JPH09133618A - Apparatus and method for manufacture of thin film - Google Patents

Apparatus and method for manufacture of thin film

Info

Publication number
JPH09133618A
JPH09133618A JP28966495A JP28966495A JPH09133618A JP H09133618 A JPH09133618 A JP H09133618A JP 28966495 A JP28966495 A JP 28966495A JP 28966495 A JP28966495 A JP 28966495A JP H09133618 A JPH09133618 A JP H09133618A
Authority
JP
Japan
Prior art keywords
ion
sample
thin film
polishing
chemical polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28966495A
Other languages
Japanese (ja)
Inventor
Shin Ishikawa
伸 石川
Junichi Shimomura
順一 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP28966495A priority Critical patent/JPH09133618A/en
Publication of JPH09133618A publication Critical patent/JPH09133618A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus which can manufacture a thin-film sample which does not comprise any ion damage layer and which is suitable for a high-resolution observation operation and an EDX analysis in the manufacturing method and the manufacturing apparatus, of the thin-film sample which can be observed under a transmission electron microscope, which make use of an ion polishing method. SOLUTION: A sample 5a which is coarsely ground to a prescribed thickness in advance is held in a vacuum, one face of both faces of the sample 5a are irradiated with an ion beam which is converged on a very small region, a prescribed part and its peripheral part are changed into a thin film, the spray of a chemical grinding liquid 9 is jetted to the part and to its peripheral part in their places so as to be chemically ground. In this way, a thin film, for observation under a transmission electron microscope, which does not comprise any ion damage layer and which is suitable for a high-resolution observation operation and an EDX analysis is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、透過型電子顕微鏡
観察に適用できる薄膜を作製できる薄膜作製装置および
薄膜作製方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film manufacturing apparatus and a thin film manufacturing method capable of manufacturing a thin film applicable to transmission electron microscope observation.

【0002】[0002]

【従来の技術】透過電子顕微鏡(以下透過電顕という)
を用いて材料組織を観察することは、材料評価の1手段
として、従来から行われているが、透過電顕で観察する
には、電子線が透過できるように、試料を0.1〜0.
3μm 程度まで薄くする必要がある。試料を薄膜化する
ために、金属材料の場合は、一般に電解研磨法が、半導
体あるいはセラミックの場合は、適当な電解液がないた
めイオン研磨法が主に用いられている。しかし、最近で
は、金属材料においても、多層構造をもつ材料の断面組
織観察などでは、層により適切な電解研摩液や電解研磨
速度が異なることから、イオン研磨法が用いられること
が多くなっている。
2. Description of the Related Art A transmission electron microscope (hereinafter referred to as a transmission electron microscope).
The observation of the material structure by using the is conventionally performed as one means of material evaluation. However, in observing with a transmission electron microscope, the sample is 0.1 to 0 so that the electron beam can be transmitted. .
It is necessary to reduce the thickness to about 3 μm. In order to reduce the thickness of a sample, an electropolishing method is generally used for a metal material, and an ion polishing method is mainly used for a semiconductor or ceramic because there is no suitable electrolytic solution. However, recently, even in the case of a metal material, when observing the cross-sectional structure of a material having a multi-layered structure, etc., the ion polishing method is often used because an appropriate electrolytic polishing liquid or electrolytic polishing rate varies depending on the layer. .

【0003】イオン研磨法では、数mmφのイオンビー
ムを用いることが多いが、さらに、イオンビームを収束
し、0.1μm 以下のイオンビームを用いる集束イオン
ビーム(FIB)加工も断面観察用薄膜作製に利用され
るようになっている。例えば、特開平5−231997
号公報には、試料全体に高分子膜を成膜したのち、集束
イオンビーム加工と、フッ化水素酸を用いた薬液処理と
を順次利用し観察箇所を薄膜壁として残すという、半導
体デバイスの断面形状を観察するための試料作製方法が
提案されている。しかしながら、イオン研磨法では、イ
オンの加速電圧が、通常5kV程度であるため、イオン
が試料中に打ち込まれ、試料表層にアモルファス化した
イオンダメージ層が形成される。イオン研磨法に比べさ
らに加速電圧が30kV程度と高いFIB加工では、イ
オンダメージ層は深い。イオン研磨法の場合、約10n
m程度の厚さのイオンダメージ層が知られている。
In the ion polishing method, an ion beam having a diameter of several mm is often used. Further, a focused ion beam (FIB) process using an ion beam of 0.1 μm or less is also used to form a thin film for observing a cross section. Is being used for. For example, JP-A-5-231997
In the publication, after a polymer film is formed on the entire sample, focused ion beam processing and chemical treatment using hydrofluoric acid are sequentially used to leave an observation site as a thin film wall. A sample preparation method for observing the shape has been proposed. However, in the ion polishing method, since the acceleration voltage of the ions is usually about 5 kV, the ions are implanted into the sample, and an amorphous ion damage layer is formed on the surface layer of the sample. In the FIB processing in which the acceleration voltage is as high as about 30 kV as compared with the ion polishing method, the ion damage layer is deep. In case of ion polishing method, about 10n
An ion damage layer having a thickness of about m is known.

【0004】このようなイオンダメージ層が存在する
と、透過電顕による高分解能観察に際し像質の低下を生
じたり、また、エネルギー分散型X線分析(EDX分
析)による元素分析に際し、打ち込まれたイオンが分析
スペクトルに現れるなどの問題を生じていた。化学研磨
法は、金属材料の場合には従来から利用されているが、
半導体材料にも利用可能な場合が多い。しかし、半導体
材料の場合は、一般に脆く1μm 以下の薄膜にした場合
には取扱い中に破損してしまうことが多い。このため、
観察領域の周囲をパラフィンでシールするなどの工夫が
必要とされている。また、特開平7−43277号公報
には、薄膜試料作製のためのエッチング液を保持できる
器具を具備した装置が提案されている。しかし、いずれ
にしろ、化学研磨法は、工程が複雑で、不純物混入の恐
れがあること、材料に応じた研磨液、研磨条件の選択が
必要など高度な熟練を要する面もある。
The presence of such an ion-damaged layer causes deterioration of image quality during high-resolution observation with a transmission electron microscope, and ion implantation during elemental analysis by energy dispersive X-ray analysis (EDX analysis). Has appeared in the analysis spectrum. The chemical polishing method has been conventionally used for metal materials,
It is often applicable to semiconductor materials. However, in the case of a semiconductor material, it is generally fragile, and when it is formed into a thin film of 1 μm or less, it is often broken during handling. For this reason,
It is necessary to devise a technique such as sealing paraffin around the observation area. Further, Japanese Patent Application Laid-Open No. 7-43277 proposes a device equipped with a device capable of holding an etching solution for preparing a thin film sample. However, in any case, the chemical polishing method has a complicated process, there is a possibility that impurities may be mixed, and it requires a high degree of skill such as selection of a polishing liquid and polishing conditions according to the material.

【0005】透過型電子顕微鏡も技術開発とともに、高
分解能で、かつ分析等の付属設備も高度な能力を有する
ようになってきた。このような状況において観察試料の
作製は、より一層重要度が増してきている。このような
観察機器・分析機器の発達に見合った試料作製方法が要
望されていた。
With the technical development of transmission electron microscopes, high resolution and ancillary equipment for analysis and the like have come to have sophisticated capabilities. In such a situation, the preparation of the observation sample is becoming more important. There has been a demand for a sample preparation method that matches the development of such observation and analysis instruments.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記した問
題点を有利に解決し、いかなる材料にも適用でき、イオ
ンダメージ層のない高分解能観察、EDX分析に適した
薄膜試料を作製できる装置および方法を提供することを
目的とする。
The present invention advantageously solves the above problems, can be applied to any material, and is capable of producing a thin film sample suitable for high resolution observation and EDX analysis without an ion damage layer. And to provide a method.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため鋭意検討した結果、イオンダメージ層を
除去するためには化学研磨法が特に有効であること、し
かも化学研磨は電顕観察のための局所的な領域のみに限
定して行うこと、さらに、イオン研磨と同一場所で化学
研磨を行うことが有効であることを知見し、本発明を構
成した。
The inventors of the present invention have conducted extensive studies to solve the above-mentioned problems, and as a result, the chemical polishing method is particularly effective for removing the ion-damaged layer. The present invention has been constructed by discovering that it is effective to perform the chemical polishing only in a local region for microscopic observation and further to perform the chemical polishing in the same place as the ion polishing.

【0008】本発明は、すなわち、真空容器と、イオン
研摩装置および化学研摩装置からなる薄膜作製装置であ
って、前記イオン研摩装置は、該真空容器内に試料保持
具と、該保持具と相対する位置に設置したイオン銃と、
該イオン銃と該保持具との間に設置した引出し・加速電
極と、あるいはさらにイオンビームの集束装置および偏
向装置とを設けてなるものであり、前記化学研摩装置
は、該真空容器外に設置された化学研摩液貯蔵タンク
と、該試料保持具に保持された試料に化学研摩液を吹き
付けるように該真空容器内に設けられたノズルとからな
り、該タンクと該ノズルは配管を介して連結され、該配
管には流量制御用バルブを設けてなることを特徴とした
薄膜作製装置であり、また、本発明は、予め所定の厚さ
以下に粗研摩した試料を、真空中に保持し、該試料にイ
オンビームを照射し所定の箇所およびその周辺部を薄膜
化したのち、直ちに該箇所およびその周辺部に化学研磨
液の蒸気を噴射し、化学研磨を行うことを特徴とするイ
オンダメージ層のない薄膜の作製方法である。
The present invention is a thin film forming apparatus comprising a vacuum container, an ion polishing apparatus and a chemical polishing apparatus, wherein the ion polishing apparatus is provided with a sample holder in the vacuum container and a holder relative to the sample holder. Ion gun installed in the position to
An extractor / accelerator electrode installed between the ion gun and the holder, or an ion beam focusing device and a deflecting device is further provided, and the chemical polishing device is installed outside the vacuum container. And a nozzle provided in the vacuum container so as to spray the chemical holding liquid on the sample held by the sample holder, and the tank and the nozzle are connected via a pipe. The thin film forming apparatus is characterized in that a flow control valve is provided in the pipe, and the present invention holds a sample that has been roughly ground to a predetermined thickness or less in advance in a vacuum, An ion damage layer characterized by performing chemical polishing by irradiating the sample with an ion beam to thin a predetermined portion and its peripheral portion, and then immediately injecting a chemical polishing liquid vapor to the portion and its peripheral portion. Without Film, which is a method for manufacturing a.

【0009】[0009]

【発明の実施の形態】本発明の薄膜作製装置は、真空容
器と、イオン研磨装置と、化学研磨装置とから構成され
ている。図1および図2に、本発明の実施例を模式的に
示す。真空容器1は、図示していない排気装置により所
定の真空度に維持されている。研磨を行う際の真空度
は、10-3Pa程度以下が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The thin film forming apparatus of the present invention comprises a vacuum container, an ion polishing apparatus, and a chemical polishing apparatus. 1 and 2 schematically show an embodiment of the present invention. The vacuum container 1 is maintained at a predetermined vacuum degree by an exhaust device (not shown). The degree of vacuum during polishing is preferably about 10 −3 Pa or less.

【0010】試料保持具5は、薄膜とする材料を保持す
るもので、試料へのイオンの照射角度を任意に変更でき
ることが好ましい。イオン銃2は、イオンビームを発生
させるためのものであり、1台あれば十分であるが、試
料の両面を同時に研磨するときは試料を挟んで1対設置
するのが望ましい。イオン銃の形式は特に限定しない
が、Ar等の不活性ガスを用いた放電型が簡便である。
発生したイオンビームは引出し・加速電極3で加速さ
れ、試料に照射される。加速電圧は2kV〜10kV、
イオン電流は0.2mA〜1.0mAが研磨速度、イオ
ンダメージの点から好ましい。イオンビームの入射角は
自由に選択できるが、研磨速度を考慮し5度〜30度が
好適である。
The sample holder 5 holds a thin film material, and it is preferable that the ion irradiation angle of the sample can be arbitrarily changed. The ion gun 2 is for generating an ion beam, and one ion gun 2 is sufficient, but when polishing both surfaces of the sample at the same time, it is desirable to install one pair with the sample sandwiched therebetween. The form of the ion gun is not particularly limited, but the discharge type using an inert gas such as Ar is simple.
The generated ion beam is accelerated by the extraction / acceleration electrode 3 and irradiated on the sample. Acceleration voltage is 2kV-10kV,
The ion current is preferably 0.2 mA to 1.0 mA from the viewpoint of polishing rate and ion damage. The angle of incidence of the ion beam can be freely selected, but considering the polishing rate, it is preferably 5 to 30 degrees.

【0011】FIB加工では、さらに、加速電圧は20
kV〜50kV、イオン電流は1μA〜3μAが好まし
い。イオン源はとくに限定しないが、イオンビームを集
束した際にも十分なイオン電流密度が得られる点で、G
a等の液体金属イオン源が好適である。さらに、FIB
加工においては、一般に試料表面に垂直方向から集束し
たイオンビームを走査して照射するため、図2に示すよ
うに集束装置4および偏向装置4aが必要で、イオンビ
ームを収束させるためのレンズ、絞り等を有し、0.1
〜2μmφのビームを任意の領域で走査するよう制御で
きる。FIB加工ではさらに、2次電子検出器によりイ
オンビーム照射により発生する2次電子像の観察が可能
であるとともに、試料保持具5は位置決め機構を具備
し、加工位置を任意に決定できる。
In FIB processing, the acceleration voltage is 20
The kV to 50 kV and the ionic current are preferably 1 μA to 3 μA. Although the ion source is not particularly limited, it is possible to obtain a sufficient ion current density even when the ion beam is focused.
Liquid metal ion sources such as a are preferred. Furthermore, FIB
In processing, generally, a sample surface is scanned and irradiated with an ion beam focused from a vertical direction, so that a focusing device 4 and a deflecting device 4a are required as shown in FIG. And so on, 0.1
It can be controlled to scan a beam of ˜2 μmφ in an arbitrary region. Further, in the FIB processing, the secondary electron image generated by the ion beam irradiation can be observed by the secondary electron detector, and the sample holder 5 has a positioning mechanism so that the processing position can be arbitrarily determined.

【0012】化学研磨液は、研磨する材料により決定さ
れ、真空容器の系外に設置された化学研磨液貯蔵タンク
9から、配管6により供給されノズル7により試料5a
に蒸気として噴射される。噴射は、片面あるいは両面か
ら行うことができる。化学研磨は、観察位置以外の研磨
を最小にするためイオン研磨終了後直ちに同一場所につ
いて行うことが肝要である。
The chemical polishing liquid is determined by the material to be polished, is supplied from the chemical polishing liquid storage tank 9 installed outside the system of the vacuum container through the pipe 6, and is supplied from the nozzle 7 to the sample 5a.
Is injected as steam into. The injection can be performed from one side or both sides. It is important that the chemical polishing be performed at the same place immediately after the ion polishing is completed in order to minimize polishing other than the observation position.

【0013】ノズル7の形状はとくに指定しないが、研
磨液で腐食されにくいことが必要であり、観察領域の広
さに対応した噴霧面積となる孔形状を選択すればよい。
噴射は霧状が好ましい。さらに、ノズルはイオン研磨時
にはイオンビームの径路外に置かれ、化学研磨時にのみ
試料近傍に移動する移動機構を有するのが望ましい。
Although the shape of the nozzle 7 is not particularly specified, it is necessary that the nozzle 7 is not easily corroded by the polishing liquid, and a hole shape having a spray area corresponding to the size of the observation area may be selected.
The spray is preferably atomized. Furthermore, it is desirable that the nozzle be placed outside the path of the ion beam during ion polishing and have a moving mechanism that moves to the vicinity of the sample only during chemical polishing.

【0014】ノズルは、試料両面を同時に研磨できるよ
うに1対のノズルを設置する方が望ましいが、1対に限
定するものではなく、1個のノズルで一面ずつ研磨して
もよい。化学研磨液蒸気の流量は、研磨する試料の材
質、研磨液の濃度により決定するが、配管途中に配設さ
れた流量制御用バルブ8で制御される。また、噴射時間
は、材料の種類や、研磨状況を考慮し変更できる。材料
が単結晶シリコンの場合、研磨液として10vol%フ
ッ酸水溶液を用いると、通常は10-4ml/minの流
量で1minが適当である。真空容器中への噴射である
から、バルブを開にすることによりバルブの開きがわず
かであっても噴霧状に吹き付けられ、局部的研磨が可能
になる。試料の近傍で噴霧状で噴射することにより、し
かも狭い孔径を有するノズルで試料を取り外すことなく
その場所で噴射するため、目的の箇所でしかも必要な箇
所とその狭い周辺のみ研磨できる。このようにして、化
学研磨で、イオン研磨により生じたイオンダメージ層を
正確に除去できる。
It is desirable to install a pair of nozzles so that both surfaces of the sample can be polished at the same time, but the number of nozzles is not limited to one, and one nozzle may be used to polish each surface. The flow rate of the chemical polishing solution vapor is determined by the material of the sample to be polished and the concentration of the polishing solution, and is controlled by the flow rate control valve 8 arranged in the middle of the pipe. Further, the injection time can be changed in consideration of the type of material and the polishing condition. When the material is single crystal silicon, when a 10 vol% hydrofluoric acid aqueous solution is used as the polishing liquid, 1 min is usually suitable at a flow rate of 10 −4 ml / min. Since the injection is into a vacuum container, even if the opening of the valve is slight, it is sprayed in a spray form by opening the valve, and local polishing becomes possible. By spraying in the vicinity of the sample in the form of a spray, and without spraying the sample with a nozzle having a narrow hole diameter, the sample is sprayed at that position, so that it is possible to polish only at a desired site and a necessary site and its narrow periphery. In this way, chemical polishing can accurately remove the ion damage layer generated by ion polishing.

【0015】本発明では、試料は、予め機械研磨等の予
備的研磨により、所定の厚み以下、好ましくは、50μ
m以下にしておくことが好ましい。これにより、イオン
研磨の負荷が軽減できる。
In the present invention, the sample is preliminarily polished by preliminary polishing such as mechanical polishing, and has a predetermined thickness or less, preferably 50 μm.
It is preferable to keep m or less. Thereby, the load of ion polishing can be reduced.

【0016】[0016]

【実施例】【Example】

(実施例1)単結晶シリコンウェハーから切り出した薄
片を図1に示す装置で薄膜を作製した。単結晶シリコン
ウェハーから、機械研磨および凹面研磨を施し約20μ
m 厚とした後、イオン研磨を行った。イオン研磨は、加
速電圧5kV、イオン電流0.5mA、イオンビーム入
射角20°、真空度10-3Paの条件で行った。続い
て、イオン研磨した同じ領域を、10vol%フッ酸水
溶液を流量10-4ml/minで、ノズル7から1mi
n間噴射し化学研磨を行った。また、比較例として、イ
オン研磨のみの薄膜も作製した。このようにして得た薄
膜を透過電顕で観察した結果、電顕像には顕著な差異は
認められないが、比較例の電子線回折図形には、アモル
ファス層の存在を示すハローパターンが観察されるのに
対し、本発明例では認められない。厚さが50nm以下
と推定される領域で、EDXスペクトルを得た。図3
(a)に示すイオン研磨と化学研磨とを実施した薄膜か
ら得た本発明例は、Siのピークしか認められないのに
対し、イオン研磨のみの比較例(図3(b))では、S
iのピークの他にArのピークが認められる。このよう
に、本発明の装置を使い本発明の方法で透過電顕用の薄
膜を作製することにより、イオンダメージ層は除去でき
ている。
Example 1 A thin piece cut out from a single crystal silicon wafer was used to prepare a thin film using the apparatus shown in FIG. About 20μ after mechanical polishing and concave polishing from a single crystal silicon wafer
After having a thickness of m, ion polishing was performed. Ion polishing was performed under the conditions of an acceleration voltage of 5 kV, an ion current of 0.5 mA, an ion beam incident angle of 20 °, and a vacuum degree of 10 −3 Pa. Subsequently, the same region that was ion-polished was treated with a 10 vol% hydrofluoric acid aqueous solution at a flow rate of 10 −4 ml / min from the nozzle 7 for 1 mi.
Chemical spray was performed by spraying for n. Also, as a comparative example, a thin film only by ion polishing was prepared. As a result of observing the thin film thus obtained with a transmission electron microscope, no significant difference is observed in the electron microscope images, but in the electron beam diffraction pattern of the comparative example, a halo pattern showing the presence of an amorphous layer is observed. However, it is not recognized in the examples of the present invention. An EDX spectrum was obtained in a region where the thickness was estimated to be 50 nm or less. FIG.
In the example of the present invention obtained from the thin film subjected to the ion polishing and the chemical polishing shown in (a), only the peak of Si is recognized, whereas in the comparative example of only ion polishing (FIG. 3B), S
An Ar peak is observed in addition to the i peak. Thus, the ion damage layer can be removed by using the apparatus of the present invention to produce a thin film for transmission electron microscopy by the method of the present invention.

【0017】(実施例2)Fe−Cr−Al合金上に形
成されたAl2 3 被膜を図2に示す装置で薄膜を作製
した。Al2 3 被膜をマイクロカッターにより、0.
5mm厚さに切出した後、機械研磨により約50μm 厚
まで断面方向に研磨し、次に、図2に示す本発明装置に
より、FIB加工を行った。FIB加工は、加速電圧3
0kV、イオン電流2μA、ビーム径2〜0.1μm の
Gaイオンの集束イオンビームを用い、真空度10-3
aの条件で行った。続いて、イオン研磨した同じ領域
を、10vol%フッ酸水溶液を流量10-4ml/mi
nで、ノズル7から10min間噴射し化学研磨を行っ
た。また、比較例として、イオン研磨のみの薄膜も作製
した。このようにして得た薄膜を透過電顕で観察した結
果、比較例の電子線回折図形には、アモルファス層の存
在を示すハローパターンが観察されるのに対し、本発明
例では認められない。厚さが100nm以下と推定され
る領域で、EDXスペクトルを得た。図4(a)に示す
本発明例では、AlおよびOのピークと合金成分である
FeおよびCrのピークしか認められないのに対し、イ
オン研磨のみの比較例(図4(b))では、Alおよび
O、FeおよびCrのピークの他にGaのピークが認め
られる。このように、本発明の装置を使い本発明の方法
で透過電顕用の薄膜を作製することにより、イオンダメ
ージ層は除去されていることがわかる。
(Example 2) A thin film of an Al 2 O 3 film formed on a Fe-Cr-Al alloy was prepared by the apparatus shown in FIG. The Al 2 O 3 coating was micro-cuttered to give
After being cut to a thickness of 5 mm, it was mechanically polished to a thickness of about 50 μm in the cross-sectional direction, and then FIB processing was performed by the apparatus of the present invention shown in FIG. FIB processing, acceleration voltage 3
A focused ion beam of Ga ions of 0 kV, an ion current of 2 μA and a beam diameter of 2 to 0.1 μm is used, and the degree of vacuum is 10 −3 P.
It carried out on condition of a. Subsequently, the same ion-polished region was treated with a 10 vol% hydrofluoric acid solution at a flow rate of 10 −4 ml / mi.
No. n, chemical spraying was performed by spraying from the nozzle 7 for 10 minutes. Also, as a comparative example, a thin film only by ion polishing was prepared. As a result of observing the thin film thus obtained with a transmission electron microscope, a halo pattern showing the presence of an amorphous layer is observed in the electron beam diffraction pattern of the comparative example, whereas it is not observed in the example of the present invention. An EDX spectrum was obtained in a region where the thickness was estimated to be 100 nm or less. In the example of the present invention shown in FIG. 4 (a), only the peaks of Al and O and the peaks of Fe and Cr which are alloy components are observed, whereas in the comparative example of only ion polishing (FIG. 4 (b)), Ga peaks are observed in addition to Al and O, Fe and Cr peaks. As described above, it is understood that the ion damage layer is removed by producing a thin film for a transmission electron microscope by the method of the present invention using the apparatus of the present invention.

【0018】[0018]

【発明の効果】本発明によれば、イオン研磨中に形成さ
れる、イオンダメージ層を除去でき、高分解能観察およ
びEDX分析に最適な薄膜試料を作製することが可能と
なった。さらに、試料取扱い時の試料破損の危険性が低
減し、試料作製の作業性が大幅に向上する。また、化学
研磨液の選択により、さらに幅広い各種材料への応用も
可能である。
According to the present invention, the ion damage layer formed during ion polishing can be removed, and it becomes possible to prepare a thin film sample most suitable for high resolution observation and EDX analysis. Furthermore, the risk of sample breakage during sample handling is reduced, and the workability of sample preparation is greatly improved. Further, by selecting the chemical polishing liquid, it is possible to apply to a wider variety of materials.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例における薄膜試料作製装置を
示す模式図である。
FIG. 1 is a schematic view showing a thin film sample preparation device in one example of the present invention.

【図2】本発明の一実施例における薄膜試料作製装置を
示す模式図である。
FIG. 2 is a schematic view showing a thin film sample preparation device in one example of the present invention.

【図3】単結晶シリコンウェハーのエネルギー分散型X
線回折図形を示す図である。(a)はイオン研磨+化学
研磨のもの、(b)はイオン研磨のみのものである。
FIG. 3 Energy dispersive X of single crystal silicon wafer
It is a figure which shows a line diffraction pattern. (A) is for ion polishing + chemical polishing, and (b) is for ion polishing only.

【図4】Al2 3 被膜からのエネルギー分散型X線回
折図形を示す図である。(a)はイオン研磨+化学研磨
のもの、(b)はイオン研磨のみのものである。
FIG. 4 is a diagram showing an energy dispersive X-ray diffraction pattern from an Al 2 O 3 coating. (A) is for ion polishing + chemical polishing, and (b) is for ion polishing only.

【符号の説明】[Explanation of symbols]

1 真空容器 2 イオン銃 3 引出し・加速電極 4 集束装置 4a 偏向装置 5 試料保持具 5a 試料 6 配管 7 ノズル 8 流量制御用バルブ 9 化学研摩液貯蔵タンク DESCRIPTION OF SYMBOLS 1 Vacuum container 2 Ion gun 3 Extraction / acceleration electrode 4 Focusing device 4a Deflection device 5 Sample holder 5a Sample 6 Piping 7 Nozzle 8 Flow control valve 9 Chemical polishing liquid storage tank

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 真空容器と、イオン研摩装置および化学
研摩装置からなる薄膜作製装置であって、前記イオン研
摩装置は、該真空容器内に試料保持具と、該保持具と相
対する位置に設置したイオン銃と、該イオン銃と該保持
具との間に設置した引出し・加速電極と、あるいはさら
にイオンビームの集束装置および偏向装置とを設けてな
るものであり、前記化学研摩装置は、該真空容器外に設
置された化学研摩液貯蔵タンクと、該試料保持具に保持
された試料に化学研摩液を吹き付けるように該真空容器
内に設けられたノズルとからなり、該タンクと該ノズル
は配管を介して連結され、該配管には流量制御用バルブ
を設けてなることを特徴とした薄膜作製装置。
1. A thin film forming apparatus comprising a vacuum container, an ion polishing device and a chemical polishing device, wherein the ion polishing device is installed in the vacuum container at a position opposite to the sample holder. And an ion beam focusing device and a deflecting device provided between the ion gun and the holder, or an ion beam focusing device and a deflecting device. A chemical polishing liquid storage tank installed outside the vacuum container, and a nozzle provided inside the vacuum container so as to spray the chemical polishing liquid on the sample held by the sample holder, the tank and the nozzle being A thin film forming apparatus, which is connected through a pipe and is provided with a flow rate control valve in the pipe.
【請求項2】 予め所定の厚さ以下に粗研摩した試料
を、真空中に保持し、該試料にイオンビームを照射し所
定の箇所およびその周辺部を薄膜化したのち、直ちに該
箇所およびその周辺部に化学研磨液の蒸気を噴射し、化
学研磨を行うことを特徴とするイオンダメージ層のない
薄膜の作製方法。
2. A sample preliminarily rough-polished to a predetermined thickness or less is held in a vacuum, and the sample is irradiated with an ion beam to thin a predetermined portion and its peripheral portion, and immediately thereafter, the portion and its portion. A method for producing a thin film having no ion damage layer, which comprises performing chemical polishing by spraying a chemical polishing liquid vapor to the peripheral portion.
JP28966495A 1995-11-08 1995-11-08 Apparatus and method for manufacture of thin film Pending JPH09133618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28966495A JPH09133618A (en) 1995-11-08 1995-11-08 Apparatus and method for manufacture of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28966495A JPH09133618A (en) 1995-11-08 1995-11-08 Apparatus and method for manufacture of thin film

Publications (1)

Publication Number Publication Date
JPH09133618A true JPH09133618A (en) 1997-05-20

Family

ID=17746161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28966495A Pending JPH09133618A (en) 1995-11-08 1995-11-08 Apparatus and method for manufacture of thin film

Country Status (1)

Country Link
JP (1) JPH09133618A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090670A1 (en) * 2010-12-27 2012-07-05 株式会社 日立ハイテクノロジーズ Charged particle beam device and method of manufacture of sample

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090670A1 (en) * 2010-12-27 2012-07-05 株式会社 日立ハイテクノロジーズ Charged particle beam device and method of manufacture of sample
JP2012138283A (en) * 2010-12-27 2012-07-19 Hitachi High-Technologies Corp Charged particle beam device and method of manufacturing sample

Similar Documents

Publication Publication Date Title
US9401262B2 (en) Multi-source plasma focused ion beam system
US7002152B2 (en) Sample preparation for transmission electron microscopy
US5574280A (en) Focused ion beam apparatus and method
US7326942B2 (en) Ion beam system and machining method
US11735432B2 (en) Method and apparatus for forming substrate surfaces with exposed crystal lattice using accelerated neutral atom beam
EP1210723B1 (en) Shaped and low density focused ion beams
US6417512B1 (en) Sample distortion removing method in thin piece forming
US6870161B2 (en) Apparatus for processing and observing a sample
DE102014111372A1 (en) IRIDIUM TIP, FIELD ION SOURCE, FOCUSED ION BEAM SETUP, ELECTRON SOURCE, ELECTRON MICROSCOPE, EQUIPMENT FOR ANALYSIS USING AN ELECTRON BEAM, ION ELECTRON MULTIPLE BEAM INSTALLATION, ABUTATING TAPE MICROSCOPE AND MASK REPAIRING DEVICE
JP2004087174A (en) Ion beam device, and working method of the same
US5563412A (en) Method of making specimens for an electron microscope
JP2005251737A (en) Gas blowing nozzle for charged particle beam apparatus, charged particle beam apparatus and working method
US7180061B2 (en) Method for electron beam-initiated coating for application of transmission electron microscopy
US10105734B2 (en) Method of modifying a sample surface layer from a microscopic sample
JPH09133618A (en) Apparatus and method for manufacture of thin film
JP2016130733A5 (en)
JP2004095339A (en) Ion beam device and ion beam processing method
Mote et al. Focused Ion Beam (FIB) nanofinishing for ultra-thin TEM sample preparation
JPH09257670A (en) Specimen preparing apparatus for electron microscope
JP2003075311A (en) Preparation method and preparation device for sample for transmission type electron microscope observation
JPH08313415A (en) Sample production method of transmission electron microscope and converged ion beam processing apparatus