JPH09132477A - Inorganic foamed body and its production - Google Patents

Inorganic foamed body and its production

Info

Publication number
JPH09132477A
JPH09132477A JP29226895A JP29226895A JPH09132477A JP H09132477 A JPH09132477 A JP H09132477A JP 29226895 A JP29226895 A JP 29226895A JP 29226895 A JP29226895 A JP 29226895A JP H09132477 A JPH09132477 A JP H09132477A
Authority
JP
Japan
Prior art keywords
amorphous
slag
weight
temperature
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29226895A
Other languages
Japanese (ja)
Inventor
Akio Nishida
明生 西田
Youji Kuboi
洋司 窪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP29226895A priority Critical patent/JPH09132477A/en
Publication of JPH09132477A publication Critical patent/JPH09132477A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 
    • C04B5/06Ingredients, other than water, added to the molten slag or to the granulating medium or before remelting; Treatment with gases or gas generating compounds, e.g. to obtain porous slag
    • C04B5/065Porous slag

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively utilize slag formed at the time of performing a petroleum coke gasification reaction and to produce a novel inorganic foamed body having high strength and low water absorption properties by firing amorphous slag at a temp. within a specified range. SOLUTION: In this production, amorphous slag which contains an inorganic material that consists of 30 to 52wt.% SiO2 , 15 to 35wt.% intermediate oxide, 10 to 35wt.% network modifier oxide and a 1 to 5wt.% crystal nucleus forming agent, and also >=0.2wt.% H2 O in the form of Si-OH and into which >=0.2wt.% of at least one component selected from H2 , H2 , CO2 , and CO is dissolved, is fired at a temp. within the range of a temp. at which a crystalline substance begins to separate out (600 to 850 deg.C) to a temp. by 50 deg.C higher than the glass softening point (700 to 900 deg.C). This fired body consists of an inorganic material which has the above composition and a structure comprising an amorphous phase and fine crystals that are dispersed and separate out in the amorphous phase. Thus, the fired body, namely the objective inorganic foamed body can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、新規な無機質発泡
体及びその製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a novel inorganic foam and a method for producing the same.

【0002】[0002]

【従来技術及びその問題点】無機質発泡体の製造方法は
溶融法と焼成法の二つに大別できる。溶融法は溶融した
原料を流下させ、これにノズルから高圧のガスを吹き付
けて、融液を微粒化させると共に融液の粘性と表面張力
を利用して融液中に気泡を内蔵させた後、固化させる方
法である。この方法で作製された無機質発泡体には、ア
ルミナ、ジルコニア、マグネシアスピネル等のバルーン
がある。しかし、この方法では、高融点の原料を溶融さ
せるために多大なエネルギーを必要とする、融液の微粒
化の際の歩留まりが悪いなどの問題がある。
2. Description of the Related Art The method for producing an inorganic foam can be roughly classified into a melting method and a firing method. The melting method is to flow down the molten raw material, blow a high-pressure gas from it to the nozzle, atomize the melt and incorporate bubbles into the melt by using the viscosity and surface tension of the melt, This is a method of solidifying. Inorganic foams produced by this method include balloons such as alumina, zirconia, and magnesia spinel. However, this method has problems that a large amount of energy is required to melt the raw material having a high melting point and that the yield at the time of atomizing the melt is poor.

【0003】一方、焼成法では、ガスを発生する物質を
含有した原料を、発生したガスを内部に取り込んでおく
ことのできる粘度を有する非晶質相が生成する温度まで
加熱し、発生したガスの圧力により発泡させる方法であ
る。適当な粘度を有する非晶質相を形成する原料は、あ
る化学組成の範囲にあることを、Riley(J.Am.Ceram.So
c.,Vol.34,No.4,P.121(1951))が明らかにしている。そ
の化学組成は、SiO2が52〜79重量%、Al23
が11〜26重量%、アルカリなどの融剤成分が7〜2
4重量%である。従来から使用されている原料には、真
珠岩、黒曜石、松脂岩、シラス、膨張頁岩、膨張粘度、
フライアッシュ等があり、これらの化学組成はRileyの
示した組成の範囲内にある。なお、この範囲の化学組成
では適当な粘度の非晶質相を形成する温度は900℃以
上になる。ガスを発生する物質は、原料により異なって
おり、真珠岩、黒曜石、松脂岩、シラス等のガラス質火
山岩はH2Oが、膨張頁岩、膨張粘度、フライアッシュ
等は鉄化合物が発泡源と考えられている。ガラス質火山
岩中のH2Oがガス化する温度は、150〜900℃で
あり、鉄化合物の還元による酸素の発生は1000℃以
上で生じる。
On the other hand, in the firing method, a raw material containing a substance that generates a gas is heated to a temperature at which an amorphous phase having a viscosity that allows the generated gas to be taken inside is generated, and the generated gas is generated. This is a method of foaming by pressure. The raw material for forming an amorphous phase having an appropriate viscosity is in the range of a certain chemical composition, Riley (J. Am. Ceram. So.
c., Vol.34, No.4, P.121 (1951)). Its chemical composition is 52 to 79% by weight of SiO 2 , Al 2 O 3
Is 11 to 26% by weight, and the flux component such as alkali is 7 to 2
4% by weight. Conventionally used raw materials include pearlite, obsidian, pine rock, shirasu, expanded shale, expanded viscosity,
There are fly ash, etc., and their chemical compositions are within the range shown by Riley. In the chemical composition within this range, the temperature at which an amorphous phase having an appropriate viscosity is formed is 900 ° C or higher. Material generating gases is different from a source, perlite, obsidian, pitchstone, glassy volcanic shirasu such H 2 O is, expanded shale, consider expanding viscosity, fly ash, etc. iron compound and foaming source Has been. The temperature at which H 2 O in glassy volcanic rock is gasified is 150 to 900 ° C., and oxygen is generated by reduction of iron compounds at 1000 ° C. or higher.

【0004】焼成法で無機質発泡体を製造するには、適
当な粘度の非晶質相を形成する温度とガスの発生する温
度を一致させなければならないが、実際の原料では必ず
しも一致しない。このため、焼成の際に急速に加熱しな
ければならない、焼成温度を必要以上に高くしなければ
ならないなどの問題がある。また、従来の原料を使用し
た場合、発泡状態の調節はガスの発生量を調節すること
により行っていたので、過発泡により、無機質発泡体の
殻が破壊するなどの問題が生じ、低吸水率で高強度の無
機質発泡体を製造することは困難であった。
In order to produce an inorganic foam by the firing method, it is necessary to match the temperature at which an amorphous phase having an appropriate viscosity is formed with the temperature at which a gas is generated, but this is not always the case for actual raw materials. For this reason, there are problems such as rapid heating at the time of firing, and an unnecessarily high firing temperature. Further, when the conventional raw material is used, the foaming state is adjusted by adjusting the amount of gas generated, so that problems such as the shell of the inorganic foam being broken due to overfoaming occur, and a low water absorption rate. It has been difficult to produce a high strength inorganic foam.

【0005】[0005]

【発明の目的】本発明は、新規な無機質発泡体及びその
製造方法を提供することを目的とする。また、本発明
は、従来有効な用途のなかった石油コークスガス化反応
の際に発生するスラグを有効に利用する方法を提供する
ことも目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a novel inorganic foam and a method for producing the same. It is also an object of the present invention to provide a method for effectively utilizing slag generated during a petroleum coke gasification reaction, which has not been conventionally used effectively.

【0006】[0006]

【問題点を解決するための手段】本発明は、SiO2
30〜52重量%、中間酸化物を15〜35重量%、網
目修飾酸化物を10〜35重量%及び結晶核形成剤を1
〜5重量%含有する無機質からなり、該無機質が非晶質
相と非晶質相中に分散析出した微結晶からなることを特
徴とする無機質発泡体に関するものである。本発明の無
機質発泡体は、真珠岩、黒曜石、松脂岩、シラス、膨張
頁岩、膨張粘度、フライアッシュ等から得られる無機質
発泡体とは異なり、分散析出した微結晶により無機質が
強化された高強度、低吸収率の新規な無機質発泡体であ
る。
According to the present invention, 30 to 52% by weight of SiO 2 , 15 to 35% by weight of an intermediate oxide, 10 to 35% by weight of a network modifying oxide and 1% of a crystal nucleating agent are used.
The present invention relates to an inorganic foam characterized by comprising an inorganic content of up to 5% by weight, the inorganic being composed of an amorphous phase and fine crystals dispersed and precipitated in the amorphous phase. The inorganic foam of the present invention is different from the inorganic foam obtained from pearlite, obsidian, pine rock, shirasu, expanded shale, expanded viscosity, fly ash, etc., and has high strength in which the inorganic substance is reinforced by fine crystals dispersed and precipitated. , A novel inorganic foam with low absorption.

【0007】中間酸化物としては、Al23、Fe23
及びTiO2から選択される少なくとも一種の酸化物が
挙げられる。また、網目修飾酸化物としては、CaO、
MgO、Na2O及びK2Oから選択される少なくとも一
種の酸化物が挙げられる。結晶核形成剤としては、P2
5及び/又はV25が挙げられる。
As intermediate oxides, Al 2 O 3 and Fe 2 O 3 are used.
And at least one oxide selected from TiO 2 . Further, as the network modifying oxide, CaO,
At least one oxide selected from MgO, Na 2 O and K 2 O can be mentioned. As the crystal nucleating agent, P 2
O 5 and / or V 2 O 5 may be mentioned.

【0008】本発明の無機質発泡体は、SiO2を30
〜52重量%、中間酸化物を15〜35重量%、網目修
飾酸化物を10〜35重量%、結晶核形成剤を1〜5重
量%及びSi−OHの状態で0.2重量%以上のH2
を含有し、H2O、H2、CO2及びCOから選ばれる少
なくとも1成分を0.2重量%以上溶解している非晶質
スラグを、結晶折出開始温度とガラス軟化点より50℃
高い温度との間の温度範囲で焼成することにより製造で
きる。結晶折出開始温度より低い温度で焼成した場合に
は、スラグの粘度が高いため、十分に発泡しない。ま
た、ガラス軟化点より50℃以上高い温度で焼成した場
合には、スラグの粘度が低すぎて発泡体同士が融着する
問題が生じる。
The inorganic foam of the present invention contains 30% of SiO 2 .
˜52 wt%, 15 to 35 wt% intermediate oxide, 10 to 35 wt% network modifying oxide, 1 to 5 wt% crystal nucleating agent and 0.2 wt% or more in the Si—OH state. H 2 O
Amorphous slag containing 0.2% by weight or more of at least one component selected from H 2 O, H 2 , CO 2 and CO is contained at 50 ° C. from the crystal crack initiation temperature and the glass softening point.
It can be produced by firing in a temperature range between high temperature. When fired at a temperature lower than the crystal cracking start temperature, the viscosity of the slag is high, so that it does not sufficiently foam. Further, when the firing is performed at a temperature higher than the glass softening point by 50 ° C. or more, the viscosity of the slag is too low and the foams are fused to each other.

【0009】本発明の無機質発泡体の製造原料である非
晶質スラグは、従来使用されていた真珠岩、黒曜石、松
脂岩、シラス、膨張頁岩、膨張粘度、フライアッシュ等
の原料とは化学成分が異なる。特に、この非晶質スラグ
は、網目形成酸化物であるSiO2の含有量も少なく、
15〜35重量%の中間酸化物と、10〜35重量%の
網目修飾酸化物を含有することから、非晶質の軟化点が
従来の原料に比べて低く、700〜900℃の範囲にあ
る。したがって、この非晶質スラグを用いることにより
従来より低い焼成温度で発泡させることができる。
Amorphous slag, which is a raw material for producing the inorganic foam of the present invention, is a chemical component which is conventionally used as a raw material for pearlite, obsidian, pine rock, shirasu, expanded shale, expanded viscosity, fly ash and the like. Is different. In particular, this amorphous slag has a low content of SiO 2 which is a network-forming oxide,
Since it contains 15 to 35% by weight of the intermediate oxide and 10 to 35% by weight of the network modifying oxide, the amorphous softening point is lower than that of the conventional raw material and is in the range of 700 to 900 ° C. . Therefore, by using this amorphous slag, it is possible to foam at a lower firing temperature than conventional.

【0010】また、該非晶質スラグは、網目形成酸化物
であるSiO2の含有量が従来の原料に比べて少なく、
非晶質の結晶化を促進する結晶核形成剤を1〜5重量%
含むことから非晶質相が不安定となり、結晶折出開始温
度が600〜850℃の範囲にある。このため、得られ
る無機質発泡体は、非晶質相中に微結晶が分散した粒子
分散強化非晶質となり、高強度である。また、発泡の途
中で非晶質相に微結晶が析出するため、スラグの粘度が
上昇して泡の殻がガス圧により破壊されることが少なく
なり、吸水率の小さい無機質発泡体が得られる。
Further, the amorphous slag has a smaller content of SiO 2 which is a network-forming oxide than the conventional raw materials,
1 to 5% by weight of a crystal nucleating agent that promotes amorphous crystallization
Since the amorphous phase is included, the amorphous phase becomes unstable, and the crystal crack initiation temperature is in the range of 600 to 850 ° C. Therefore, the obtained inorganic foam becomes a particle dispersion-strengthened amorphous in which fine crystals are dispersed in an amorphous phase, and has high strength. Further, since fine crystals are precipitated in the amorphous phase during foaming, the viscosity of the slag increases and the foam shell is less likely to be broken by gas pressure, and an inorganic foam with a low water absorption rate can be obtained. .

【0011】さらに、非晶質スラグは、Si−OHの状
態で0.2重量%以上のH2Oを含有し、H2O、H2
CO2及びCOから選ばれる少なくとも1成分を0.2
重量%以上溶解している非晶質スラグである。Si−O
Hの状態で存在するH2Oが非晶質相から脱離し、ガス
を発生する温度は500〜1000℃であり、本発明の
非晶質スラグの結晶析出開始温度から非晶質の軟化点の
温度領域とほぼ一致する。このため、急速昇温などの特
殊な焼成方法を用いなくても、無機質発泡体を製造する
ことができる。また、非晶質スラグに溶解しているH2
O、H2、CO2及びCOは、網目形成酸化物であるSi
2のSi−O−Si結合を破壊し、非晶質相の粘度を
低下させ、非晶質スラグの発泡を容易にする。これら溶
解している分子は、発泡終了時には非晶質相から脱離
し、破壊されたSi−O−Si結合を再結合するので発
泡終了後の非晶質相の粘度を増大させ、無機質発泡体同
士の融着が生じるのを防ぐ。
Further, the amorphous slag contains 0.2% by weight or more of H 2 O in the state of Si-OH, and H 2 O, H 2 ,
At least one component selected from CO 2 and CO is 0.2
It is an amorphous slag that is dissolved by weight% or more. Si-O
The temperature at which H 2 O existing in the state of H is desorbed from the amorphous phase and gas is generated is 500 to 1000 ° C., and the amorphous slag of the present invention has an amorphous softening point from the crystal precipitation start temperature. It almost coincides with the temperature range of. Therefore, the inorganic foam can be manufactured without using a special firing method such as rapid temperature rising. In addition, H 2 dissolved in the amorphous slag
O, H 2 , CO 2 and CO are Si which is a network forming oxide.
Destroying Si-O-Si bonds of the O 2, to reduce the viscosity of the amorphous phase, to facilitate foaming of amorphous slag. These dissolved molecules are desorbed from the amorphous phase at the end of foaming and recombine the broken Si-O-Si bond, so that the viscosity of the amorphous phase after the completion of foaming is increased and the inorganic foam is Prevents fusion between them.

【0012】本発明で用いる非晶質スラグは、2気圧以
上に加圧されたH2O、H2、CO2及びCOから選ばれ
る少なくとも一種のガス雰囲気下に、流動温度以上の温
度で溶融したスラグを急冷して得られる。2気圧未満で
は、Si−OHの状態のH2Oが0.2重量%未満しか
含有されず、H2O、H2、CO2及びCOから選ばれる
少なくとも1成分も0.2重量%未満しか非晶質スラグ
に溶解しない。
The amorphous slag used in the present invention is melted at a temperature higher than the flowing temperature in an atmosphere of at least one gas selected from H 2 O, H 2 , CO 2 and CO pressurized to 2 atm or more. It is obtained by rapidly cooling the slag. Below 2 atm, H 2 O in the Si—OH state is contained in an amount of less than 0.2% by weight, and at least one component selected from H 2 O, H 2 , CO 2 and CO is also less than 0.2% by weight. Only dissolved in amorphous slag.

【0013】本発明で用いる非晶質スラグは、石油コー
クスの部分酸化により合成ガスを製造する際に発生する
スラグとして供給される。特に、テキサコ法のように石
油コークスとフラックスの水スラリーを高圧力下のガス
化炉に噴霧し、生成するスラグの流動温度以上の温度で
反応を行い、生成したスラグを水中に投下し急冷する装
置から排出された非晶質スラグを使用することが好まし
い。通常、石油コークスには灰分としてSiO2、Al2
3、V25、NiO等が含まれており、これらを反応
炉から排出するため、フラックスを投入してスラグを生
成させて、反応炉外に排出する。したがって、投入する
フラックスの化学成分を調整することにより、本発明の
組成の非晶質スラグが生成する。
The amorphous slag used in the present invention is supplied as slag generated when producing synthesis gas by partial oxidation of petroleum coke. In particular, like the Texaco method, water slurry of petroleum coke and flux is sprayed into a gasification furnace under high pressure, the reaction is carried out at a temperature above the flow temperature of the generated slag, and the generated slag is dropped into water and rapidly cooled. It is preferred to use the amorphous slag discharged from the device. Usually, petroleum coke has ash as SiO 2 , Al 2
Since O 3 , V 2 O 5 , NiO and the like are contained and these are discharged from the reaction furnace, flux is added to generate slag and the slag is discharged to the outside of the reaction furnace. Therefore, an amorphous slag having the composition of the present invention is produced by adjusting the chemical composition of the flux to be added.

【0014】スラグの化学成分を調整するのに用いるフ
ラックスは、特に限定しないが、石炭灰、高炉スラグ、
粘土、石灰石、下水汚泥、珪砂等を使用することができ
る。本発明で使用する非晶質スラグの粒子径は、特に限
定しないが、粒子径が小さくなると単位体積当たりの表
面積が大きくなり、非晶質スラグ内で発生したガスが表
面から抜けやすく発泡し難くなる傾向が認められる。本
発明の無機質発泡体は、吸水率が極めて低く、高強度で
あるので、セメントの軽量骨材として使用できる。
The flux used to adjust the chemical composition of the slag is not particularly limited, but includes coal ash, blast furnace slag,
Clay, limestone, sewage sludge, silica sand, etc. can be used. The particle size of the amorphous slag used in the present invention is not particularly limited, but the surface area per unit volume becomes large when the particle size becomes small, and the gas generated in the amorphous slag easily escapes from the surface and is difficult to foam. There is a tendency to become. Since the inorganic foam of the present invention has extremely low water absorption and high strength, it can be used as a lightweight aggregate for cement.

【0015】[0015]

【実施例】以下に実施例及び比較例を示し、本発明をさ
らに具体的に説明する。 実施例1 40気圧の圧力、1500℃の温度で操業中のテキサコ
法石油コークスガス化炉から排出されたスラグは、X線
回折の結果、非晶質であることを確認した。表1に化学
成分、赤外線吸収スペクトルによりSi−OHの状態の
2O含有量、昇温脱離ガス分析によるガス溶解量を示
す。また、結晶析出開始温度は750℃、ガラス軟化点
は780℃であった。次に、非晶質スラグを粉砕し、
0.6〜1.2mmの粒子径に分級した後、これら粒子
100gを電気炉に入れ、昇温速度10℃/分で800
℃まで加熱し、6分間保持して発泡させた。得られた無
機質発泡体について、単位容積重量、24時間吸水率、
圧壊強度、X線回折の測定を行った。表2に発泡試験の
結果を示す。
The present invention will be described more specifically with reference to the following Examples and Comparative Examples. Example 1 As a result of X-ray diffraction, it was confirmed that the slag discharged from the Texaco petroleum coke gasification furnace operating at a pressure of 40 atm and a temperature of 1500 ° C. was amorphous. Table 1 shows the chemical components, the H 2 O content in the Si—OH state by the infrared absorption spectrum, and the gas dissolution amount by the thermal desorption gas analysis. The crystal precipitation start temperature was 750 ° C and the glass softening point was 780 ° C. Next, crush the amorphous slag,
After classifying to a particle size of 0.6 to 1.2 mm, 100 g of these particles are put into an electric furnace and heated at a temperature rising rate of 10 ° C./min to 800.
The mixture was heated to 0 ° C and held for 6 minutes for foaming. About the obtained inorganic foam, unit volume weight, 24-hour water absorption,
The crushing strength and X-ray diffraction were measured. Table 2 shows the results of the foaming test.

【0016】実施例2 実施例1において、粉砕した非晶質スラグ粒子を、1.
2〜2.4mmに分級したほかは、実施例1と同様にし
て無機質発泡体を製造した。結果を表2に示す。
Example 2 In Example 1, the crushed amorphous slag particles were
An inorganic foam was produced in the same manner as in Example 1 except that the size was classified to 2 to 2.4 mm. Table 2 shows the results.

【0017】実施例3 実施例1において、粉砕した非晶質スラグ粒子を、0.
4〜0.6mmに分級したほかは、実施例1と同様にし
て無機質発泡体を製造した。結果を表2に示す。
Example 3 In Example 1, the pulverized amorphous slag particles were mixed with 0.1
An inorganic foamed product was produced in the same manner as in Example 1 except that the product was classified to 4 to 0.6 mm. Table 2 shows the results.

【0018】比較例1 実施例1において、焼成温度を900℃にしたほかは、
実施例1と同様にして無機質発泡体を製造した。無機質
発泡体は、溶融し、粒子同士が融着した。
Comparative Example 1 In Example 1, except that the firing temperature was 900 ° C.,
An inorganic foam was produced in the same manner as in Example 1. The inorganic foam melted and the particles were fused together.

【0019】比較例2 実施例1において、表1に示す化学成分の非晶質スラグ
を使用したほかは、実施例1と同様にして無機質発泡体
を製造した。無機質発泡体は、非晶質のままであり、過
発泡して吸水性が増加し、圧壊強度が低下した。
Comparative Example 2 An inorganic foam was produced in the same manner as in Example 1 except that the amorphous slag having the chemical composition shown in Table 1 was used. The inorganic foam remained amorphous and over-foamed to increase water absorption and reduce crush strength.

【0020】比較例3 実施例1において、1気圧の圧力、1500℃の温度で
溶融したスラグを水中に投入し、急冷して作製した非晶
質スラグを使用したほかは、実施例1と同様にして無機
質発泡体を製造しようとしたが、非晶質スラグには発泡
成分が極めてわずかしか存在せず、焼成により無機質発
泡体は得られなかった。
Comparative Example 3 Same as Example 1 except that the amorphous slag prepared by pouring the slag melted at a pressure of 1 atm and a temperature of 1500 ° C. into water and quenching was used. Although an attempt was made to produce an inorganic foam, the amorphous slag contained very little foaming component, and the inorganic foam could not be obtained by firing.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【発明の効果】本発明の無機質発泡体は、従来有効な用
途のなかった石油コークスガス化の際に発生する非晶質
スラグを用いて製造することができ、資源の有効利用に
貢献できる。また、発泡の際に非晶質の一部を結晶化さ
せるので、高強度で低吸水率の無機質発泡体を提供する
ことができる。
INDUSTRIAL APPLICABILITY The inorganic foam of the present invention can be produced by using the amorphous slag generated during the gasification of petroleum coke, which has not been conventionally used effectively, and can contribute to the effective use of resources. Further, since a part of the amorphous is crystallized at the time of foaming, it is possible to provide an inorganic foam having high strength and low water absorption.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 SiO2を30〜52重量%、中間酸化
物を15〜35重量%、網目修飾酸化物を10〜35重
量%及び結晶核形成剤を1〜5重量%含有する無機質か
らなり、該無機質が非晶質相と非晶質相中に分散析出し
た微結晶からなることを特徴とする無機質発泡体。
1. An inorganic material containing 30 to 52% by weight of SiO 2 , 15 to 35% by weight of an intermediate oxide, 10 to 35% by weight of a network modifying oxide, and 1 to 5% by weight of a crystal nucleating agent. An inorganic foam characterized in that the inorganic material is composed of an amorphous phase and fine crystals dispersed and precipitated in the amorphous phase.
【請求項2】 SiO2を30〜52重量%、中間酸化
物を15〜35重量%、網目修飾酸化物を10〜35重
量%、結晶核形成剤を1〜5重量%及びSi−OHの状
態で0.2重量%以上のH2Oを含有し、H2O、H2
CO2及びCOから選ばれる少なくとも1成分を0.2
重量%以上溶解している非晶質スラグを、結晶折出開始
温度とガラス軟化点より50℃高い温度との間の温度範
囲で焼成することを特徴とする無機質発泡体の製造方
法。
2. SiO 2 of 30 to 52% by weight, an intermediate oxide of 15 to 35% by weight, a network modifying oxide of 10 to 35% by weight, a crystal nucleating agent of 1 to 5% by weight and Si--OH. In the state, it contains 0.2% by weight or more of H 2 O, H 2 O, H 2 ,
At least one component selected from CO 2 and CO is 0.2
A method for producing an inorganic foam, which comprises calcining an amorphous slag, which is melted in an amount of not less than wt%, in a temperature range between a crystal cracking initiation temperature and a temperature 50 ° C. higher than a glass softening point.
【請求項3】 非晶質スラグが、2気圧以上に加圧され
たH2O、H2、CO 2及びCOから選ばれる少なくとも
一種のガス雰囲気下に、流動温度以上の温度で溶融した
スラグを急冷して得られるものである請求項2記載の無
機質発泡体の製造方法。
3. The amorphous slag is pressurized to 2 atmospheres or more
HTwoO, HTwo, CO TwoAnd at least selected from CO
Melted at a temperature above the flow temperature in a kind of gas atmosphere
The non-flakes according to claim 2, which are obtained by quenching slag.
A method for manufacturing an organic foam.
JP29226895A 1995-11-10 1995-11-10 Inorganic foamed body and its production Pending JPH09132477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29226895A JPH09132477A (en) 1995-11-10 1995-11-10 Inorganic foamed body and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29226895A JPH09132477A (en) 1995-11-10 1995-11-10 Inorganic foamed body and its production

Publications (1)

Publication Number Publication Date
JPH09132477A true JPH09132477A (en) 1997-05-20

Family

ID=17779572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29226895A Pending JPH09132477A (en) 1995-11-10 1995-11-10 Inorganic foamed body and its production

Country Status (1)

Country Link
JP (1) JPH09132477A (en)

Similar Documents

Publication Publication Date Title
Vinai et al. Production of sodium silicate powder from waste glass cullet for alkali activation of alternative binders
EP1180503B1 (en) Process for the production of a porous silicate granulate
US9376344B2 (en) Foamed glass ceramic composite materials and a method for producing the same
TW200422276A (en) Synthetic hollow microspheres
CA2674963C (en) Ceramic microspheres for cementing applications
JPS6031779B2 (en) Expandable bead manufacturing material
WO1999033765A1 (en) Method of producing synthetic silicates and use thereof in glass production
US3979168A (en) Apparatus for the manufacture of light granulates
JP3246722B2 (en) Process for producing synthetic silicate and its use in glass production
WO2014043599A1 (en) Low energy slag and cement production
JP2002293574A (en) Method of manufacturing inorganic fiber
US3416936A (en) Abrasion resistant glass bead with sharp softening range and process for making the same
JPH09132477A (en) Inorganic foamed body and its production
RU2357933C2 (en) Charge for production of glass foam
Bobkova et al. Production of foam glass with granite siftings from the Mikashevichi deposit
JPH07144935A (en) Inorganic glass foamed body and its production
JPS63252932A (en) Production of foamed glass board
WO2007050062A1 (en) Methods for the production of low-density microspheres
RU2051869C1 (en) Charge for manufacture of foam glass
JP2899954B2 (en) Porous crystallized glass composition
JPH052606B2 (en)
JP2554975B2 (en) Fine spherical inorganic foam having thick skin and method for producing the same
JPH042607A (en) Production of silica balloon
JPH09309752A (en) Production of lightweight aggregate
Kazmina et al. Single-stage technogy for granulated foam glass production based on the composition of tripoli and technogical microsilica