JPH09131348A - Blood vessel obliteration therapeutic/cancer therapeutic device - Google Patents

Blood vessel obliteration therapeutic/cancer therapeutic device

Info

Publication number
JPH09131348A
JPH09131348A JP7288424A JP28842495A JPH09131348A JP H09131348 A JPH09131348 A JP H09131348A JP 7288424 A JP7288424 A JP 7288424A JP 28842495 A JP28842495 A JP 28842495A JP H09131348 A JPH09131348 A JP H09131348A
Authority
JP
Japan
Prior art keywords
thrombus
shock wave
bubbles
blood vessel
wave generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7288424A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Takayama
和喜 高山
Tetsuya Kodama
哲也 小玉
Nobuo Nagai
伸生 永易
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Kayaku KK
Original Assignee
Chugoku Kayaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Kayaku KK filed Critical Chugoku Kayaku KK
Priority to JP7288424A priority Critical patent/JPH09131348A/en
Publication of JPH09131348A publication Critical patent/JPH09131348A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To sharply shorten the time required for dissolving a thrombus and open a clogged blood vessel in a short time by providing a bubble feeding device sticking bubbles to the thrombus and a shock wave generating device applying shock waves to the bubbles stuck to the thrombus. SOLUTION: This device used for the therapy of blood vessel obliteration caused by a thrombus or an embolus generated from an organism (referred to as the thrombus hereafter) such as cerebral embolism or the therapy of cancer is constituted of a bubble feeding device sticking bubbles to the thrombus and a shock wave generating device applying shock waves to the bubbles stuck to the thrombus. The thrombus is pierced and broken by a liquid jet formed when the bubbles interfere with the shock waves and are broken, or the area of the thrombus kept in contact with a thrombus dissolving agent is increased. A device having a micro-pump is used for the bubble feeding device, and an underwater spark discharge type shock wave generating device or a shock wave generating device via the light convergence of a laser is used for the shock wave generating device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、脳塞栓症等、血栓
或いは生体から生成される栓子(以下、単に血栓等とい
う)による血管閉塞の治療に使用され、またガン治療に
も使用することができる装置に関する。
TECHNICAL FIELD The present invention is used for treatment of vascular embolism such as cerebral embolism due to thrombus or embolus generated from a living body (hereinafter simply referred to as thrombus), and also used for cancer treatment. Related to devices that can

【0002】[0002]

【従来技術】血管が栓子等によって閉塞され、血行が阻
害されると、血液が送られる組織に栄養や酸素の不足を
来たし、その組織が壊死する。血栓等が脳内の血管を突
然閉塞することによって脳塞栓症が発生する場合、動脈
硬化に基づく血栓性閉塞に比べ、副血行路の発達が不良
に付き、重篤で広範囲な虚血巣が形成し、脳組織が壊死
に陥り易い。
2. Description of the Related Art When a blood vessel is occluded by an embolus or the like and blood circulation is obstructed, the tissue to which blood is fed becomes deficient in nutrients and oxygen, and the tissue is necrotic. When cerebral embolism occurs because a blood clot in the brain suddenly occludes a blood vessel in the brain, compared to thrombotic occlusion due to arteriosclerosis, the development of the accessory blood circulation is poorer, and a serious and widespread ischemic lesion occurs Formed and brain tissue is prone to necrosis.

【0003】脳塞栓症や心筋梗塞など血管閉塞の治療法
としては、外科的療法と内科的療法があり、内科的療法
には一般にTPA、ウロキナーゼ等の血栓溶解剤が用い
られている。一方、ガンの治療法としては、外科的療法
と内科的療法のほか放射線療法などの物理療法が用いら
れている。
There are surgical treatments and medical treatments for the treatment of blood vessel blockages such as cerebral embolism and myocardial infarction, and thrombolytic agents such as TPA and urokinase are generally used for medical treatments. On the other hand, as a method of treating cancer, physical therapy such as radiation therapy is used in addition to surgical therapy and medical therapy.

【0004】[0004]

【発明が解決しようとする課題】血管閉塞により、その
血液が送られる生体組織を壊死に到らさないためには、
閉塞した血管の血行を早急に再建する必要がある。とく
に脳梗塞や心筋梗塞などは急務である。内科的療法で閉
塞した血管の血行を再建するため、血栓等を除去するに
は、血栓等を貫通、破砕することが望まれ、血栓溶解剤
を使用する場合には、血栓は一旦溶解始めると、溶解剤
に接する血栓部の面積の増加で、溶解が加速度的に促進
されることから、血管の閉塞を早急に解消するには、溶
解剤に接する血栓部の面積を増加させるような治療法が
望まれる。
SUMMARY OF THE INVENTION In order to prevent necrosis of living tissues to which the blood is sent due to blood vessel obstruction,
There is an urgent need to rebuild the blood flow in the blocked blood vessels. Especially cerebral infarction and myocardial infarction are urgent tasks. In order to reconstruct the blood circulation of the blood vessel blocked by medical therapy, it is desirable to penetrate and crush the thrombus etc. to remove the thrombus etc. When using a thrombolytic agent, once the thrombus begins to dissolve Since the area of the thrombus portion in contact with the dissolving agent is accelerated, the dissolution is accelerated, and therefore, in order to quickly eliminate the blockage of the blood vessel, a treatment method such as increasing the area of the thrombus portion in contact with the dissolving agent Is desired.

【0005】本発明は、かゝる点に鑑みてなされたもの
で、その第1の目的は、血管を閉塞する血栓等を貫通、
破砕し、或いは溶解剤に接する血栓等の面積を増加させ
るための装置を提供しようとするものである。一方、ガ
ン治療に用いられる放射線治療は、放射線をガン組織に
照射してガン組織を壊死させるものであるが、臓器のガ
ン組織に対しては、放射線を直接照射することができな
いため、正常な生体組織も壊死され易い。
The present invention has been made in view of the above points, and a first object thereof is to penetrate a thrombus or the like which blocks a blood vessel,
An object of the present invention is to provide a device for increasing the area of thrombus or the like that is crushed or comes into contact with a lysing agent. On the other hand, the radiation treatment used for cancer treatment is to irradiate the cancer tissue with radiation to cause necrosis of the cancer tissue. Living tissue is also easily necrotic.

【0006】また内科的療法で抗ガン剤を投与する場
合、抗ガン剤の効き目を増すには、抗ガン剤に接するガ
ン組織の面積を増加させることが望まれる。本発明の第
2の目的は、抗ガン剤の効き目を増し、また限定された
ガン発生箇所、例えば胃内壁ポリープや脳内部の腫瘍箇
所等の選択的な治療が可能な装置を提供しようとするも
のである。
When the anticancer drug is administered by medical therapy, it is desirable to increase the area of the cancer tissue in contact with the anticancer drug in order to increase the efficacy of the anticancer drug. A second object of the present invention is to provide a device which enhances the efficacy of an anticancer agent and can selectively treat a limited cancer occurrence site, for example, a gastric inner wall polyp or a tumor site in the brain. It is a thing.

【0007】[0007]

【課題の解決手段】第1の目的を達成するための装置
は、血栓等に気泡を付着させる気泡供給装置と、血栓等
に付着する気泡に衝撃波を付与する衝撃波発生装置とか
らなるもので、気泡が衝撃波と干渉して崩壊するときに
形成される液体ジェットが血栓等を貫通、破砕し或いは
貫通により血栓溶解剤に接する血栓等の面積を機械的に
増加させようとするものである。
A device for achieving the first object comprises a bubble supply device for adhering bubbles to a thrombus or the like and a shock wave generator for applying a shock wave to the bubbles adhering to the thrombus or the like. A liquid jet formed when air bubbles interfere with a shock wave and collapses penetrates or crushes thrombus or the like, or mechanically increases the area of the thrombus or the like in contact with the thrombolytic agent due to penetration.

【0008】本装置は、脳塞栓症、心筋梗塞その他血栓
による血管閉塞一般に使用することができる。第2の目
的を達成するための装置は、ガン組織に気泡を付着させ
る気泡供給装置と、ガン組織に付着する気泡に衝撃波を
付与する衝撃波発生装置とからなるもので、気泡が衝撃
波と干渉して崩壊するときに形成される液体ジェットを
ガン組織に貫通させてガン組織を破壊し、また抗ガン剤
に接するガン組織の面積を機械的に増加させようとする
ものである。
The present device can be generally used for cerebral embolism, myocardial infarction and other vascular occlusion due to thrombosis. A device for achieving the second object comprises a bubble supply device for adhering bubbles to the cancer tissue and a shock wave generator for imparting a shock wave to the bubbles adhering to the cancer tissue. The bubbles interfere with the shock waves. It is intended to penetrate the cancer tissue with a liquid jet formed when it collapses and destroy the cancer tissue, and mechanically increase the area of the cancer tissue in contact with the anticancer agent.

【0009】上記各装置で用いる気泡供給装置として
は、例えば血管内に或いは臓器に通されるカテーテル
と、カテーテル端に接続されるスポイドよりなり、スポ
イド操作により気泡を血栓等或いはガン組織に供給する
装置、スポイドに代え、マイクロポンプを用いた装置、
注射器よりなり、注射針を血管或いは臓器に突き刺すこ
とで血栓等或いはガン組織に直接気泡を付着させる装置
等を用いることがきるが、この中では、一定サイズの気
泡を血栓等或いはガン組織に供給することができるカテ
ーテルとマイクロポンプよりなるものが望ましい。
The air bubble supplying device used in each of the above-mentioned devices comprises, for example, a catheter that is passed through a blood vessel or an organ and a drop connected to the end of the catheter. A device that uses a micropump instead of the device and the spoid,
It is possible to use a device that consists of a syringe and directly attaches air bubbles to the thrombus or cancer tissue by piercing the blood vessel or organ with an injection needle. Among these, a certain size of air bubble is supplied to the thrombus or cancer tissue. What consists of a catheter and a micropump that can be done is desirable.

【0010】また衝撃波発生装置としては、例えば水中
火花放電式衝撃波発生装置、レーザの集光による衝撃波
発生装置、ピエゾ素子を使用した衝撃波発生装置、電磁
駆動式による衝撃波発生装置、微小爆薬を使用した衝撃
波発生装置等を用いることができる。
As the shock wave generator, for example, an underwater spark discharge type shock wave generator, a shock wave generator by condensing a laser, a shock wave generator using a piezo element, an electromagnetic drive type shock wave generator, and a micro explosive are used. A shock wave generator or the like can be used.

【0011】[0011]

【発明の実施の形態】本発明者らは、水中衝撃波と気泡
との相互干渉に着目し、気泡が水中衝撃波と干渉して崩
壊するときに形成される液体ジェットの血栓等或いはガ
ン組織への貫通を利用した治療法の開発を目指して、音
響インピーダンスが血液、血管、生体組織等とほゞ等し
く、血栓にも近いと考えられるゼラチンを用い、ゼラチ
ン壁に付着させた空気泡と水中衝撃波の干渉及び、血管
模擬材料として用いたテフロン管に注入したゼラチンに
付着の空気泡と水中衝撃波の干渉を調査した。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors pay attention to the mutual interference between an underwater shock wave and a bubble and focus on a thrombus or the like of a liquid jet or a cancer tissue which is formed when the bubble interferes with the underwater shock wave and collapses. Aiming to develop a therapeutic method using penetration, gelatin, which has an acoustic impedance almost equal to that of blood, blood vessels, living tissues, etc., and is considered to be close to a thrombus, is used. The interference and the interference of air bubbles attached to gelatin injected into a Teflon tube used as a blood vessel simulating material and shock waves in water were investigated.

【0012】図1はこの調査に使用した実験装置につい
て示すもので、水を満たした水槽1の一側にImotech社
製の圧力変換器計2(固有振動数10MHz)を設け、
その水平延長上で圧力変換計2よりL=50mm離れたた
箇所に衝撃波源として中国化薬株式会社製のアジ化銀ペ
レット3(10mg)をセットする。そしてその起爆はY
AGレーザ光源4より発するレーザ光より内径0.4mm
のグラスファイバー5を介して行われるようにしてあ
り、これらアジ化銀ペレット3、YAGレーザ光源4及
びグラスファイバー5等が衝撃波発生装置を構成してい
る。6はディフューザである。
FIG. 1 shows an experimental apparatus used for this investigation. A pressure transducer meter 2 (natural frequency 10 MHz) manufactured by Imotech is provided on one side of a water tank 1 filled with water.
On the horizontal extension, a silver azide pellet 3 (10 mg) manufactured by Chugoku Kayaku Co., Ltd. is set as a shock wave source at a position apart from the pressure transducer 2 by L = 50 mm. And the detonation is Y
0.4 mm inside diameter from the laser light emitted from the AG laser light source 4
The silver azide pellet 3, the YAG laser light source 4, the glass fiber 5 and the like constitute a shock wave generator. 6 is a diffuser.

【0013】実験は、和光株式会社製のゼラチン(1
級)10重量%の水溶液を内径2mm、外径3mm及び内径
3.9mm、外径6mmのテフロン管7に注入してゆっくり
と冷却した。固化後、テフロン管7を水中に鉛直に浸た
し、気泡供給装置として市販の注射器を用い、一個の気
泡13(曲率半径2r)をゼラチン界面に付着させた。
次に、テフロン管7の開口端に、衝撃波発生時の液体粒
子の巻き込み防止のため、マイラーフィルム(材質:ポ
リエチレンテレフタレート、厚さ:25μm)を添付し
て封鎖した後に、ゼラチン8の界面がアジ化銀ペレット
3の真上にL=50mm離れて位置するようにしてセット
し、アジ化銀ペレット3を起爆させるテストを繰り返し
た。そして各テストでの気泡崩壊時の様相を閃光時間4
00μs のXeフラッシュ9を光源とするJohn Hadland
社製のイメージコンバータカメラ10(790型)を用
いて観察窓11を通して透過法により撮影し、ゼラチン
内部に進行するジェットの最大貫通深さlを測定した。
気泡のサイズが一定の場合のジェットの貫通深さの経時
変化を、縦軸にジェット貫通深さl、横軸に時間を採っ
た図2に黒丸で示す。また、気泡のサイズとジェットの
貫通深さの関係を、縦軸にジェット最大貫通深さlと気
泡曲率直径2rとの比、横軸に気泡曲率直径と管内径D
iとの比を採った図3に黒丸で示す。
The experiment was carried out by using the gelatin (1
A 10% by weight aqueous solution was poured into a Teflon tube 7 having an inner diameter of 2 mm, an outer diameter of 3 mm and an inner diameter of 3.9 mm, and an outer diameter of 6 mm, and cooled slowly. After solidification, the Teflon tube 7 was immersed vertically in water, and one bubble 13 (radius of curvature 2r) was attached to the gelatin interface using a commercially available syringe as a bubble supply device.
Next, at the open end of the Teflon tube 7, a Mylar film (material: polyethylene terephthalate, thickness: 25 μm) was attached and sealed to prevent entrapment of liquid particles when a shock wave was generated. The test was repeated such that the silver azide pellets 3 were set right above the silver azide pellets 3 at a distance of L = 50 mm and the silver azide pellets 3 were detonated. And the appearance of the bubble collapse in each test flash time 4
John Hadland with Xe Flash 9 of 00 μs as light source
An image was taken by a transmission method through an observation window 11 using an image converter camera 10 (Model 790) manufactured by the company, and the maximum penetration depth 1 of the jet advancing inside the gelatin was measured.
The change over time in the penetration depth of the jet when the size of the bubbles is constant is shown by a black circle in FIG. 2 in which the vertical axis represents the jet penetration depth 1 and the horizontal axis represents time. Further, the relationship between the bubble size and the penetration depth of the jet is represented by the ratio of the maximum penetration depth 1 of the jet to the bubble curvature diameter 2r on the vertical axis, and the bubble curvature diameter and the tube inner diameter D on the horizontal axis.
It is shown by a black circle in FIG. 3 in which the ratio with i is taken.

【0014】なお、テスト時び水温は291K、大気圧
は101.5KPaであり、各テスト時の気泡への作用
圧は、衝撃波源より等距離にあった圧力変換器2で測定
したところ、10.3±0.7MPaであった。図3か
ら見られるように、ジェットの最大貫通深さは気泡の曲
率半径の増加と共に、緩慢に減少する。その他実験から
管内で液体ジェットを効果的に発生させるには、管中心
軸に沿って気泡を正確に貫通できるように衝撃波発生源
をセットすればよいということが分かった。また、気泡
と衝撃波発生源との離脱距離が、ジェットの最大貫通深
さlに与える影響をみるため、ゼラチ界面と管開口端ま
での距離Hをパラメーターとし、前もって、各H値に対
して、気泡への作用圧が一定となるように、各々のL値
を求めたうえ、各々のH値に対して、アジ化銀ペレット
3を起爆させるテストを繰り返した。気泡と衝撃波発生
源との離脱距離とジェットの貫通深さの関係を、縦軸に
ジェット最大貫通深さlと気泡曲率直径2rとの比、横
軸にゼラチン界面と管開口端までの距離Hと気泡曲率直
径との比を採った図4に示す。図4から見られるよう
に、気泡と衝撃波発生源との離脱距離は、気泡曲率直径
の5倍程度とればよいということが分かった。次に上述
のゼラチンよりゼラチン壁を作成し、テフロン管に代
え、水中に浸し、アジ化銀ペレットと気泡間距離が50
mmとなるようにセットした。そして上記と同様、注射器
で気泡一個をゼラチン壁に付着させたのち、アジ化銀ペ
レット3を起爆させ、ゼラチン内部に進行するジェット
の最大貫通深さlを測定した。ジェットの貫通深さの経
時変化を図2に丸で示す。また、気泡のサイズとジェッ
ト貫通深さの関係を調べた結果を図3の丸で示す。ここ
で平面壁に付着した気泡の場合には、Diとしてゼラチ
ン壁の長さ10mmを採用した。
The water temperature during the test was 291 K, and the atmospheric pressure was 101.5 KPa. The working pressure on the bubbles at each test was 10 when measured with the pressure converter 2 equidistant from the shock wave source. It was 0.3 ± 0.7 MPa. As can be seen from FIG. 3, the maximum penetration depth of the jet decreases slowly with increasing radius of curvature of the bubble. From other experiments, it was found that in order to effectively generate a liquid jet in a tube, the shock wave source should be set so that the bubbles can be accurately penetrated along the central axis of the tube. Further, in order to see the influence of the separation distance between the bubble and the shock wave generation source on the maximum penetration depth l of the jet, the distance H between the gelatin interface and the tube opening end is used as a parameter, and in advance for each H value, The L value of each was determined so that the acting pressure on the bubbles was constant, and the test of detonating the silver azide pellets 3 was repeated for each H value. The relationship between the separation distance between the bubble and the shock wave source and the penetration depth of the jet is shown by the ratio of the maximum penetration depth 1 of the jet to the bubble curvature diameter 2r on the vertical axis, and the distance H between the gelatin interface and the tube opening end on the horizontal axis. FIG. 4 is a graph showing the ratio of the bubble diameter to the bubble curvature diameter. As can be seen from FIG. 4, it was found that the separation distance between the bubble and the shock wave source should be about 5 times the bubble curvature diameter. Next, a gelatin wall was made from the above-mentioned gelatin, replaced with a Teflon tube, and immersed in water. The distance between the silver azide pellets and the bubbles was 50.
It was set to be mm. Then, in the same manner as above, after one bubble was attached to the gelatin wall with a syringe, the silver azide pellet 3 was detonated, and the maximum penetration depth 1 of the jet propagating inside the gelatin was measured. The change with time in the penetration depth of the jet is shown by a circle in FIG. Also, the results of examining the relationship between bubble size and jet penetration depth are shown by circles in FIG. In the case of bubbles attached to the flat wall, the length of the gelatin wall was 10 mm as Di.

【0015】平面壁の場合、図2に示すように、管の場
合に比べ、液体ジェット速度は速いが、その持続時間は
短い。このときのジェット速度は、そのプロットの傾き
からV=280m/sと求められ、そのときの水撃圧P
は、P=1/2ρcvより(ρ=水の密度、1000Kg/m
3、水中での音速、1500m/s)、P=210MPa、
ジェットの持続時間は0.6μsであった。また、図3
に示すように管の場合に比べ、ジェットの最大貫通深さ
は小さいが、生体組織を損傷するのに十分な貫通深さが
得られた。
In the case of a flat wall, as shown in FIG. 2, the liquid jet velocity is faster but its duration is shorter than that of a tube. The jet velocity at this time was calculated as V = 280 m / s from the slope of the plot, and the water hammer pressure P at that time was calculated.
Is from P = 1 / 2ρcv (ρ = density of water, 1000 Kg / m
3 , sound velocity in water, 1500m / s), P = 210MPa,
The jet duration was 0.6 μs. FIG.
Although the maximum penetration depth of the jet was smaller than that of the pipe as shown in Fig. 5, a sufficient penetration depth was obtained to damage the living tissue.

【0016】[0016]

【発明の効果】本発明は以上のように構成され、次のよ
うな効果を奏する。請求項1記載の装置によれば、液体
ジェットを形成させて血栓等を貫通、破砕或いは溶解剤
に接する血栓等のぬれ面積を機械的に増加させることが
できるので、従来の血栓等の溶解に必要な時間を大幅に
短縮して閉塞した血管の再開を短時間で行うことがで
き、したがって緊急を要する脳塞栓症や心筋梗塞の治療
に好適である。
The present invention is configured as described above and has the following effects. According to the apparatus of claim 1, the wet area of the thrombus or the like that forms a liquid jet and penetrates or crushes the thrombus or contacts with the lysing agent can be mechanically increased. The required time can be greatly shortened to reopen an occluded blood vessel in a short time, and thus it is suitable for treatment of urgent cerebral embolism and myocardial infarction.

【0017】請求項2記載の装置においても同様、液体
ジェットを選択的にガン組織に貫通させてガン組織を損
壊させることができるほか、抗ガン剤に接する組織の面
積を機械的に増加させることができるので、抗ガン剤の
効力が増すようになる。
Similarly, in the device according to the second aspect, the liquid jet can be selectively penetrated into the cancer tissue to damage the cancer tissue, and the area of the tissue in contact with the anticancer agent is mechanically increased. Therefore, the efficacy of anti-cancer drugs will increase.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を検証するために用いた実験装置を示す
断面図。
FIG. 1 is a sectional view showing an experimental apparatus used for verifying the present invention.

【図2】ジェットの貫通深さの経時変化を示す図。FIG. 2 is a view showing a change over time in the penetration depth of a jet.

【図3】気泡のサイズとジェットの貫通深さの関係を示
す図。
FIG. 3 is a diagram showing a relationship between bubble size and jet penetration depth.

【図4】気泡と衝撃波発生源との離脱距離と、ジェット
の貫通深さの関係を示す図。
FIG. 4 is a view showing a relationship between a separation distance between a bubble and a shock wave generation source and a penetration depth of a jet.

【符号の説明】[Explanation of symbols]

1・・水槽 2・・圧力変
換器計 3・・アジ化銀ペレット 4・・YAG
レーザ光源 5・・グラスファイバー 6・・ディフ
ューザ 7・・テフロン管 8・・ゼラチ
ン 9・・Xeフラッシュ 10・・イメ
ージコンバータカメラ 11・・観察窓 13・・気泡 14・・フィルム
1. ・ Water tank 2 ・ ・ Pressure transducer total 3 ・ ・ Silver azide pellets 4 ・ ・ YAG
Laser light source 5 · Glass fiber 6 · Diffuser 7 · Teflon tube 8 · Gelatin 9 · · Xe flash 10 · · Image converter camera 11 · · Observation window 13 · · Bubbles 14 · · Film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】血栓等に気泡を付着させる気泡供給装置
と、血栓等に付着する気泡に衝撃波を付与する衝撃波発
生装置とからなることを特徴とする血管の閉塞治療用装
置。
1. A device for treating occlusion of a blood vessel, which comprises a bubble supply device for attaching bubbles to a thrombus or the like and a shock wave generator for applying a shock wave to the bubbles attached to the thrombus or the like.
【請求項2】ガン組織に気泡を付着させる気泡供給装置
と、ガン組織に付着する気泡に衝撃波を付与する衝撃波
発生装置とからなることを特徴とするガン治療用装置。
2. A device for cancer treatment, comprising a bubble supply device for attaching bubbles to the cancer tissue and a shock wave generator for applying a shock wave to the bubbles attached to the cancer tissue.
JP7288424A 1995-11-07 1995-11-07 Blood vessel obliteration therapeutic/cancer therapeutic device Pending JPH09131348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7288424A JPH09131348A (en) 1995-11-07 1995-11-07 Blood vessel obliteration therapeutic/cancer therapeutic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7288424A JPH09131348A (en) 1995-11-07 1995-11-07 Blood vessel obliteration therapeutic/cancer therapeutic device

Publications (1)

Publication Number Publication Date
JPH09131348A true JPH09131348A (en) 1997-05-20

Family

ID=17730047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7288424A Pending JPH09131348A (en) 1995-11-07 1995-11-07 Blood vessel obliteration therapeutic/cancer therapeutic device

Country Status (1)

Country Link
JP (1) JPH09131348A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000053177A1 (en) * 1999-03-11 2000-09-14 Fujisawa Pharmaceutical Co., Ltd. Liposome preparations

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000053177A1 (en) * 1999-03-11 2000-09-14 Fujisawa Pharmaceutical Co., Ltd. Liposome preparations
US6984397B2 (en) 1999-03-11 2006-01-10 Fujisawa Pharmaceutical Company, Ltd. Liposome preparations

Similar Documents

Publication Publication Date Title
US20220323088A1 (en) Histotripsy for thrombolysis
US11058901B2 (en) Ultrasound therapy system
US5509896A (en) Enhancement of thrombolysis with external ultrasound
US6024718A (en) Intraluminal directed ultrasound delivery device
US6113570A (en) Method of removing thrombosis in fistulae
US5827204A (en) Medical noninvasive operations using focused modulated high power ultrasound
US6413216B1 (en) Method and assembly for performing ultrasound surgery using cavitation
US6210404B1 (en) Microjoule electrical discharge catheter for thrombolysis in stroke patients
CN105407968B (en) Equipment for the ultrasound disposition to ishemic stroke
JPH02252449A (en) Selective destruction apparatus for cell containing soft tissue and bone in vivo by internal destruction of bubble
US9895158B2 (en) Method and apparatus for accelerated disintegration of blood clot
CN102112176B (en) The drug delivery of ultrasonic mediation
WO2009094554A2 (en) Histotripsy for thrombolysis
Atar et al. Ultrasonic thrombolysis: catheter-delivered and transcutaneous applications
JPH11509747A (en) Enhanced ultrasonic thrombolysis
Hirano et al. A novel method of drug delivery for fibrinolysis with Ho: YAG laser-induced liquid jet
JPH09131348A (en) Blood vessel obliteration therapeutic/cancer therapeutic device
JP4834815B2 (en) Medical treatment device
Zong et al. Cavitation-enhanced mechanical effects and applications
US10792054B1 (en) Catheter for thromboembolic disease with mechanic waves, injection and ejection
WO2016040008A1 (en) Method and apparatus for accelerated disintegration of blood clot
JPH0255052A (en) Ultrasonic medical device
JPH0255051A (en) Ultrasonic medical device