JPH09129946A - Magnetoresistive element - Google Patents

Magnetoresistive element

Info

Publication number
JPH09129946A
JPH09129946A JP7287180A JP28718095A JPH09129946A JP H09129946 A JPH09129946 A JP H09129946A JP 7287180 A JP7287180 A JP 7287180A JP 28718095 A JP28718095 A JP 28718095A JP H09129946 A JPH09129946 A JP H09129946A
Authority
JP
Japan
Prior art keywords
layer
magnetic layer
magnetic
magnetoresistive element
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7287180A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kitade
康博 北出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP7287180A priority Critical patent/JPH09129946A/en
Publication of JPH09129946A publication Critical patent/JPH09129946A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/325Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being noble metal

Abstract

PROBLEM TO BE SOLVED: To reduce the amount of Cu diffused in magnetic layers by constituting the nonmagnetic layer of a magnetoresistive element having a first magnetic layer, the nonmagnetic layer which is formed on the magnetic layer in a tightly contacting state, and a second magnetic layer which is formed on the nonmagnetic layer in a tightly contacting state of an alloy of Cu and Au. SOLUTION: A base layer 2 composed of Ta, a magnetic layer 3 composed of an Ni-Fe alloy containing 83% Ni atoms and 17% Fe atoms, a nonmagnetic layer 4 composed of a Cu-Au alloy containing 75% Cu atoms and 25% Au atoms, a magnetic layer 5 composed of the Ni-Fe alloy containing 83% Ni atoms and 17% Fe atoms, an antiferromagnetic layer composed of an Fe-Mn alloy, and a protective layer 7 composed of Ta are successively deposited on a silicon substrate 1 having a main surface composed of the (100)-plane. Since the diffusion of Cu in the nonmagnetic layer 4 adjacent to the magnetic layers 3 and 5 is small and the crystal lattice of the layer 4 is not changed by heat treatment, the diffusion of the Cu into the magnetic layers 3 and 5 can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は非磁性層を挟み密接
して設けられた2つの磁性層を有する磁気抵抗素子に関
し,とくに熱的安定性に優れた非磁性層の材質に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive element having two magnetic layers provided in close contact with each other with a nonmagnetic layer sandwiched therebetween, and more particularly to a material of the nonmagnetic layer excellent in thermal stability.

【0002】磁気抵抗効果を利用して磁場を検知する磁
気抵抗素子は,高密度磁気記録を高速に読出すために例
えば磁気ヘッドとして情報処理装置に用いられる。かか
る磁気抵抗素子では,例えばスピンバルブ膜又は他の巨
大磁気効果膜として,磁気抵抗効果を有効に利用するた
めに極めて薄い非磁性層を薄い磁性層で挟む構造が採用
されている。
A magnetoresistive element for detecting a magnetic field by utilizing a magnetoresistive effect is used in an information processing apparatus as, for example, a magnetic head in order to read high-density magnetic recording at high speed. In such a magnetoresistive element, for example, as a spin valve film or another giant magnetic effect film, a structure in which an extremely thin non-magnetic layer is sandwiched by thin magnetic layers is adopted in order to effectively utilize the magnetoresistive effect.

【0003】しかし,薄い多層膜は熱的安定性に劣り,
製造過程の熱処理工程,例えばレジストのベーキング工
程により容易に各薄層間相互の拡散を生じ,性能が劣化
する。このため,熱的安定性に優れた非磁性層が要望さ
れている。
However, the thin multilayer film is inferior in thermal stability,
A heat treatment step in the manufacturing process, such as a resist baking step, easily causes mutual diffusion between the thin layers, resulting in deterioration of performance. Therefore, there is a demand for a non-magnetic layer having excellent thermal stability.

【0004】[0004]

【従来の技術】非磁性層を磁気層で挟む構造の磁気抵抗
素子について,従来の磁気ヘッドを参照して説明する。
2. Description of the Related Art A magnetoresistive element having a structure in which a nonmagnetic layer is sandwiched between magnetic layers will be described with reference to a conventional magnetic head.

【0005】図1は,磁気ヘッド用磁気抵抗素子構造説
明図であり,スピンバルブ膜を用いた磁気抵抗素子を表
している。なお,図1(a)は正面断面図,図1(b)
は一部破断斜視図であり,共にスピンバルブ膜の形状と
積層構造とを表している。
FIG. 1 is an explanatory view of the structure of a magnetoresistive element for a magnetic head, showing a magnetoresistive element using a spin valve film. 1 (a) is a front sectional view, FIG. 1 (b).
6 is a partially cutaway perspective view showing both the shape of the spin valve film and the laminated structure.

【0006】図1(a)及び(b)を参照して,従来の
磁気ヘッドに用いられる磁気抵抗素子は,基板1表面に
堆積された下地層2上に,第一の磁性層3,非磁性層
4,第二の磁性層5,反強磁性層6及び保護層7がこの
順に積層された長方形パターンが形成される。さらに,
この長方形パターンの両端部上面にそれぞれ電極8が設
けられる。
Referring to FIGS. 1A and 1B, a magnetoresistive element used in a conventional magnetic head has a structure in which a first magnetic layer 3 and a non-magnetic layer 3 are formed on an underlayer 2 deposited on a surface of a substrate 1. A rectangular pattern in which the magnetic layer 4, the second magnetic layer 5, the antiferromagnetic layer 6 and the protective layer 7 are laminated in this order is formed. further,
Electrodes 8 are provided on the upper surfaces of both ends of this rectangular pattern.

【0007】下地層2は,その上に堆積する第一の磁性
層3の磁気特性を向上させるために設けられる。第一の
磁性層3は,通常は保持力が小さな磁性材料からなり,
検知すべき磁場により磁化方向が変化する。非磁性層4
は導電性材料,例えばCu,等の金属薄膜からなる。第
二の磁性層5は,これに密接する反強磁性層6からの交
換相互作用より一定の磁化方向に固定される。かかる積
層構造を有するスピンバルブ膜9の巨大磁気抵抗効果
は,第一の磁性層3の磁化方向が磁場により変化し,第
二の磁性層5の固定された磁化方向から傾くことにより
生ずる。保護層7は反強磁性層6及び第二の磁性層5の
劣化を防止するために設けられる。一対の電極8は,ス
ピンバルブ膜9に電流を流し,磁気抵抗効果による抵抗
変化を検出するために設けられる。
The underlayer 2 is provided to improve the magnetic characteristics of the first magnetic layer 3 deposited thereon. The first magnetic layer 3 is usually made of a magnetic material having a small coercive force,
The magnetization direction changes depending on the magnetic field to be detected. Non-magnetic layer 4
Is a conductive material, for example, a thin metal film of Cu or the like. The second magnetic layer 5 is fixed in a fixed magnetization direction by the exchange interaction from the antiferromagnetic layer 6 in close contact with the second magnetic layer 5. The giant magnetoresistive effect of the spin valve film 9 having such a laminated structure occurs when the magnetization direction of the first magnetic layer 3 changes due to the magnetic field and tilts from the fixed magnetization direction of the second magnetic layer 5. The protective layer 7 is provided to prevent deterioration of the antiferromagnetic layer 6 and the second magnetic layer 5. The pair of electrodes 8 is provided to pass a current through the spin valve film 9 and detect a resistance change due to the magnetoresistive effect.

【0008】上述した構造を持つスピンバルブ膜9は,
2つの薄い磁性層3,5が薄い非磁性層4を挟み密接し
て設けられている。このため,スピンバルブ膜9を積層
した後の工程における熱処理,例えばスピンバルブ膜9
のパターニングに用いるレジストのベーキングにより,
非磁性層4を構成する元素が磁性層3,5中に拡散し,
スピンバルブ膜の磁気抵抗効果特性を劣化させる。かか
る非磁性層を構成する元素が磁性層中へ拡散して引き起
こされる磁気抵抗特性の劣化は,非磁性層と磁性層とが
密接して積層される構造を有する他の磁気抵抗素子につ
いても同様に生ずる。
The spin valve film 9 having the above structure is
Two thin magnetic layers 3 and 5 are provided in close contact with each other with the thin non-magnetic layer 4 interposed therebetween. Therefore, heat treatment in the process after the spin valve film 9 is stacked, for example, the spin valve film 9 is performed.
By baking the resist used for patterning
Elements constituting the non-magnetic layer 4 diffuse into the magnetic layers 3 and 5,
It deteriorates the magnetoresistive effect characteristics of the spin valve film. The deterioration of the magnetoresistive characteristics caused by the diffusion of the elements constituting the nonmagnetic layer into the magnetic layer is the same in other magnetoresistive elements having a structure in which the nonmagnetic layer and the magnetic layer are closely stacked. Occur in.

【0009】かかる拡散による磁気抵抗素子の劣化を防
止するため,非磁性層4の材料をCuに代えて,拡散係
数が小さなAg又はAuとする検討がなされた。しか
し,Ag及びAuは加熱されると島状に凝集する。この
ため,これらの元素から構成された非磁性層4は熱処理
により磁性層3,5との界面に凹凸を生じ,その結果磁
気抵抗効果の劣化を招く。
In order to prevent the deterioration of the magnetoresistive element due to such diffusion, studies have been made to replace the material of the nonmagnetic layer 4 with Cu and use Ag or Au having a small diffusion coefficient. However, Ag and Au aggregate in an island shape when heated. Therefore, the non-magnetic layer 4 made of these elements is uneven at the interface with the magnetic layers 3 and 5 by heat treatment, resulting in deterioration of the magnetoresistive effect.

【0010】[0010]

【発明が解決しようとする課題】上述したように,従来
の非磁性層にCuを用いた磁気抵抗素子では,熱処理に
より非磁性層に密接する磁性層中にCuが拡散して磁気
抵抗効果を劣化するという問題がある。他方,非磁性層
に拡散係数の小さなAg又はAuを用いた磁気抵抗素子
では,非磁性層と磁性層との界面に凹凸を生じるため磁
気抵抗効果が劣化するという問題がある。
As described above, in the conventional magnetoresistive element using Cu in the non-magnetic layer, Cu is diffused into the magnetic layer in close contact with the non-magnetic layer by heat treatment so that the magneto-resistive effect can be obtained. There is a problem of deterioration. On the other hand, a magnetoresistive element using Ag or Au having a small diffusion coefficient in the nonmagnetic layer has a problem that the magnetoresistive effect is deteriorated because unevenness is generated at the interface between the nonmagnetic layer and the magnetic layer.

【0011】本発明は,非磁性層を,Cu−Au合金,
特に規則格子を形成するCu3 Au相により構成するこ
とで,磁性層の結晶性を劣化させず,また磁性層へのC
uの拡散及び非磁性層界面の凹凸の発生を防止し,優れ
た磁気特性を有しかつ熱的安定性に優れた磁気抵抗素子
を提供することを目的としている。
In the present invention, the non-magnetic layer is made of a Cu--Au alloy,
In particular, by using a Cu 3 Au phase forming a regular lattice, the crystallinity of the magnetic layer is not deteriorated and the C content of the magnetic layer is reduced.
It is an object of the present invention to provide a magnetoresistive element which has excellent magnetic characteristics and thermal stability by preventing the diffusion of u and the occurrence of irregularities at the interface of the non-magnetic layer.

【0012】[0012]

【課題を解決するための手段】図2は本発明の実施形態
例積層構造図であり,磁気抵抗素子を構成する磁気抵抗
膜の積層構造を表している。
FIG. 2 is a diagram showing a laminated structure of an embodiment of the present invention, showing a laminated structure of magnetoresistive films constituting a magnetoresistive element.

【0013】図2を参照して,上記課題を解決するため
の本発明の第一の構成は,第一の磁性層3と,該第一の
磁性層3上に密接する非磁性層4と,該非磁性層4上に
密接する第二の磁性層5とを有する磁気抵抗素子におい
て,該非磁性層4は,Cu及びAuの合金からなること
を特徴として構成し,及び,第二の構成は,第一の構成
の磁気抵抗素子において,該非磁性層4は,19原子%
〜37原子%のAuを含み,残部がCu及び残留元素か
らなる合金であることを特徴として構成し,及び,第三
の構成は,第二の構成の磁気抵抗素子において,該非磁
性層4は,規則合金相又は該規則合金相を含む合金から
なることを特徴として構成し,及び,第四の構成は,第
一の構成の磁気抵抗素子において,該非磁性層4は,C
3Au相又はCu3 Au相を含む固溶体合金からなる
ことを特徴として構成し,及び,第五の構成は,第一の
構成〜第四の構成の何れかの構成の磁気抵抗素子におい
て,該第一の磁性層3及び該第二の磁性層5は,面心立
方晶の磁性材料からなることを特徴として構成する。
Referring to FIG. 2, the first constitution of the present invention for solving the above-mentioned problems is to provide a first magnetic layer 3 and a non-magnetic layer 4 which is in close contact with the first magnetic layer 3. In the magnetoresistive element having the second magnetic layer 5 in close contact with the nonmagnetic layer 4, the nonmagnetic layer 4 is made of an alloy of Cu and Au, and the second configuration is In the magnetoresistive element of the first structure, the nonmagnetic layer 4 contains 19 atomic%
.About.37 atomic% Au, the balance being an alloy consisting of Cu and residual elements, and the third constitution is the magnetoresistive element of the second constitution, wherein the non-magnetic layer 4 is , A regular alloy phase or an alloy containing the ordered alloy phase, and a fourth structure is a magnetoresistive element of the first structure, wherein the nonmagnetic layer 4 is C.
It is characterized in that it is made of a solid solution alloy containing a u 3 Au phase or a Cu 3 Au phase, and a fifth constitution is the magnetoresistive element of any one of the first constitution to the fourth constitution, The first magnetic layer 3 and the second magnetic layer 5 are characterized in that they are made of a face-centered cubic magnetic material.

【0014】本発明の第一の構成では,非磁性層4をC
u−Au合金とする。Cu−Au合金はCuの拡散係数
が小さいため,非磁性層4と接する磁性層3,5へのC
uの熱拡散が少ない。また,Auのように熱処理により
凝集しないので,非磁性層4と磁性層3,5界面に凹凸
を生じない。従って,本構成の磁気抵抗素子は熱処理に
おける磁気抵抗効果の劣化が少ない。
In the first structure of the present invention, the nonmagnetic layer 4 is made of C.
It is a u-Au alloy. Since the Cu-Au alloy has a small Cu diffusion coefficient, the C in the magnetic layers 3 and 5 in contact with the non-magnetic layer 4 is reduced.
Little heat diffusion of u. Further, unlike Au, it does not aggregate by heat treatment, so that no unevenness is generated at the interface between the non-magnetic layer 4 and the magnetic layers 3 and 5. Therefore, the magnetoresistive element of this structure has little deterioration in the magnetoresistive effect during heat treatment.

【0015】図3はCu−Au状態図であり,Cu−A
u固溶体から析出する3種類の相を表している。図4は
結晶構造図であり,図4(a)〜(c)はそれぞれCu
−Au固溶体,Cu3 Au相及びCuAu相の結晶格子
を,図4(d)はCuAu相の長距離秩序を表してい
る。
FIG. 3 is a Cu-Au phase diagram.
It shows three types of phases precipitated from the u solid solution. FIG. 4 is a crystal structure diagram, and FIGS. 4A to 4C respectively show Cu.
-Au solid solution, the crystal lattice of the Cu 3 Au-phase and CuAu phase, FIG. 4 (d) represents the long-range order of the CuAu phase.

【0016】かかる規則合金相は,熱的に安定なためC
uの拡散係数が固溶体よりも小さい。従って,非磁性層
4をこれら規則合金相自体又はこれら規則合金相を含む
合金とすることで,非磁性層4に接する磁性層3,5へ
のCuの拡散が抑制され,磁性層3,5へのCu拡散に
起因する磁気抵抗効果の劣化を小さくすることができ
る。
Since the ordered alloy phase is thermally stable, C
The diffusion coefficient of u is smaller than that of the solid solution. Therefore, when the nonmagnetic layer 4 is made of the ordered alloy phase itself or an alloy containing these ordered alloy phases, diffusion of Cu into the magnetic layers 3 and 5 in contact with the nonmagnetic layer 4 is suppressed, and the magnetic layers 3 and 5 are It is possible to reduce the deterioration of the magnetoresistive effect due to the diffusion of Cu into Cu.

【0017】第二の構成では,非磁性層4を構成するC
u−Au合金の組成を,19原子%〜37原子%のAu
を含み,残部を実質的にCuとする。この組成範囲で
は,図3を参照して,熱処理においてCu3 Au相のみ
が析出する。
In the second structure, C constituting the nonmagnetic layer 4 is formed.
The composition of the u-Au alloy is 19 atomic% to 37 atomic% Au.
And the balance is substantially Cu. In this composition range, referring to FIG. 3, only the Cu 3 Au phase precipitates during the heat treatment.

【0018】図4(a)を参照して,Cu−Au固溶体
の結晶格子は格子定数aの面心立方格子をなし,銅又は
金の原子が各格子点を同じ占有確率で占拠する。Cu3
Au相は,図4(b)を参照して,Cu−Au固溶体の
面心立方格子の頂点を金原子が占拠し,面心位置を銅原
子が占拠した立方格子を結晶格子とし,この結晶格子は
Cu−Au固溶体の面心立方格子と格子定数が略等しい
立方格子をなす。このように,Cu3 Au相はCu−A
u固溶体と略同じ格子定数を有しかつ銅及び金原子位置
が同じ面心立方位置を占めるため,析出により非磁性層
4の結晶格子の大きさ及び原子位置は殆ど変化しない。
このため,相変化に伴う結晶構造の変化が非磁性層4と
接する磁性層3,5の結晶性に及ぼす影響は小さく,磁
性層3,5の結晶性の劣化は少ない。従って,本構成の
磁気抵抗素子は熱処理における磁気抵抗効果の劣化が少
ない。
With reference to FIG. 4 (a), the crystal lattice of the Cu-Au solid solution forms a face-centered cubic lattice having a lattice constant a, and copper or gold atoms occupy each lattice point with the same occupation probability. Cu 3
As for the Au phase, referring to FIG. 4B, the apex of the face-centered cubic lattice of the Cu—Au solid solution is occupied by gold atoms, and the face-centered position is occupied by copper atoms. The lattice is a cubic lattice having a lattice constant substantially equal to that of a face-centered cubic lattice of Cu-Au solid solution. Thus, the Cu 3 Au phase is Cu-A
Since it has substantially the same lattice constant as the u solid solution and the copper and gold atomic positions occupy the same face-centered cubic positions, the crystal lattice size and atomic position of the nonmagnetic layer 4 hardly change due to precipitation.
Therefore, the change in the crystal structure due to the phase change has a small effect on the crystallinity of the magnetic layers 3 and 5 in contact with the non-magnetic layer 4, and the deterioration of the crystallinity of the magnetic layers 3 and 5 is small. Therefore, the magnetoresistive element of this structure has little deterioration in the magnetoresistive effect during heat treatment.

【0019】なお,CuAu相が析出する組成でも,安
定相の形成による拡散係数の減少にともない,磁気層
3,5の劣化を小さくする効果を奏する。しかし,Cu
Au相は,図4(c)を参照して,面心立方格子の(1
00)面を金原子面が,1/2(100)面を銅原子面
が占め,<100>軸に垂直に金原子面と銅原子面とが
交互に積層した結晶格子を有する。このため,結晶格子
は立方格子とはならず,金及び銅の原子面に垂直な軸を
c軸とする正方格子となる。さらに,かかるCuAu相
は,金原子面と銅原子面との積層欠陥を生じ,図4
(d)を参照して,複数の正方格子からなる格子定数b
の超格子を形成する。このように,CuAu相とCu−
Au固溶体とは結晶格子が異なり,かつCuAu相には
積層欠陥を伴う長距離秩序が形成されるため,非磁性層
4の相変化が磁性層の磁気特性に好ましくない影響を及
ぼす。非磁性層をCu3 Au相とする場合は,かかる影
響を回避することができる。
Even with the composition in which the CuAu phase is precipitated, the effect of reducing the deterioration of the magnetic layers 3 and 5 with the decrease of the diffusion coefficient due to the formation of the stable phase is exerted. However, Cu
As for the Au phase, referring to FIG. 4 (c), (1
A gold atomic plane occupies the (00) plane and a copper atomic plane occupies the ½ (100) plane, and has a crystal lattice in which gold atomic planes and copper atomic planes are alternately laminated perpendicularly to the <100> axis. Therefore, the crystal lattice does not become a cubic lattice, but becomes a tetragonal lattice having an axis perpendicular to the atomic planes of gold and copper as the c-axis. Furthermore, the CuAu phase causes stacking faults between the gold atomic planes and the copper atomic planes.
Referring to (d), the lattice constant b composed of a plurality of square lattices
Form a superlattice of. Thus, CuAu phase and Cu-
Since the crystal lattice is different from that of the Au solid solution, and the long-range order with the stacking fault is formed in the CuAu phase, the phase change of the nonmagnetic layer 4 adversely affects the magnetic characteristics of the magnetic layer. When the non-magnetic layer is made of Cu 3 Au phase, such influence can be avoided.

【0020】なお,上述した第二の構成において,非磁
性層4中のCuの拡散係数が小さく,かつ面心立方晶を
維持するCu−Au合金組成であれば,他の元素が添加
されていても何ら差支えない。
In the above-mentioned second structure, other elements are added as long as the diffusion coefficient of Cu in the nonmagnetic layer 4 is small and the composition is a Cu-Au alloy that maintains face-centered cubic crystal. But it doesn't matter.

【0021】さらに,上述した拡散係数を減少し及び析
出に伴う結晶格子の変化を小さくするという観点から,
非磁性層4をCu3 Au相から構成することが好まし
い。また,上述した本発明の全ての構成において,磁性
層3,5を面心立方晶の磁性材料とすることが,これら
と接する非磁性層4の結晶格子と整合させ,磁性層3,
5及び非磁性層4の結晶性,配向性を向上して磁気抵抗
効果を大きくするという観点から好ましい。
Further, from the viewpoint of reducing the above diffusion coefficient and reducing the change of the crystal lattice due to precipitation,
It is preferable that the nonmagnetic layer 4 is composed of a Cu 3 Au phase. Further, in all the configurations of the present invention described above, making the magnetic layers 3 and 5 a face-centered cubic magnetic material matches the crystal lattice of the non-magnetic layer 4 that is in contact with them, and
5 and the non-magnetic layer 4 are preferable from the viewpoint of improving the crystallinity and orientation and increasing the magnetoresistive effect.

【0022】[0022]

【発明の実施の形態】本発明に係る磁気抵抗素子を,磁
気ヘッドに適用した実施態様例を参照して説明する。本
実施態様例は,図1を参照して,スピンバルブ膜9を磁
気検出部とする磁気抵抗素子に関する。
BEST MODE FOR CARRYING OUT THE INVENTION A magnetoresistive element according to the present invention will be described with reference to an embodiment example applied to a magnetic head. The example of the present embodiment relates to a magnetoresistive element using the spin valve film 9 as a magnetic detection portion with reference to FIG.

【0023】先ず,図2を参照して,(100)面を主
面とするシリコン基板1上に,スパッタ法を用いて,厚
さ6nmのTaからなる下地層2,厚さ9nmの83原子%
Ni−17原子%Fe合金からなる磁性層3,厚さ2.
5nmの75原子%Cu−25原子%Au合金からなる非
磁性層4,厚さ4nmの83原子%Ni−17原子%Fe
合金からなる磁性層5及び厚さ12nmのFe─Mn合金
からなる反強磁性層6,厚さ7nmのTaからなる保護層
7を順次堆積する。このスパッタは,磁性層3,5及び
反強磁性層6に一定方向の磁化容易軸を形成するため
に,シリコン基板1の主面に平行に印加された30Oeの
磁場中でなされる。また,スパッタは,0.5PaのAr
を高周波出力50Wで励起するマグネトロンスパッタに
よりなされた。
First, referring to FIG. 2, an underlayer 2 made of Ta having a thickness of 6 nm and 83 atoms having a thickness of 9 nm are formed on a silicon substrate 1 having a (100) plane as a main surface by a sputtering method. %
1. Magnetic layer made of Ni-17 atomic% Fe alloy 3, thickness 2.
5 nm non-magnetic layer consisting of 75 at% Cu-25 at% Au alloy 4, thickness of 4 nm 83 at% Ni-17 at% Fe
A magnetic layer 5 made of an alloy, an antiferromagnetic layer 6 made of a Fe—Mn alloy having a thickness of 12 nm, and a protective layer 7 made of Ta having a thickness of 7 nm are sequentially deposited. This sputtering is performed in a magnetic field of 30 Oe applied parallel to the main surface of the silicon substrate 1 in order to form an easy axis of magnetization in the magnetic layers 3 and 5 and the antiferromagnetic layer 6. In addition, spatter is 0.5 Pa Ar
Was excited with a high frequency output of 50 W by magnetron sputtering.

【0024】次いで,真空中で230℃,2時間の熱処
理をした。この熱処理により,非磁性層4をCu3 Au
相とする。なお,非磁性層4の一部をCu3 Au相に変
換するものでもよい。
Next, heat treatment was performed in vacuum at 230 ° C. for 2 hours. By this heat treatment, the non-magnetic layer 4 is formed into Cu 3 Au.
To be a phase. Incidentally, a part of the non-magnetic layer 4 may be converted into the Cu 3 Au phase.

【0025】次いで,通常のスピンバルブ膜を用いる磁
気ヘッドの製造工程と同様に,保護層7上に長方形のレ
ジストパターンを形成し,このレジストパターンをマス
クとするイオンエッチングにより保護層7及び反強磁性
層6乃至磁性層3からなる長方形のスピンバルブ膜を形
成する。ついで,スピンバルブ膜9の両端に電極8を形
成して磁気ヘッド用の磁気抵抗素子が製造される。
Then, a rectangular resist pattern is formed on the protective layer 7, and the protective layer 7 and the anti-reinforcement layer are formed by ion etching using the resist pattern as a mask, as in the manufacturing process of a magnetic head using a normal spin valve film. A rectangular spin valve film including the magnetic layers 6 to 3 is formed. Next, electrodes 8 are formed on both ends of the spin valve film 9 to manufacture a magnetoresistive element for a magnetic head.

【0026】本実施形態例により製造されたスピンバル
ブ膜9は,260℃でなされたレジストのベーキングに
よっても磁気抵抗効果の劣化が観測されなかった。従来
は磁気抵抗効果の劣化が,非磁性層がCuの場合には2
30℃で観測され,またCu−Ag合金の場合には25
0℃で観測されたのに比べ,本実施形態例では大幅に熱
安定性が改善されている。
In the spin valve film 9 manufactured according to this embodiment, no deterioration of the magnetoresistive effect was observed even when the resist was baked at 260 ° C. Conventionally, the deterioration of the magnetoresistive effect is 2 if the non-magnetic layer is Cu.
Observed at 30 ° C, and in the case of Cu-Ag alloy 25
In comparison with what was observed at 0 ° C., the thermal stability is greatly improved in this embodiment.

【0027】[0027]

【発明の効果】上述したように,本発明によれば,磁性
層と接する非磁性層中のCu拡散が小さくかつ非磁性層
の結晶格子が熱処理により変化しないので,磁性層への
Cu拡散が少なくかつ結晶性が良好に保持されるため,
熱的安定性に優れた磁気抵抗素子を提供することがで
き,磁気装置の性能向上に寄与するところが大きい。
As described above, according to the present invention, Cu diffusion in the non-magnetic layer in contact with the magnetic layer is small and the crystal lattice of the non-magnetic layer is not changed by heat treatment, so that Cu diffusion in the magnetic layer is prevented. Since the amount is small and the crystallinity is maintained well,
It is possible to provide a magnetoresistive element having excellent thermal stability, which greatly contributes to improving the performance of the magnetic device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 磁気ヘッド用磁気抵抗素子構造説明図FIG. 1 is an explanatory diagram of the structure of a magnetoresistive element for a magnetic head.

【図2】 本発明の実施形態例積層構造図FIG. 2 is a layered structure diagram of an embodiment of the present invention.

【図3】 Cu−Au状態図FIG. 3 Cu-Au phase diagram

【図4】 結晶構造図FIG. 4 Crystal structure diagram

【符号の説明】[Explanation of symbols]

1 基板 2 下地層 3 磁性層 4 非磁性層 5 磁性層 6 反強磁性層 7 保護層 8 電極 9 スピンバルブ膜 1 Substrate 2 Underlayer 3 Magnetic layer 4 Nonmagnetic layer 5 Magnetic layer 6 Antiferromagnetic layer 7 Protective layer 8 Electrode 9 Spin valve film

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 第一の磁性層と,該第一の磁性層上に密
接する非磁性層と,該非磁性層上に密接する第二の磁性
層とを有する磁気抵抗素子において,該非磁性層は,C
u及びAuの合金からなることを特徴とする磁気抵抗素
子。
1. A magnetoresistive element comprising a first magnetic layer, a non-magnetic layer in close contact with the first magnetic layer, and a second magnetic layer in close contact with the non-magnetic layer, the non-magnetic layer Is C
A magnetoresistive element comprising an alloy of u and Au.
【請求項2】 請求項1記載の磁気抵抗素子において,
該非磁性層は,19原子%〜37原子%のAuを含み,
残部がCu及び残留元素からなる合金であることを特徴
とする磁気抵抗素子。
2. The magnetoresistive element according to claim 1,
The non-magnetic layer contains 19 atomic% to 37 atomic% Au,
A magnetoresistive element, wherein the balance is an alloy composed of Cu and a residual element.
【請求項3】 請求項2記載の磁気抵抗素子において,
該非磁性層は,規則合金相又は該規則合金相を含む合金
からなることを特徴とする磁気抵抗素子。
3. The magnetoresistive element according to claim 2,
The magnetoresistive element, wherein the non-magnetic layer is composed of an ordered alloy phase or an alloy containing the ordered alloy phase.
【請求項4】 請求項1記載の磁気抵抗素子において,
該非磁性層は,Cu3 Au相又はCu3 Au相を含む固
溶体合金からなることを特徴とする磁気抵抗素子。
4. The magnetoresistive element according to claim 1,
The magnetoresistive element, wherein the non-magnetic layer is made of Cu 3 Au phase or a solid solution alloy containing Cu 3 Au phase.
【請求項5】 請求項1〜請求項4の何れかに記載され
た磁気抵抗素子において,該第一の磁性層及び該第二の
磁性層は,面心立方晶の磁性材料からなることを特徴と
する磁気抵抗素子。
5. The magnetoresistive element according to claim 1, wherein the first magnetic layer and the second magnetic layer are made of a face-centered cubic crystal magnetic material. Characteristic magnetoresistive element.
JP7287180A 1995-11-06 1995-11-06 Magnetoresistive element Withdrawn JPH09129946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7287180A JPH09129946A (en) 1995-11-06 1995-11-06 Magnetoresistive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7287180A JPH09129946A (en) 1995-11-06 1995-11-06 Magnetoresistive element

Publications (1)

Publication Number Publication Date
JPH09129946A true JPH09129946A (en) 1997-05-16

Family

ID=17714121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7287180A Withdrawn JPH09129946A (en) 1995-11-06 1995-11-06 Magnetoresistive element

Country Status (1)

Country Link
JP (1) JPH09129946A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6258283B1 (en) 1998-03-20 2001-07-10 Fuuitsu Limited Method of making magnetic resistance element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6258283B1 (en) 1998-03-20 2001-07-10 Fuuitsu Limited Method of making magnetic resistance element
US6475649B2 (en) 1998-03-20 2002-11-05 Fujitsu Limited Magnetic head

Similar Documents

Publication Publication Date Title
US6352621B1 (en) Method of manufacturing film laminate having exchange anisotropic magnetic field
JP3263004B2 (en) Spin valve type thin film element
US6873500B2 (en) Exchange coupling film capable of improving playback characteristics
US20030197987A1 (en) CPP magnetic sensing element
US20080174921A1 (en) TUNNEL TYPE MAGNETIC SENSOR HAVING FIXED MAGNETIC LAYER OF COMPOSITE STRUCTURE CONTAINING CoFeB FILM, AND METHOD FOR MANUFACTURING THE SAME
JP2001126219A (en) Spin valve magneto-resistive sensor and thin film magnetic head
JP2001308411A (en) Spin bubble type magnetoresistance sensor and thin film magnetic head
JPH11110719A (en) Magneto-resistance effect type effect
JPH08279117A (en) Gigantic magnetoresistance effect material film and its production and magnetic head using the same
JP2001237471A (en) Magnetoresistance effect element and its manufacturing method, magnetoresistance effect type head, magnetic recording device, and magnetoresistance effect memory element
JP2008192926A (en) Tunnel type magnetic detection element and manufacturing method therefor
US11428757B2 (en) Exchange-coupling film and magnetoresistive element and magnetic detector using the same
JP2006339218A (en) Magnetic detecting element and its manufacturing method
JPH09205234A (en) Magnetoresistance effect element and magnetoresistance effect sensor
JP2001094173A (en) Magnetic sensor, magnetic head and magnetic disk device
JPH0963021A (en) Magneto-resistive effect element having spin valve structure and its production
JPH10154618A (en) Magnetoresistance effective element and its manufacturing method
JP3092916B2 (en) Magnetoresistive element and magnetoresistive head
JPH09129946A (en) Magnetoresistive element
US8124253B2 (en) Tunneling magnetic sensing element including MGO film as insulating barrier layer
JP3822313B2 (en) Method for manufacturing magnetoresistive multilayer film
JP2000163717A (en) Magnetoresistance effect element
JP2000150235A (en) Spin valve magnetoresistive sensor and thin-film magnetic head
JP2008078378A (en) Tunnel-type magnetism detecting element and manufacturing method thereof
US20040130833A1 (en) Spin valve head and magnetic recording device using the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030107