, notches 5a are formed at required intervals in the radial direction of the porous metal body 5, and a small hole 5b for preventing cracking is formed at the end of the notch 5a. Then, a cutting blade 9 is formed by adhering a synthetic resin in which diamond powder is kneaded in the circumferential direction of the porous metal body 5 to complete a cutter using the porous metal body (see FIG. 4B). ). FIG.
In place of the above configuration, the medium diameter metal cylinder 3 and the metal porous body 7 in the center
It is also possible not to provide and. In this case, since the metal porous body is formed between the small-diameter metal cylinder 4 and the large-diameter metal cylinder 2, the outermost metal cylinder 2 is removed after the porous-metal composite cylinder 1 is cut into slices. Then, the cutting blade 9 is formed to complete the cutter using the porous metal body. In any case, since this cutter has many fine pores (cavities), the heat generated when the cutter is used is effectively cooled by the cooling water, preventing distortion and deformation of the cutter. Further, this cutter has a very large soundproof effect at the time of cutting due to the sound absorbing effect of the porous body.

【0011】図5は、本発明に係る多孔質体金属複合筒
1Bを含浸メタルに適用する場合の実施例を図示したも
のである。この実施例の場合には、金属円筒2B,3B
の間に金属多孔質体5Bを設けると共に、中央の金属多
孔質体6Bにシャフト用の中空貫通孔8を設けている。
この多孔質体金属複合筒1Bは、内側の金属多孔質体6
Bに潤滑油を含浸させ、外側の金属多孔質体5Bに冷却
媒体を循環させて使用すれば、高性能の含浸メタルを実
現することができる。なお、各多孔質体の気孔率などは
適宜に設定されており、金属多孔質体5Bの気孔率や気
孔径は十分大きく形成されている。また、図5の多孔質
体金属複合筒1Bを横向きにして使用するのは勿論であ
る。
FIG. 5 shows an embodiment in which the porous metal composite cylinder 1B according to the present invention is applied to an impregnated metal. In the case of this embodiment, the metal cylinders 2B, 3B
A porous metal body 5B is provided between the two, and a hollow through hole 8 for a shaft is provided in the central porous metal body 6B.
The porous metal-metal composite cylinder 1B includes an inner metal porous body 6
If B is impregnated with lubricating oil and the cooling medium is circulated through the outer porous metal body 5B, a high-performance impregnated metal can be realized. The porosity of each porous body is appropriately set, and the porosity and the pore diameter of the metal porous body 5B are formed sufficiently large. Further, it goes without saying that the porous metal composite cylinder 1B shown in FIG.

【0012】図6は、本発明に係る多孔質体金属複合筒
1をフィルターなどに適用する場合の実施例を図示した
ものである。この実施例の場合には、金属円筒2C,3
C,4Cを軸方向に傾斜させた形状としている。そし
て、上述したHIP加工によって多孔質体金属複合筒1
を成形した後、金属円筒2C,3C,4Cを除去すれ
ば、金属多孔質体5,6を得ることができる。なお、こ
の実施例の場合には、金属円筒2C,3C,4Cを軸方
向に傾斜させているので、金属円筒と多孔質体の膨張・
収縮率の差や残留応力によって、比較的容易に金属円筒
部を除去することができる。なお、金属多孔質体6の内
周部に金属円筒4Cを接合させたもの、及び、金属多孔
質体5の内周部に金属円筒3Cを接合させたものも製造
することは更に容易である。
FIG. 6 shows an embodiment in which the porous metal composite cylinder 1 according to the present invention is applied to a filter or the like. In the case of this embodiment, the metal cylinders 2C, 3
The shapes of C and 4C are inclined in the axial direction. Then, the porous metal composite cylinder 1 is formed by the HIP processing described above.
After molding, by removing the metal cylinders 2C, 3C, 4C, the metal porous bodies 5, 6 can be obtained. In the case of this embodiment, since the metal cylinders 2C, 3C, 4C are inclined in the axial direction, the expansion of the metal cylinder and the porous body
The metal cylindrical portion can be relatively easily removed due to the difference in shrinkage rate and the residual stress. It should be noted that it is easier to manufacture the one in which the metal cylinder 4C is joined to the inner peripheral portion of the metal porous body 6 and the one in which the metal cylinder 3C is joined to the inner peripheral portion of the metal porous body 5. .

【0013】[0013]

【発明の効果】以上、説明した通り、本発明に係る多孔
質体金属複合筒は、同心円状に配置された多重構造の金
属円筒の中に、熱間等方加圧焼結体からなる金属多孔質
体を形成してなり、各層毎に前記金属多孔質体の気孔分
布を異ならせているので、混合器、化学反応筒、カッタ
ー、フィルター、金属触媒、防音材、含浸メタルなどの
材料として好適に用いられ、その工業的価値は極めて大
である。
As described above, the porous metal composite cylinder according to the present invention includes a metal cylinder made of a hot isotropic pressure-sintered body in a multi-structured metal cylinder arranged concentrically. Since it is made of a porous material and the pore distribution of the metal porous material is different for each layer, it can be used as a material for mixers, chemical reaction tubes, cutters, filters, metal catalysts, soundproofing materials, impregnated metals, etc. It is preferably used and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】多孔質体金属複合筒を示す斜視図である。FIG. 1 is a perspective view showing a porous metal composite cylinder.

【図2】図1の多孔質体金属複合筒の構成要素を図示し
たものである。
FIG. 2 is a diagram showing components of the porous metal composite cylinder of FIG.

【図3】多孔質体金属複合筒を用いた混合器を図示した
ものである。
FIG. 3 illustrates a mixer using a porous metal composite cylinder.

【図4】多孔質体金属複合筒を用いたカッターを図示し
たものである。
FIG. 4 illustrates a cutter using a porous metal composite cylinder.

【図5】多孔質体金属複合筒を用いた含浸メタルを図示
したものである。
FIG. 5 illustrates an impregnated metal using a porous metal composite cylinder.

【図6】多孔質体金属複合筒を用いたフィルターを図示
したものである。
FIG. 6 illustrates a filter using a porous metal composite cylinder.

【符号の説明】[Explanation of symbols]

1 多孔質体金属複合筒 2〜4 金属円筒 5〜7 金属多孔質体 1 Porous metal composite cylinder 2-4 Metal cylinder 5-7 Metal porous body

フロントページの続き (72)発明者 元木 龍太郎 大阪府枚方市中宮大池1丁目1番1号 株 式会社クボタ枚方製造所内 (72)発明者 船越 淳 大阪府枚方市中宮大池1丁目1番1号 株 式会社クボタ枚方製造所内 (72)発明者 西 隆 大阪府枚方市中宮大池1丁目1番1号 株 式会社クボタ枚方製造所内 (72)発明者 小阪 晃 大阪府枚方市中宮大池1丁目1番1号 株 式会社クボタ枚方製造所内Front page continued (72) Inventor Ryutaro Motoki 1-1-1, Nakamiya Oike, Hirakata City, Osaka Prefecture Kubota Hirakata Manufacturing Company (72) Inventor Jun Funakoshi 1-1-1, Nakamiya Oike, Hirakata City, Osaka Prefecture Stock company Kubota Hirakata Factory (72) Takashi Nishi Nishi 1-1-1, Nakamiya Oike, Hirakata-shi, Osaka Prefecture Company Kubota Hirakata Factory (72) Inventor Akira Kosaka 1-1-1, Nakamiya Oike, Hirakata-shi, Osaka No. 1 stock company Kubota Hirakata Factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 同心円状に配置された多重構造の金属円
筒の中に、熱間等方加圧焼結体からなる金属多孔質体を
形成してなり、 前記金属多孔質体は、各層毎に気孔分布が異なっている
ことを特徴とする多孔質体金属複合筒。
1. A metal porous body made of a hot isostatically pressed sintered body is formed in a multi-structured metal cylinder arranged concentrically, and the metal porous body is provided for each layer. A porous metal composite cylinder characterized by different pore distributions.
【請求項2】 前記金属円筒は、その内外周側に複数条
の溝を穿設していることを特徴とする請求項1又は請求
項2に記載の多孔質体金属複合筒。
2. The porous metal composite cylinder according to claim 1, wherein the metal cylinder has a plurality of grooves formed on the inner and outer peripheral sides thereof.
【請求項3】 前記金属円筒は、それぞれ軸方向に傾斜
を有する円筒形である請求項1又は請求項2に記載の多
孔質体金属複合筒。
3. The porous metal composite cylinder according to claim 1, wherein each of the metal cylinders is a cylinder having an inclination in the axial direction.
JP31592595A 1995-11-08 1995-11-08 Porous metal composite tube Expired - Lifetime JP3162984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31592595A JP3162984B2 (en) 1995-11-08 1995-11-08 Porous metal composite tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31592595A JP3162984B2 (en) 1995-11-08 1995-11-08 Porous metal composite tube

Publications (2)

Publication Number Publication Date
JPH09137204A true JPH09137204A (en) 1997-05-27
JP3162984B2 JP3162984B2 (en) 2001-05-08

Family

ID=18071261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31592595A Expired - Lifetime JP3162984B2 (en) 1995-11-08 1995-11-08 Porous metal composite tube

Country Status (1)

Country Link
JP (1) JP3162984B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108779A (en) * 2007-10-30 2009-05-21 Showa Corp Method of manufacturing vane pump
JP2013524010A (en) * 2010-03-31 2013-06-17 メッツオ ミネラルズ インク. Method and arrangement for manufacturing parts by hot isostatic pressing, core, cladding preform and use of core
CN114523109A (en) * 2022-04-24 2022-05-24 西部宝德科技股份有限公司 Preparation method of high-precision gradient pore filter element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108779A (en) * 2007-10-30 2009-05-21 Showa Corp Method of manufacturing vane pump
JP2013524010A (en) * 2010-03-31 2013-06-17 メッツオ ミネラルズ インク. Method and arrangement for manufacturing parts by hot isostatic pressing, core, cladding preform and use of core
CN114523109A (en) * 2022-04-24 2022-05-24 西部宝德科技股份有限公司 Preparation method of high-precision gradient pore filter element

Also Published As

Publication number Publication date
JP3162984B2 (en) 2001-05-08

Similar Documents

Publication Publication Date Title
JP4409425B2 (en) Clad component manufacturing method
RU2448827C2 (en) Diamond-metallic composite material
US6652804B1 (en) Method for producing an openly porous sintered metal film
US5774779A (en) Multi-channel structures and processes for making such structures
US7147819B2 (en) Method for producing highly porous metallic moulded bodies close to the desired final contours
RU2228824C2 (en) Electrode rod for electric spark surfacing, method for making it and method for applying coating containing superabrasive
US5864743A (en) Multi-channel structures and processes for making structures using carbon filler
CN100482836C (en) Carbide alloy structural member with gradient structure
US10267260B2 (en) Heat-resistant member provided with heat-shielding coating, and method for manufacturing same
RU2294397C2 (en) Electrode for treatment of the surface with the electric discharge, the method of treatment of the surface with the electric discharge and the device for treatment of the surface with the electric discharge
EP2291254A2 (en) Method of making a combustion turbine component from metallic combustion turbine subcomponent greenbodies
EP3231539B1 (en) Method of making a light weight component
JP2009220426A (en) Die for forming honeycomb structure and method for manufacturing the same
JPH09137204A (en) Porous body metallic composite cylinder
JP2001504077A (en) Multi-channel structure and manufacturing method thereof
EP1345868B1 (en) Molding tool formed of gradient composite material and method of producing the same
US5354528A (en) Process for producing preform for metal matrix composite
AU2003235770B2 (en) Method of making a tool component
JPH08258023A (en) Extruding die and its manufacture
JP2004536232A (en) Sintered metal parts having a homogeneous distribution of components that melt inhomogeneously and a method of making the same
US20190056004A1 (en) Pressed powder titanium brake rotor
WO1997019201A1 (en) Process for making complex-shaped ceramic-metal composite articles
JP2003119554A (en) Method for manufacturing fiber reinforced metal
JPH0892607A (en) Production of composite hard material
JP2003193168A (en) Functionally graded composite material and its manufacturing method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090223

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090223

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 13

EXPY Cancellation because of completion of term