JP3092916B2 - Magnetoresistive element and magnetoresistive head - Google Patents

Magnetoresistive element and magnetoresistive head

Info

Publication number
JP3092916B2
JP3092916B2 JP09326822A JP32682297A JP3092916B2 JP 3092916 B2 JP3092916 B2 JP 3092916B2 JP 09326822 A JP09326822 A JP 09326822A JP 32682297 A JP32682297 A JP 32682297A JP 3092916 B2 JP3092916 B2 JP 3092916B2
Authority
JP
Japan
Prior art keywords
film
magnetic
magnetic film
magnetoresistive element
element according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09326822A
Other languages
Japanese (ja)
Other versions
JPH118424A (en
Inventor
康博 川分
博 榊間
三男 里見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP09326822A priority Critical patent/JP3092916B2/en
Publication of JPH118424A publication Critical patent/JPH118424A/en
Application granted granted Critical
Publication of JP3092916B2 publication Critical patent/JP3092916B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B2005/3996Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3143Disposition of layers including additional layers for improving the electromagnetic transducing properties of the basic structure, e.g. for flux coupling, guiding or shielding

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁気抵抗効果素子及
び磁気抵抗効果型ヘッドに関し、特に、低磁界で大きな
磁気抵抗変化をおこす磁気抵抗効果素子、およびそれを
用いて構成される、高密度磁気記録再生に適した磁気抵
抗効果型ヘッドに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive element and a magnetoresistive head, and more particularly, to a magnetoresistive element which causes a large magnetoresistance change in a low magnetic field, and a high-density magnetic element using the same. The present invention relates to a magnetoresistive head suitable for recording and reproduction.

【0002】[0002]

【従来の技術】従来より磁気抵抗効果素子を用いた磁気
抵抗センサー(以下MRセンサーという)、磁気抵抗ヘ
ッド(以下MRヘッドという)の開発が進められてい
る。磁性体には主にNi0.8Fe0.2のパーマロイやNi0.8Co
0.2合金膜が用いられている。これら磁気抵抗効果材料
の磁気抵抗変化率(以下MR比と記す)は、2.5%程度
である。より高感度な磁気抵抗素子を得るためにはより
MR比の大きなものが求められている。
2. Description of the Related Art Conventionally, a magnetoresistive sensor (hereinafter referred to as an MR sensor) using a magnetoresistive element and a magnetoresistive head (hereinafter referred to as an MR head) have been developed. The magnetic material is mainly Ni 0.8 Fe 0.2 permalloy or Ni 0.8 Co
A 0.2 alloy film is used. The magnetoresistance change rate (hereinafter referred to as MR ratio) of these magnetoresistance effect materials is about 2.5%. In order to obtain a magnetoresistive element with higher sensitivity, an element having a higher MR ratio is required.

【0003】近年Cr,Ru等の金属非磁性薄膜を介して反
強磁性的結合をしている[Fe/Cr],[Co/Ru]人工格子膜が
強磁場(1〜10 kOe)で巨大磁気抵抗効果を示すことが
発見された(フィシ゛カル レウ゛ュー レター 61 第2472項 (1988
年); 同 64 第2304項 (1990) (Physical Review Lette
r Vol.61, p2472, 1988; 同 Vol.64, p2304,1990))。
In recent years, [Fe / Cr] and [Co / Ru] artificial lattice films that have antiferromagnetic coupling via a metal non-magnetic thin film of Cr, Ru, or the like are enormous in a strong magnetic field (1 to 10 kOe). It was found to exhibit a magnetoresistance effect (Physical Review Letter 61, paragraph 2472 (1988
64) 2304 (1990) (Physical Review Lette
r Vol.61, p2472, 1988; Vol.64, p2304,1990)).

【0004】しかしながらこれらの人工格子膜は大きな
MR変化を得るのに数kOe〜数10kOeの磁界を必要とす
る。このため、磁気ヘッド等の用途には実用的でない。
However, these artificial lattice films require a magnetic field of several kOe to several tens kOe to obtain a large MR change. Therefore, it is not practical for applications such as a magnetic head.

【0005】又金属非磁性薄膜Cuで分離され磁気的結合
をしていない保磁力の異なる磁性薄膜Ni-FeとCoを用い
た[Ni-Fe/Cu/Co]人工格子膜でも巨大磁気抵抗効果が発
見され、室温印加磁界0.5kOeでMR比が約8%のものが
得られている(シ゛ャーナル オフ゛ フィシ゛カル ソサイアティー オフ゛ シ゛ャハ゜ン
59 第3061頁 (1990年) (Journal of Physical Society
of Japan Vol.59, p3061, 1990))。
The giant magnetoresistance effect is also obtained in a [Ni-Fe / Cu / Co] artificial lattice film using magnetic thin films Ni-Fe and Co separated by a non-magnetic metal thin film Cu and not magnetically coupled but having different coercive forces. And an MR ratio of about 8% was obtained at a room-temperature applied magnetic field of 0.5 kOe. (Cross-offical physical society off-shear)
59 p. 3061 (1990) (Journal of Physical Society
of Japan Vol.59, p3061, 1990)).

【0006】しかしながらこのタイプの磁気抵抗効果材
料は、大きな磁気抵抗変化を得るのに約100 Oeの磁界を
必要とする。かつ磁気抵抗も磁界が負から正にわたって
非対称な変化をして直線性が悪い。このため実用的には
使いにくい特性となっている。
[0006] However, this type of magnetoresistive material requires a magnetic field of about 100 Oe to obtain a large magnetoresistance change. Also, the magnetic resistance of the magnetic field changes asymmetrically from negative to positive, resulting in poor linearity. For this reason, the characteristics are practically difficult to use.

【0007】更にCuを介したRKKY的反強磁性的結合
をしている磁性薄膜Ni-Fe-Co,Coを用いた[Ni-Fe-Co/Cu/
Co],[Ni-Fe-Co/Cu]人工格子膜でも巨大磁気抵抗効果が
発見され、室温印加磁界0.5kOeでMR比が約15%のもの
が得られている(電子情報通信学会技術研究報告 MR91-
9)。
Further, a magnetic thin film Ni-Fe-Co, Co having RKKY-like antiferromagnetic coupling via Cu is used [Ni-Fe-Co / Cu /
The giant magnetoresistance effect was also found in [Co] and [Ni-Fe-Co / Cu] artificial lattice films, and an MR ratio of about 15% was obtained with a room-temperature applied magnetic field of 0.5 kOe (Technical Research Institute of Electronics, Information and Communication Engineers) Report MR91-
9).

【0008】しかしながらこのタイプの磁気抵抗効果材
料の場合、磁気抵抗変化は磁界零から正にわたってほぼ
直線的に変化しMRセンサーには十分実用的な特性を示
すものの、やはり大きなMR変化を得るのに50 Oe程度
の磁界を必要とする。このため、少なくとも20 Oe以下
の磁界での動作が要求されるMRヘッドとして使用する
には不十分である。
However, in the case of this type of magnetoresistive effect material, the magnetoresistance change varies almost linearly from zero magnetic field to the positive direction, and although it exhibits sufficiently practical characteristics for an MR sensor, it still requires a large MR change. Requires a magnetic field of about 50 Oe. For this reason, it is insufficient for use as an MR head that requires operation in a magnetic field of at least 20 Oe or less.

【0009】微小印加磁界で動作するものとしては反強
磁性材料のFe-MnをNi-Fe/Cu/Ni-Feにつけたスピンバル
ブ型のものが提案されている(シ゛ャーナル オフ゛ マク゛ネティス゛ム ア
ント゛マク゛ネティック マテリアルス゛ 93 第101項 (1991年) (Journal o
f Magnetism and MagneticMaterials 93,p101,199
1))。このタイプの磁気抵抗効果材料は、動作磁界は確
かに小さく、直線性も良いものの、MR比は約2%と小
さい。また、Fe-Mn膜の耐蝕性の問題点がある。さら
に、Fe-Mn薄膜のネール温度(配列温度)が低いため
に、素子の特性の温度依存性が大きいという欠点があっ
た。
As a device which operates with a small applied magnetic field, a spin valve type device in which Fe-Mn, an antiferromagnetic material, is attached to Ni-Fe / Cu / Ni-Fe has been proposed. S. 93 Paragraph 101 (1991) (Journal o
f Magnetism and MagneticMaterials 93, p101,199
1)). This type of magnetoresistive material has a small operating magnetic field and good linearity, but has a small MR ratio of about 2%. Further, there is a problem of the corrosion resistance of the Fe-Mn film. Furthermore, since the Neel temperature (arrangement temperature) of the Fe-Mn thin film is low, there is a drawback that the temperature dependence of device characteristics is large.

【0010】また反強磁性体を用いる代わりにCo-Pt等
の硬質磁性材料を用いた、Ni-Fe/Cu/Co-Pt等の構成のス
ピンバルブ膜も提案されている。この場合は硬質磁性膜
の保磁力以下で、軟磁性層の磁化を回転することによ
り、磁化の平行、反平行状態を作り出すものである。し
かし、この場合も軟磁性層の特性をよくするのは難し
く、実用化には至っていない。
[0010] A spin valve film having a structure of Ni-Fe / Cu / Co-Pt or the like using a hard magnetic material such as Co-Pt instead of using an antiferromagnetic material has also been proposed. In this case, the magnetization of the soft magnetic layer is rotated below the coercive force of the hard magnetic film to create a parallel or anti-parallel state of the magnetization. However, also in this case, it is difficult to improve the characteristics of the soft magnetic layer, and it has not been put to practical use.

【0011】また、スピンバルブ膜のMR比を大きくする
手段の一つとして、比抵抗の低い金属を更にスヒ゜ンハ゛ルフ゛
膜の背部に設けた低抵抗背部層により、Cu/Ni-Fe/Cu/Ni
-Fe/Fe-Mnの構成としたものも提案されている(USP5422
571)。これは、特定のスピンの電子の平均自由行程を長
くすることによりMR比を大きくしてやろうとする試みで
ある。
As one of means for increasing the MR ratio of the spin valve film, a Cu / Ni-Fe / Cu / Ni / Fe / Cu / Ni / Fe / Cu / Ni / Fe / Cu / Ni / Fe / Cu / Ni / Fe / Cu / Ni / Fe
-Fe / Fe-Mn has also been proposed (USP5422
571). This is an attempt to increase the MR ratio by increasing the mean free path of electrons of a particular spin.

【0012】[0012]

【発明が解決しようとする課題】従来のスピンバルブ型
のMR素子は、反強磁性体を用いたタイプでも硬質磁性
膜を用いたタイプにおいても、磁界感度はすぐれている
が、MR比が低いという問題点があった。低抵抗背部層
による、MR比の向上効果も十分でなかった。この原因
は、スピンバルブ型のMR素子は膜厚が薄いため、素子
表面で電子が散乱されやすいためと考えられる。
The conventional spin-valve MR element has excellent magnetic field sensitivity in both the type using an antiferromagnetic material and the type using a hard magnetic film, but has a low MR ratio. There was a problem. The effect of improving the MR ratio by the low-resistance back layer was not sufficient. This is considered to be because electrons are easily scattered on the surface of the spin valve type MR element because the film thickness is small.

【0013】このことをもう少し詳細に説明すると以下
のようになる。
This will be described in more detail as follows.

【0014】もともと、巨大磁気抵抗効果は、磁性層/
非磁性層の界面での電子のスピンに依存した散乱が原因
である。そこで、この散乱の起こる確率を上げるために
は、スピン方向に依存しない散乱の確率を下げ、電子の
平均自由行程を長くすることが重要である。スヒ゜ンハ゛ルフ゛
膜においては、磁性層/非磁性層の積層回数が少ない。
従って、スピンバルブ膜の膜厚は、例えば20-50nm程度
と、一般に反強磁性結合型の巨大磁気抵抗効果膜に比べ
て薄い。このため、膜表面で電子が散乱される確率が高
く、電子の平均自由行程が短かった。これがスヒ゜ンハ゛ルフ゛
膜のMR比が低い主な原因である。
Originally, the giant magnetoresistance effect was caused by the magnetic layer /
This is due to the spin-dependent scattering of electrons at the interface of the nonmagnetic layer. Therefore, in order to increase the probability of occurrence of this scattering, it is important to reduce the probability of scattering independent of the spin direction and lengthen the mean free path of electrons. In the spin-valve film, the number of laminations of the magnetic layer / non-magnetic layer is small.
Therefore, the thickness of the spin valve film is, for example, about 20 to 50 nm, which is generally smaller than that of a giant magnetoresistance effect film of an antiferromagnetic coupling type. Therefore, the probability that electrons are scattered on the film surface is high, and the mean free path of the electrons is short. This is the main cause of the low MR ratio of the scan film.

【0015】通常、薄膜の表面には、伝導電子の波長
(フェルミ波長)のレベルである、数オングストローム
のレベルで見ると、凹凸がある。この場合、伝導電子は
表面で非弾性的な散乱(拡散散乱)を受ける。一般に、
拡散散乱の場合には、電子のスピン方向は維持されな
い。
Normally, the surface of a thin film has irregularities when viewed at a level of several angstroms, which is the level of the conduction electron wavelength (Fermi wavelength). In this case, the conduction electrons undergo inelastic scattering (diffuse scattering) on the surface. In general,
In the case of diffusion scattering, the spin direction of electrons is not maintained.

【0016】本願発明は係る課題を解決するためになさ
れたものである。
The present invention has been made to solve such a problem.

【0017】本願発明の目的は、MR比の高い磁気抵抗
効果素子及び磁気抵抗効果型ヘッドを提供することにあ
る。
An object of the present invention is to provide a magnetoresistive element and a magnetoresistive head having a high MR ratio.

【0018】本願発明の他の目的は、電子の平均自由行
程が長いスピンバルブ型の磁気抵抗効果素子及び磁気抵
抗効果型ヘッドを提供することにある。
Another object of the present invention is to provide a spin-valve magnetoresistive element and a magnetoresistive head having a long mean free path of electrons.

【0019】本願発明のさらに他の目的は、磁性層と非
磁性層との界面において、電子のスピン方向に依存した
散乱の起こる確率の高い、スピンバルブ型の磁気抵抗効
果素子及び磁気抵抗効果型ヘッドを提供することにあ
る。
Still another object of the present invention is to provide a spin-valve magnetoresistive element and a magnetoresistive effect element having a high probability that electron spin-dependent scattering occurs at the interface between a magnetic layer and a nonmagnetic layer. The purpose is to provide a head.

【0020】[0020]

【課題を解決するための手段】本発明に係る磁気抵抗効
果素子は、非磁性膜を介して積層された少なくとも2つ
の磁性膜と、該磁性膜の最も外側の磁性膜の少なくとも
一方に、該磁性膜と接して非磁性膜と反対側に形成され
た、電子のスピン方向を維持したまま反射散乱を生じや
すい金属反射膜とを有し、該金属反射膜は、その表面の
少なくとも10%以上が、3オングストローム以下の凹
凸の平滑な表面であることを特徴とし、そのことにより
上記目的が達成される。 本発明に係る他の磁気抵抗効果
素子は、非磁性膜を介して積層された少なくとも2つの
磁性膜と、該磁性膜の最も外側の磁性膜の少なくとも一
方に、該磁性膜と接して非磁性膜と反対側に形成され
た、電子のスピン方向を維持したまま反射散乱を生じや
すい金属反射膜とを有し、該金属反射膜と該磁性膜の間
に、更に非磁性膜を有し、そのことにより上記目的が達
成される。 該金属反射膜と該磁性膜の間に、更に非磁性
膜を有してもよい。 該非磁性膜がCuであり、該金属反射
膜が、Ag,Au,Bi,Sn,Pbのうちのいずれか一つ以上を主成
分としてもよい。 該金属反射膜と非磁性膜を介して接す
る該磁性膜がCoまたはCo高濃度のCo-Fe合金を主成分と
してもよい。 該磁性膜が、磁性層と、CoまたはCo高濃度
のCo-Fe合金を主成分とする界面磁性層との少なくとも
2層から成り、該界面磁性層が、該非磁性膜を介して該
金属反射膜と接していてもよい。 該非磁性膜を介して該
金属反射膜と接している該磁性膜が、軟磁性層を挟んだ
CoまたはCo高濃度のCo-Fe合金を主成分とする界面磁性
層から成ってもよい。 該金属反射膜は、その表面が平滑
であってもよい。 該非磁性膜がCuであり、該金属反射膜
が、Ag,Au,Bi,Sn,Pbのうちのいずれか一つ以上を主成分
としてもよい。 該金属反射膜と直接接する磁性膜がCoを
主成分としてもよい。 該磁性膜が、磁性層と、Coまたは
Co高濃度のCo-Fe合金を主成分とする界面磁性層との少
なくとも2層から成り、該界面磁性層が、直接該金属反
射膜と接して いてもよい。 直接該金属反射膜と接してい
る該磁性膜が、軟磁性層を挟んだCoまたはCo高濃度のCo
-Fe合金を主成分とする界面磁性層から成ってもよい。
少なくとも2つの該磁性膜のうち、少なくとも一つの磁
性膜の保磁力が他の磁性膜と異なっていてもよい。 該非
磁性膜を介して積層された第1,および第2の磁性膜
と、該第1の磁性膜に対して該非磁性膜と反対側に形成
された反強磁性体と、該第2の磁性膜に対して該非磁性
膜と反対側に形成された金属反射膜を有してもよい。
金属反射膜と該磁性膜の間に、更に非磁性膜を有しても
よい。 該反強磁性体膜が酸化物であってもよい。 該反強
磁性体膜がNi-Oであってもよい。 該反強磁性体膜がα-F
e 2 O 3 であってもよい。 該第2の磁性膜が、非磁性膜を介
して積層された2層以上の磁性膜からなってもよい。
反強磁性体膜が基板にエピタキシャルに形成されていて
もよい。 第1の磁性膜,該非磁性膜、第2の磁性膜、反
強磁性体膜、および該金属反射膜が順次形成された構成
となっていてもよい。 該反強磁性体膜と該金属反射膜の
間に非磁性膜を有してもよい。 該反強磁性体膜がIr-Mn
合金であってもよい。 該反強磁性体膜がIr-Mn合金であ
ってもよい。 該非磁性膜が基板にエピタキシャルに形成
されていてもよい。 薄膜成長方向と垂直に該非磁性膜の
(100)面がエピタキシャル成長していてもよい。 MgO(10
0)基板上に、Pt下地層を介して該非磁性膜がエピタキシ
ャル成長していてもよい。 本発明に係る磁気抵抗効果型
ヘッドは、非磁性膜を介して積層された少なくとも2つ
の磁性膜と、該磁性膜の最も外側の磁性膜の少なくとも
一方に、該磁性膜と接して非磁性膜と反対側に形成され
た、電子のスピン方向を維持したまま反射散乱を生じや
すい金属反射膜とを有し、該金属反射膜は、その表面の
少なくとも 10%以上が、3オングストローム以下の凹
凸の平滑な表面である磁気抵抗効果素子と、該磁気抵抗
効果素子に電流を供給するリード部とを備え、該磁気抵
抗素子の保持力の最も小さい磁性膜の磁化容易軸が、検
知すべき信号磁界方向に垂直となるように構成され、そ
のことにより上記目的が達成される。 本発明に係る他の
磁気抵抗効果型ヘッドは、非磁性膜を介して積層された
少なくとも2つの磁性膜と、該磁性膜の最も外側の磁性
膜の少なくとも一方に、該磁性膜と接して非磁性膜と反
対側に形成された、電子のスピン方向を維持したまま反
射散乱を生じやすい金属反射膜とを有し、該金属反射膜
と該磁性膜の間に、更に非磁性膜を有する磁気抵抗効果
素子と、該磁気抵抗効果素子に電流を供給するリード部
とを備え、該磁気抵抗素子の保持力の最も小さい磁性膜
の磁化容易軸が、検知すべき信号磁界方向に垂直となる
ように構成され、そのことにより上記目的が達成され
る。 本発明に係るさらに他の磁気抵抗効果型ヘッドは、
非磁性膜を介して積層された少なくとも2つの磁性膜
と、該磁性膜の最も外側の磁性膜の少なくとも一方に、
該磁性膜と接して非磁性膜と反対側に形成された、電子
のスピン方向を維持したまま反射散乱を生じやすい金属
反射膜とを有し、該金属反射膜は、その表面の少なくと
も10%以上が、3オングストローム以下の凹凸の平滑
な表面であり、該非磁性膜を介して積層された第1,お
よび第2の磁性膜と、該第1の磁性膜と接して該非磁性
膜と反対側に形成された反強磁性体と、該第2の磁性膜
と接して該非磁性膜と反対側に形成された金属反射膜を
有することを特徴とする磁気抵抗効果素子と、該磁気抵
抗効果素子に電流を供給するリード部とを備え、該磁気
抵抗素子の反強磁性体と接しない磁性膜の磁化容易軸
が、検知すべき信号磁界方向に垂直となるように構成さ
れ、そのことにより上記目的が達成される。
The magnetoresistive effect according to the present invention is provided.
The at least two element elements are stacked via a non-magnetic film.
And at least the outermost magnetic film of the magnetic film
On the other hand, it is formed on the opposite side of the non-magnetic film in contact with the magnetic film.
Also, reflection scattering occurs while maintaining the electron spin direction.
A metal reflection film, and the metal reflection film has
At least 10% or more are concave not more than 3 angstroms
It is characterized by a convex smooth surface,
The above object is achieved. Other magnetoresistance effects according to the present invention
The device has at least two layers stacked via a non-magnetic film.
At least one of a magnetic film and an outermost magnetic film of the magnetic film;
On the other hand, it is formed on the opposite side to the non-magnetic film in contact with the magnetic film.
Also, reflection scattering occurs while maintaining the electron spin direction.
A pan metal reflection film, and between the metal reflection film and the magnetic film.
In addition, it has a non-magnetic film, which achieves the above purpose.
Is done. Non-magnetic between the metal reflective film and the magnetic film
It may have a membrane. The non-magnetic film is Cu, and the metal reflection
The film mainly comprises at least one of Ag, Au, Bi, Sn, and Pb.
May be minutes. In contact with the metal reflective film via a non-magnetic film
The magnetic film is mainly composed of Co or a Co-rich Co-Fe alloy.
May be. The magnetic film is composed of a magnetic layer and Co or Co high concentration.
At least with the interfacial magnetic layer containing Co-Fe alloy as a main component
The interface magnetic layer is provided with the non-magnetic film interposed therebetween.
It may be in contact with the metal reflection film. Through the non-magnetic film
The magnetic film in contact with the metal reflection film sandwiches the soft magnetic layer
Interfacial magnetism mainly composed of Co or Co-rich Co-Fe alloy
It may consist of layers. The metal reflective film has a smooth surface.
It may be. The nonmagnetic film is Cu, and the metal reflection film
Has at least one of Ag, Au, Bi, Sn, and Pb as the main component
It may be. The magnetic film directly in contact with the metal reflection film forms Co.
It may be the main component. The magnetic film comprises a magnetic layer, Co or
Low interfacial magnetic layer composed mainly of Co-rich Co-Fe alloy
At least two layers, and the interface magnetic layer is directly
It may be in contact with the film . Directly in contact with the metal reflective film
The magnetic film is made of Co or Co-rich Co
The magnetic layer may be composed of an interfacial magnetic layer containing a -Fe alloy as a main component.
At least one of the at least two magnetic films;
The coercive force of the conductive film may be different from other magnetic films. The non
First and second magnetic films laminated via a magnetic film
Formed on the side opposite to the non-magnetic film with respect to the first magnetic film
Antiferromagnetic material and the nonmagnetic material with respect to the second magnetic film.
It may have a metal reflection film formed on the side opposite to the film. The
A non-magnetic film may be further provided between the metal reflection film and the magnetic film.
Good. The antiferromagnetic film may be an oxide. The rebellion
The magnetic film may be Ni-O. The antiferromagnetic film is α-F
e 2 O 3 may be used. The second magnetic film has a non-magnetic film
It may be composed of two or more magnetic films laminated in this way. The
An antiferromagnetic film is epitaxially formed on the substrate
Is also good. A first magnetic film, the nonmagnetic film, a second magnetic film,
Configuration in which ferromagnetic film and metal reflection film are sequentially formed
It may be. The antiferromagnetic film and the metal reflection film
A nonmagnetic film may be provided between them. The antiferromagnetic film is Ir-Mn
It may be an alloy. The antiferromagnetic film is made of an Ir-Mn alloy.
You may. The non-magnetic film is formed epitaxially on the substrate
It may be. Perpendicular to the thin film growth direction.
The (100) plane may be epitaxially grown. MgO (10
0) The non-magnetic film is formed on the substrate via the Pt underlayer by epitaxy.
May be growing. Magnetoresistance effect type according to the present invention
At least two heads stacked via a non-magnetic film
And at least the outermost magnetic film of the magnetic film
On the other hand, it is formed on the opposite side of the non-magnetic film in contact with the magnetic film.
Also, reflection scattering occurs while maintaining the electron spin direction.
A metal reflection film, and the metal reflection film has
At least 10% or more are concave not more than 3 angstroms
A magnetoresistive element having a convex smooth surface;
A lead for supplying a current to the effect element.
The axis of easy magnetization of the magnetic film with the smallest coercive force of the resistance element is detected.
It is configured to be perpendicular to the signal magnetic field direction to be
Thus, the above object is achieved. Other according to the present invention
The magnetoresistive head is laminated via a non-magnetic film
At least two magnetic films and an outermost magnetic film of the magnetic films
At least one of the films is in contact with the nonmagnetic film in contact with the magnetic film.
While maintaining the spin direction of the electron formed on the opposite side,
A metal reflection film which is liable to cause scattering, said metal reflection film
Between the magnetic film and the magnetic film, further comprising a non-magnetic film
Element and a lead portion for supplying current to the magnetoresistive element
And a magnetic film having the smallest coercive force of the magnetoresistive element.
Easy axis is perpendicular to the direction of the signal magnetic field to be detected
In order to achieve the above object,
You. Still another magnetoresistive head according to the present invention is:
At least two magnetic films laminated via a non-magnetic film
And at least one of the outermost magnetic films of the magnetic film,
An electron formed on the opposite side of the non-magnetic film in contact with the magnetic film;
Metal that tends to cause reflection scattering while maintaining the spin direction of
A reflective film, and the metallic reflective film has at least a surface thereof.
10% or more, unevenness less than 3 Å
Surface, and the first and other layers laminated via the non-magnetic film.
And the second magnetic film and the non-magnetic film in contact with the first magnetic film.
An antiferromagnetic material formed on the side opposite to the film, and the second magnetic film
A metal reflective film formed on the opposite side to the non-magnetic film in contact with
A magnetoresistive effect element characterized by having
A lead for supplying a current to the anti-effect element;
Easy axis of magnetization of magnetic film not in contact with antiferromagnet of resistive element
Are arranged perpendicular to the direction of the signal magnetic field to be detected.
Thereby, the above object is achieved.

【0021】[0021]

【0022】[0022]

【0023】[0023]

【0024】[0024]

【0025】[0025]

【0026】[0026]

【0027】[0027]

【0028】[0028]

【発明の実施の形態】以下本願発明の磁気抵抗効果素子
および磁気抵抗効果型ヘッドを図面に基づいて説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A magnetoresistive element and a magnetoresistive head according to the present invention will be described below with reference to the drawings.

【0029】図1−5に本願発明の磁気抵抗効果素子の
構成を示す断面図の例を示す。中でも図1−3は硬質磁
性膜を用いた(保磁力の異なる2種類の磁性膜を用い
た)スピンバルブ膜を示す。この場合、保磁力のより大
きい磁性膜を硬質磁性膜と呼び、保磁力の小さい方の磁
性膜を軟磁性膜と呼ぶ。
FIG. 1-5 shows an example of a sectional view showing the structure of the magnetoresistance effect element of the present invention. Among them, FIG. 1-3 shows a spin valve film using a hard magnetic film (using two types of magnetic films having different coercive forces). In this case, a magnetic film having a larger coercive force is called a hard magnetic film, and a magnetic film having a smaller coercive force is called a soft magnetic film.

【0030】図1(a)に示す本願発明の磁気抵抗効果素
子は、基板1上に下地膜2を介して軟磁性膜3、非磁性
膜4、硬質磁性膜5、および金属反射膜6が順次形成さ
れた構成を有する。従来のスピンバルブ素子において
は、金属反射膜6はなく、表面には保護層が形成され、
MRヘッドを構成する場合には、シールドギャップ材とし
て絶縁膜等が形成されている。
In the magnetoresistive element of the present invention shown in FIG. 1A, a soft magnetic film 3, a non-magnetic film 4, a hard magnetic film 5, and a metal reflective film 6 are formed on a substrate 1 with a base film 2 interposed therebetween. It has a configuration formed sequentially. In the conventional spin valve element, there is no metal reflection film 6, and a protective layer is formed on the surface,
When configuring an MR head, an insulating film or the like is formed as a shield gap material.

【0031】通常、スピンバルブ膜の軟磁性膜3として
は、Ni-Co-Fe合金が適している。Ni-Co-Fe膜の原子組成
比としては、NixCoyFez 0.6≦x≦0.9 0≦y≦0.4 0≦z≦0.3 のNi-richの軟磁性膜、もしくは、Nix'Coy'Fez' 0≦x'≦0.4 0.2≦y'≦0.95 0≦z'≦0.5 のCo-rich膜を用いるのが望ましい。これらの組成の膜
はセンサーやMRヘッド用として要求される低磁歪特性(1
x10-5)を有する。
Usually, a Ni—Co—Fe alloy is suitable for the soft magnetic film 3 of the spin valve film. The atomic composition ratio of the Ni-Co-Fe film is Ni x Co y Fe z 0.6 ≦ x ≦ 0.9 0 ≦ y ≦ 0.4 0 ≦ z ≦ 0.3 Ni-rich soft magnetic film, or Ni x ' Co y It is preferable to use a Co-rich film satisfying 'Fez ' 0 ≦ x ′ ≦ 0.4 0.2 ≦ y ′ ≦ 0.95 0 ≦ z ′ ≦ 0.5. Films with these compositions have low magnetostrictive properties (1) required for sensors and MR heads.
x10 -5 ).

【0032】また他の軟磁性膜3の材料としては、Co-M
n-B、Co-Fe-B,Co-Nb-Zr,Co-Nb-B等のアモルファス膜も
良い。
As another material of the soft magnetic film 3, Co-M
An amorphous film such as nB, Co-Fe-B, Co-Nb-Zr, or Co-Nb-B may be used.

【0033】軟磁性膜3の膜厚としては1nm以上10nm以
下がよい。膜厚が厚いとシャント効果によりMR比が低下
するが、薄すぎると軟磁気特性が劣化する。より望まし
くは2nm以上5nm以下、更に望ましくは2nm以上3nm以下と
するのがよい。
The thickness of the soft magnetic film 3 is preferably 1 nm or more and 10 nm or less. When the film thickness is large, the MR ratio is reduced due to the shunt effect, but when it is too small, the soft magnetic characteristics are deteriorated. More preferably, the thickness is 2 nm or more and 5 nm or less, and further preferably, 2 nm or more and 3 nm or less.

【0034】硬質磁性膜5としては角型が0.7以上、更
に望ましくは0.85以上の強磁性体がよい。ここで角型と
は飽和磁界Msと残留磁化Mrを用いて、Mr/Msで表さ
れるものをいう。
The hard magnetic film 5 is preferably a ferromagnetic material having a square shape of 0.7 or more, more preferably 0.85 or more. Here, the square shape means a shape represented by Mr / Ms using a saturation magnetic field Ms and a residual magnetization Mr.

【0035】硬質磁性層の角型が小さいと軟磁性層との
間で磁化の完全な平行および反平行状態が実現されな
い。従って、角型の大きいものが望まれる。
If the square shape of the hard magnetic layer is small, perfect parallel and anti-parallel magnetization states cannot be realized with the soft magnetic layer. Therefore, a large square shape is desired.

【0036】硬質磁性膜の材料としては、CoまたはCo
-Fe合金、Co-Pt合金等のCo系の材料が優れている。特に
CoまたはCo-Fe合金がよい。
As the material of the hard magnetic film, Co or Co
Co-based materials such as -Fe alloy and Co-Pt alloy are excellent. Especially
Co or Co-Fe alloy is preferred.

【0037】硬質磁性膜5の膜厚は1nm以上10nm以下が
よい。膜厚が厚いとシャント効果でMR比が低下するが、
薄すぎると磁気特性が劣化する。より望ましくは1nm以
上5nm以下とするのがよい。
The thickness of the hard magnetic film 5 is preferably 1 nm or more and 10 nm or less. When the film thickness is large, the MR ratio decreases due to the shunt effect,
If the thickness is too small, the magnetic properties deteriorate. More preferably, the thickness is 1 nm or more and 5 nm or less.

【0038】硬質磁性膜5と軟磁性膜3の間の非磁性膜
4としては、Cu,Ag,Au,Ruなどがあるが、特にCuが優れ
ている。非磁性膜4の膜厚としては、磁性層間の相互作
用を弱くするために少なくとも1.5nm以上、望ましくは
1.8nm以上は必要である。また非磁性層4が厚くなると
MR比が低下してしまうので、非磁性層4の膜厚は10nm
以下、望ましくは3nm以下とするべきである。
As the non-magnetic film 4 between the hard magnetic film 5 and the soft magnetic film 3, there are Cu, Ag, Au, Ru and the like, but Cu is particularly excellent. The thickness of the non-magnetic film 4 is at least 1.5 nm or more, preferably, in order to weaken the interaction between the magnetic layers.
1.8 nm or more is required. When the thickness of the non-magnetic layer 4 is large, the MR ratio is reduced.
Hereinafter, it should be desirably 3 nm or less.

【0039】また、特に非磁性膜4の中に硬質磁性膜5
と軟磁性膜3との磁気的結合を低下させるのに有効な厚
さ1nm以下の他の非磁性層を挿入するのも有効である。
たとえば、非磁性層4をCu単層で構成するのではなくCu
/Ag/Cu,Cu/Ag,Ag/Cu/Agなどの構成にすると良い。挿入
する他の非磁性層の材料はAg,Au等が良い。この時、非
磁性層4全体の膜厚は、前述した単層の非磁性層4の場
合と同程度にするのが望ましい。非磁性層4に挿入する
他の非磁性層の膜厚は、1層あたり厚くても1nm以下望
ましくは0.4nm以下とするべきである。
In particular, the hard magnetic film 5
It is also effective to insert another non-magnetic layer having a thickness of 1 nm or less which is effective for reducing the magnetic coupling between the magnetic layer and the soft magnetic film 3.
For example, instead of forming the nonmagnetic layer 4 by a single Cu layer,
It is preferable to use a configuration such as / Ag / Cu, Cu / Ag, or Ag / Cu / Ag. The material of the other nonmagnetic layer to be inserted is preferably Ag, Au or the like. At this time, the thickness of the entire non-magnetic layer 4 is desirably the same as that of the single-layer non-magnetic layer 4 described above. The thickness of the other nonmagnetic layer inserted into the nonmagnetic layer 4 should be at most 1 nm or less, preferably at most 0.4 nm, per layer.

【0040】また、MR比を更に大きくするために、磁
性膜(軟磁性膜3または硬質磁性膜5)と非磁性膜4と
の界面に界面磁性層を挿入するのも有効である。界面磁
性層の膜厚が厚いと、MR比の磁界感度が低下するの
で、界面磁性層の膜厚は2nm以下、望ましくは1.8nm以下
とする必要がある。またこの界面磁性層が有効に働くた
めには、少なくとも0.2nm以上の膜厚は必要であり、望
ましくは0.8nm以上の膜厚がよい。界面磁性層の材料と
しては、CoまたはCo高濃度のCo-Fe合金が優れている。
In order to further increase the MR ratio, it is effective to insert an interface magnetic layer at the interface between the magnetic film (soft magnetic film 3 or hard magnetic film 5) and the non-magnetic film 4. If the thickness of the interface magnetic layer is large, the magnetic field sensitivity of the MR ratio decreases. Therefore, the thickness of the interface magnetic layer needs to be 2 nm or less, preferably 1.8 nm or less. In order for this interfacial magnetic layer to work effectively, a film thickness of at least 0.2 nm is required, and a film thickness of 0.8 nm or more is desirable. As a material of the interface magnetic layer, Co or a Co-Fe alloy with a high Co concentration is excellent.

【0041】基板1としては、後で説明するようにエピ
タキシャル膜を形成するとき以外、つまり多結晶膜を作
製する場合は、ガラス、Si、Al2O3-TiC基板等の表面の
比較的平滑なものを用いる。MRヘッドを作製する場合
には、Al2O3-TiC基板を用いる。
Except when an epitaxial film is formed as described later, that is, when a polycrystalline film is formed, a relatively smooth surface of a glass, Si, Al 2 O 3 —TiC substrate or the like is used as the substrate 1. Use a suitable one. When manufacturing an MR head, an Al 2 O 3 —TiC substrate is used.

【0042】下地膜2は、上部MR素子部(軟磁性膜3
ー金属反射膜6)の結晶性を改善し、MR比を向上させ
るもので、Taが良く用いられる。MRヘッドを作製する
場合には、更に基板1上にSiO2,Al2O3等の絶縁層、Ni-F
e等の下部シールド層を形成した後、Taの下地層2を形
成する。
The under film 2 is formed of an upper MR element (soft magnetic film 3).
-It improves the crystallinity of the metal reflective film 6) and improves the MR ratio, and Ta is often used. When an MR head is manufactured, an insulating layer such as SiO 2 , Al 2 O 3 , Ni-F
After the lower shield layer such as e is formed, the Ta underlayer 2 is formed.

【0043】以上説明したような軟磁性膜3/非磁性膜
4/硬質磁性膜5の構成の基本的なスピンバルブ膜の構
成に対して、本願発明の場合には、更にMR比を増大す
るために、金属反射膜6が追加される。
In contrast to the basic structure of the spin valve film having the soft magnetic film 3 / non-magnetic film 4 / hard magnetic film 5 described above, in the case of the present invention, the MR ratio is further increased. Therefore, a metal reflection film 6 is added.

【0044】この金属反射膜6がない場合には、硬質磁
性膜5の表面で、伝導電子が拡散反射されるために、ス
ピン分極情報が失われてしまう。巨大磁気抵抗効果は、
伝導電子のスピンに依存した散乱に起因しているので、
表面でスピン情報が失われたり減じたりすると、MR比
を低下させることになる。よって従来のスピンバルブ膜
では大きなMR比が得られなかった。
If the metal reflective film 6 is not provided, conduction electrons are diffusely reflected on the surface of the hard magnetic film 5, so that information on spin polarization is lost. The giant magnetoresistance effect is
Because it is due to the spin-dependent scattering of conduction electrons,
Loss or loss of spin information at the surface will reduce the MR ratio. Therefore, a large MR ratio could not be obtained with the conventional spin valve film.

【0045】これに対して、金属反射膜6を設けた本発
明の磁気抵抗効果素子においては、金属反射膜6の表面
で伝導電子が多く鏡面反射され、比較的スピン情報が保
存される。このように薄膜の表面で電子が鏡面反射され
ると、多層に[磁性層/非磁性層]を積層したのと同等の
効果が表れ、MR比が増大する。
On the other hand, in the magnetoresistive element of the present invention provided with the metal reflection film 6, a large amount of conduction electrons are specularly reflected on the surface of the metal reflection film 6, and the spin information is relatively stored. When the electrons are specularly reflected on the surface of the thin film in this manner, the same effect as when the [magnetic layer / non-magnetic layer] is laminated in multiple layers appears, and the MR ratio increases.

【0046】鏡面反射を起こさせるためには、薄膜表面
として電子の波長(数オングストローム)のレベルで見
て平滑な界面(表面)が要求される。ここでいう平滑な
表面とは、全表面にわたって完全に平滑であれば申し分
ないが、全体として例えば数10オングストロームの大き
な凹凸があったとしても、少なくとも表面の一部分にお
いてオングストローム単位の平滑な部分が形成されてい
ればよい。具体的には、3オングストローム以下の凹凸
の超平滑な表面が100x100オングストローム以上の領域
で形成されている部分が、概略全表面の10%以上、望
ましくは20%以上必要である。そのためには、特定の材
料を選ぶ必要がある。
In order to cause specular reflection, a smooth interface (surface) at the level of the wavelength of electrons (several angstroms) is required as a thin film surface. The term "smooth surface" as used herein means that it is perfectly satisfactory if the entire surface is completely smooth, but even if there are large irregularities of, for example, several tens of angstroms as a whole, a smooth portion of angstrom units is formed at least in part of the surface. It should just be done. Specifically, a portion in which a super-smooth surface with irregularities of 3 Å or less is formed in a region of 100 × 100 Å or more is required to be at least 10%, preferably at least 20% of the entire surface. To do so, you need to select specific materials.

【0047】金属反射膜としては、Ag,Au,Bi,Sn,Pb等の
材料がよい。これらの原子は、スヒ゜ンハ゛ルフ゛膜で良く用い
られるNi,Fe,Cu,Co膜などの材料と異なり、表面で、数
オングストロームのレベルで見て、平滑な表面が出来や
すい。特に、Ag,Auがすぐれており、中でもAgは最も効
果がある。特に、Ag,Auは、(111)面がより平滑に成りや
すく、数オングストロームレベルで、平滑な表面が得ら
れやすい。従って薄膜表面に対して、(111)面が平行に
なるようにするのが望ましい。金属反射膜は厚すぎると
シャント効果によりMR比が低下するので、10nm以下、
望ましくは3nm以下とするのがよい。また薄すぎると効
果がないので少なくとも0.5nm以上の膜厚、望ましくは1
nm以上とするのがよい。
As the metal reflection film, a material such as Ag, Au, Bi, Sn, and Pb is preferable. These atoms are different from materials such as Ni, Fe, Cu, and Co films often used in Spherical film, and a smooth surface is easily formed on the surface at a level of several angstroms. In particular, Ag and Au are excellent, and among them, Ag is the most effective. In particular, for Ag and Au, the (111) plane is likely to be smoother, and a smooth surface is easily obtained at a level of several angstroms. Therefore, it is desirable that the (111) plane be parallel to the thin film surface. If the metal reflection film is too thick, the MR ratio will decrease due to the shunt effect.
Preferably, the thickness is 3 nm or less. Also, since it is not effective if it is too thin, a film thickness of at least 0.5 nm or more, preferably 1
It is better to be at least nm.

【0048】また、図1(b)に示すように、更に、金属
反射膜6と硬質磁性膜5との間に非磁性膜7を挿入する
と、MR比がより大きくなる。これは、磁性膜5がCo系の
材料であり、金属反射膜6にAg,Au等の材料を用いた場
合には、Cu等の非磁性膜7を中間に挿入することが特に
有効である。非磁性膜7の効果は、一つは金属反射膜の
表面をより平滑にする効果であり、もう一つはスピンに
依存した散乱を大きくする効果である。磁性層/非磁性
層の界面で起こるスピンを保存した散乱が、Co/Ag界面
より、Co/Cu界面の方が大きいためである。また、この
ような観点からは、磁性層がCo以外の材料である場合に
は、らにCoまたはCo高濃度のCo-Fe合金の界面磁性層
を挿入すると、より大きなMR比を示す膜が得られる。こ
の界面磁性層の膜厚としては、磁性膜と非磁性膜4の界
面に挿入する界面磁性層の膜厚と同じである。
Further, as shown in FIG. 1B, when a non-magnetic film 7 is further inserted between the metal reflection film 6 and the hard magnetic film 5, the MR ratio becomes larger. This is because, when the magnetic film 5 is a Co-based material and a material such as Ag or Au is used for the metal reflection film 6, it is particularly effective to insert a non-magnetic film 7 such as Cu in the middle. . One of the effects of the non-magnetic film 7 is an effect of smoothing the surface of the metal reflection film, and the other is an effect of increasing spin-dependent scattering. This is because the scattering preserving spin occurring at the interface between the magnetic layer and the nonmagnetic layer is larger at the Co / Cu interface than at the Co / Ag interface. Further, from this point of view, when the magnetic layer when a material other than Co may be et to insert an interface magnetic layer of Co-Fe alloy of Co or Co-rich, film exhibiting a greater MR ratio Is obtained. The thickness of the interface magnetic layer is the same as the thickness of the interface magnetic layer inserted at the interface between the magnetic film and the nonmagnetic film 4.

【0049】非磁性膜7の材料は非磁性膜4と同じであ
る。非磁性膜7の膜厚は、2nm以下が良く、望ましく
は1nm以下がよい。MR比を増大させるためには、少な
くとも0.5nm以上の膜厚は必要である。
The material of the non-magnetic film 7 is the same as that of the non-magnetic film 4. The thickness of the nonmagnetic film 7 is preferably 2 nm or less, and more preferably 1 nm or less. In order to increase the MR ratio, a film thickness of at least 0.5 nm is required.

【0050】また図1(a)は基板1上に下地膜2を介し
て、軟磁性膜3/非磁性膜4/硬質磁性膜5/金属反射膜
6を順次形成した場合の図であるが、下地膜2は、磁気
抵抗効果素子のMR比を大きくするために用いるもので
必要に応じて用いる。また図1(a)(b)とは逆に、図1
(c)に示すように金属反射膜6から構成しても本発明
は有効である。
FIG. 1A shows a case where a soft magnetic film 3, a non-magnetic film 4, a hard magnetic film 5, and a metal reflective film 6 are sequentially formed on a substrate 1 with a base film 2 interposed therebetween. The underlayer 2 is used to increase the MR ratio of the magnetoresistive element, and is used as needed. Also, contrary to FIGS. 1 (a) and 1 (b), FIG.
The present invention is effective even if it is composed of the metal reflection film 6 as shown in FIG.

【0051】更に、金属反射膜6を、硬質磁性膜5側で
はなく軟磁性膜3側に用いて、図2(a)のような構成と
しても良い。この場合も、膜の積層順序は、基板1上に
下地膜2を介して、図2(a)とは逆に、金属反射膜6/軟
磁性膜3/非磁性膜4/硬質磁性膜5の構成としても良
い。
Further, the metal reflection film 6 may be used on the soft magnetic film 3 side instead of the hard magnetic film 5 side, and may be configured as shown in FIG. Also in this case, the order of lamination of the films is as follows: the metal reflection film 6 / the soft magnetic film 3 / the nonmagnetic film 4 / the hard magnetic film 5 It is good also as composition of.

【0052】また金属反射膜6は図1および図2(a)の
示すように、一方の磁性層の片側に設けるだけでなく、
図2(b)に示すように、両方の磁性層の片側に設けても
良い。この場合は片側に設ける場合よりも更に、電子の
鏡面反射の効果が大きくなり、MR比増大の効果が大き
くなる。
As shown in FIGS. 1 and 2 (a), the metal reflection film 6 is provided not only on one side of one magnetic layer but also on the other side.
As shown in FIG. 2B, it may be provided on one side of both magnetic layers. In this case, the effect of specular reflection of the electrons is greater than that provided on one side, and the effect of increasing the MR ratio is greater.

【0053】図3はデュアルスピンバルブ膜の両側に金
属反射膜6を用いた例である。硬質磁性膜5/非磁性膜
4/軟磁性膜3/非磁性膜4/硬質磁性膜5の構成からな
るいわゆるデュアルスピンバルブ膜は、単純な硬質磁性
膜5/非磁性膜4/軟磁性膜3の構成のスピンバルブ膜に
比べて、磁性層/非磁性層界面が増加するためにMR比が
増大する。この膜に対しても、金属反射膜6は有効であ
る。片側に金属反射膜を用いてもそれなりの効果はあ
る。
FIG. 3 shows an example in which metal reflection films 6 are used on both sides of a dual spin valve film. The so-called dual spin valve film having the structure of hard magnetic film 5 / non-magnetic film 4 / soft magnetic film 3 / non-magnetic film 4 / hard magnetic film 5 is a simple hard magnetic film 5 / non-magnetic film 4 / soft magnetic film. As compared with the spin valve film having the configuration 3, the MR ratio increases because the interface between the magnetic layer and the nonmagnetic layer increases. The metal reflection film 6 is also effective for this film. Even if a metal reflection film is used on one side, there is a certain effect.

【0054】金属反射膜6と磁性膜(軟磁性膜3または
硬質磁性膜5)との間に非磁性膜を挿入すると更にMR
比が大きくなる事実は、図1−5に示す構造に共通す
る。
When a non-magnetic film is inserted between the metal reflection film 6 and the magnetic film (the soft magnetic film 3 or the hard magnetic film 5), the MR
The fact that the ratio increases is common to the structures shown in FIGS. 1-5.

【0055】なお、磁気抵抗効果素子が多結晶膜である
場合にも、単結晶膜である場合にも前述の効果が奏され
るが、エピタキシャル膜である場合には、金属反射膜6
の効果は特に大きい。これは、金属反射膜6がエピタキ
シャル膜である場合には表面での鏡面散乱が促進される
ためである。
It should be noted that the above-mentioned effects are exhibited when the magnetoresistive element is a polycrystalline film or a single-crystal film.
The effect is particularly great. This is because when the metal reflection film 6 is an epitaxial film, specular scattering on the surface is promoted.

【0056】エピタキシャル膜を形成する方法にはいろ
いろある。望ましくは、MgO,Si等の基板が良い。特に望
ましくは、MgO(100)またはSi(111)基板が良い。
There are various methods for forming an epitaxial film. Desirably, a substrate of MgO, Si or the like is good. Particularly desirable is a MgO (100) or Si (111) substrate.

【0057】MgO(100)基板を用いた場合、下地層とし
て、Pt層を形成し、更にCu層を下地層として形成するの
がよい。Pt層の膜厚としては、5nm以上50nm以下が望ま
しい。その後に、例えば図1(b)に示すような素子を構
成する。このとき、例えば非磁性膜7がCuで、金属反射
膜6がAgの場合には、格子定数の差が大きいため、Ag膜
の一部は、(100)配向となるが、多くはより整合性の良
い(111)配向となる。このAg膜は、表面が非常に平滑
で、鏡面反射を起こしやすく、MR比を増大させる効果が
大きい。
When an MgO (100) substrate is used, it is preferable to form a Pt layer as a base layer and further form a Cu layer as a base layer. The thickness of the Pt layer is preferably from 5 nm to 50 nm. After that, for example, an element as shown in FIG. At this time, for example, when the non-magnetic film 7 is made of Cu and the metal reflective film 6 is made of Ag, the difference in lattice constant is large. A good (111) orientation is obtained. This Ag film has a very smooth surface, easily causes specular reflection, and has a large effect of increasing the MR ratio.

【0058】Si(111)基板を用いる場合には、下地層無
しで、Ag層を基板上に直接形成した後、例えば非磁性膜
Cu、軟磁性膜Ni-Fe、非磁性膜Cu、硬質磁性膜Co、非磁
性膜Cu、および金属反射膜Agを順次積層する。この時,
基板上のAg層の膜厚は5nm以上は必要であり、10nm以下
とするのが望ましい。
In the case of using a Si (111) substrate, an Ag layer is formed directly on the substrate without an underlayer, and then, for example, a non-magnetic film is formed.
Cu, a soft magnetic film Ni-Fe, a non-magnetic film Cu, a hard magnetic film Co, a non-magnetic film Cu, and a metal reflective film Ag are sequentially laminated. At this time,
The thickness of the Ag layer on the substrate needs to be 5 nm or more, and desirably 10 nm or less.

【0059】以上のように、硬質磁性膜を用いたスピン
バルブ膜に金属反射膜を用いた場合について説明した
が、反強磁性体を用いたスピンバルブ膜の場合にも本発
明は有効である。この場合、反強磁性体に接した磁性膜
は磁化方向が固定される。反強磁性体に接しない磁性膜
は外部からの磁界により磁化方向が変化し、抵抗変化を
起こす。従って、外部磁界に対する磁界感度を上昇させ
るために、反強磁性体と接しない磁性膜に軟磁性膜を用
いる。図4、図5にこの例を示す。
As described above, the case where the metal reflection film is used as the spin valve film using the hard magnetic film has been described. However, the present invention is also effective in the case of the spin valve film using the antiferromagnetic material. . In this case, the magnetization direction of the magnetic film in contact with the antiferromagnetic material is fixed. The magnetization direction of the magnetic film not in contact with the antiferromagnetic material changes due to an external magnetic field, causing a change in resistance. Therefore, in order to increase the magnetic field sensitivity to an external magnetic field, a soft magnetic film is used as the magnetic film that does not contact the antiferromagnetic material. 4 and 5 show this example.

【0060】図4(a)は、基板1上に下地膜2を介して
金属反射膜6/軟磁性膜3/非磁性膜4/磁性膜8/反強磁
性体膜9を順次形成した構成を示す。従来のスピンバル
ブ膜においては、図4(a)に示す金属反射膜6はない。
金属反射膜6がスピンバルブ膜のMR比を大きくする効
果は、硬質磁性膜を用いたスピンバルブ膜の場合と全く
同様である。従って、金属反射膜の膜厚、材質等も前述
したのと同等である。また、硬質磁性膜を用いたスピン
バルブ膜の場合と同様に、金属反射膜6と軟磁性膜3の
中間に非磁性膜を挿入するのも有効である。また図4
(a)は、金属反射膜6から形成する場合について示して
有るが、逆に、図4(b)に示すように、反強磁性体膜9/
磁性膜8/非磁性膜4/軟磁性膜3/金属反射膜6の順に
形成しても良い。
FIG. 4 (a) shows a structure in which a metal reflection film 6, a soft magnetic film 3, a non-magnetic film 4, a magnetic film 8, and an antiferromagnetic film 9 are sequentially formed on a substrate 1 with a base film 2 interposed therebetween. Is shown. In a conventional spin valve film, there is no metal reflection film 6 shown in FIG.
The effect of the metal reflection film 6 to increase the MR ratio of the spin valve film is exactly the same as that of the spin valve film using the hard magnetic film. Therefore, the thickness, material, and the like of the metal reflection film are the same as those described above. It is also effective to insert a non-magnetic film between the metal reflection film 6 and the soft magnetic film 3 as in the case of a spin valve film using a hard magnetic film. FIG. 4
FIG. 4A shows a case where the anti-ferromagnetic material film 6 is formed from the metal reflection film 6. On the contrary, as shown in FIG.
The magnetic film 8 / nonmagnetic film 4 / soft magnetic film 3 / metal reflective film 6 may be formed in this order.

【0061】金属の反強磁性体膜9の材料としては、Fe
-Mn,Ni-Mn,Pd-Mn,Pt-Mn,Ir-Mn,Fe-Ir,等がある。このう
ちFe-Mnは従来のスピンバルブ膜でもっともよく用いら
れていたが、耐食性などの観点から実用上問題がある。
この面からは、Ir-Mn等の材料が特に優れている。IrzMn
1-z膜の適当な組成としては、原子組成比で、0.1≦z≦
0.5がよい。
The material of the metal antiferromagnetic film 9 is Fe
-Mn, Ni-Mn, Pd-Mn, Pt-Mn, Ir-Mn, Fe-Ir, and the like. Of these, Fe-Mn has been most often used in conventional spin valve films, but has practical problems from the viewpoint of corrosion resistance and the like.
From this aspect, materials such as Ir-Mn are particularly excellent. Ir z Mn
As a suitable composition of the 1-z film, the atomic composition ratio is 0.1 ≦ z ≦
0.5 is better.

【0062】反強磁性体膜9として、Ni-O,Co-O,Ni-O/C
o-O、Co-Ni-O、Fe-O等の酸化物も使用可能である。この
中では特にNi-Oまたはα-Fe2O3膜が優れている。このよ
うな絶縁体は、その絶縁性をうまく利用すればより大き
なMR比が実現できる可能性がある。また、MRヘッド
として用いる場合に、シールドギャップ材の一部として
も利用可能である。また、α-Fe2O3膜の場合には、サフ
ァイア(11-20)基板(いわゆるA面)を用いれば、基板上
にエピタキシャルに形成できる。その上に更にNi-Fe合
金等を形成すると、膜面内で[0001]方向に一軸異方性を
付与することが可能であり、結果的に大きなMR比を示す
試料を作成できる。
As the antiferromagnetic film 9, Ni-O, Co-O, Ni-O / C
Oxides such as oO, Co-Ni-O, and Fe-O can also be used. Among them, Ni-O or α-Fe 2 O 3 film is particularly excellent. Such an insulator may be able to achieve a higher MR ratio if its insulating properties are exploited. When used as an MR head, it can also be used as a part of a shield gap material. Further, in the case of an α-Fe 2 O 3 film, if a sapphire (11-20) substrate (so-called A surface) is used, it can be formed epitaxially on the substrate. When a Ni—Fe alloy or the like is further formed thereon, it is possible to impart uniaxial anisotropy in the [0001] direction in the film plane, and as a result, a sample having a large MR ratio can be prepared.

【0063】また図4は、軟磁性膜/非磁性膜/磁性膜/
反強磁性体膜の構成のスピンバルブ膜に対して、軟磁性
膜側に金属反射膜を設ける例について示したが、反対に
反強磁性体側に金属反射膜を設けてもよい。この場合
は、反強磁性体としては、導電性がある金属反強磁性体
を用いる必要があり、かつその膜厚をなるべく薄くする
ことが望ましい。この観点から、反強磁性体としては、
Ir-Mn等の材料が適当である。膜厚は5nm以上10nm以下と
するのが望ましい。
FIG. 4 shows a soft magnetic film / non-magnetic film / magnetic film /
Although an example has been described in which a metal reflective film is provided on the soft magnetic film side with respect to the spin valve film having the antiferromagnetic film structure, a metal reflective film may be provided on the antiferromagnetic material side. In this case, it is necessary to use a conductive metal antiferromagnetic material as the antiferromagnetic material, and it is desirable to reduce the film thickness as much as possible. From this viewpoint, as an antiferromagnetic material,
Materials such as Ir-Mn are suitable. It is desirable that the film thickness be 5 nm or more and 10 nm or less.

【0064】また、磁性膜8の材料としては、Co、Ni-F
eまたはNi-Fe-Coなどの材料が優れている。
The material of the magnetic film 8 may be Co, Ni-F
Materials such as e or Ni-Fe-Co are superior.

【0065】また反強磁性体を用いたスピンバルブ膜の
場合にも、硬質磁性膜を用いたスピンバルブ膜の場合と
同様に、第1の反強磁性体膜9ー1/磁性膜8/非磁性膜
4/軟磁性膜3/非磁性膜4/磁性膜8/第2の反強磁性体
膜9ー2の構成のデュアルスピンバルブ構造とするのも
よい。この場合、図5に示すよう、反強磁性体膜の外側
の少なくとも一方に金属反射膜を設けると、MR比を大
きくする効果がある。この際、金属反射膜と接する反強
磁性体(図5では9ー2)は金属の反強磁性体を用いる
のが良く、Ir-Mn等が適している。逆に金属反射膜と接
しない方の反強磁性体は、Ni-O等の酸化物の絶縁性の反
強磁性体が適している。この場合にも、金属反射膜と反
強磁性体との間の非磁性層はMR比を更に大きくする効
果がある。
In the case of a spin valve film using an antiferromagnetic material, as in the case of a spin valve film using a hard magnetic film, the first antiferromagnetic film 9-1 / magnetic film 8 / A dual spin valve structure having a configuration of nonmagnetic film 4 / soft magnetic film 3 / nonmagnetic film 4 / magnetic film 8 / second antiferromagnetic film 9-2 may be used. In this case, as shown in FIG. 5, providing a metal reflection film on at least one of the outside of the antiferromagnetic film has an effect of increasing the MR ratio. At this time, as the antiferromagnetic material (9-2 in FIG. 5) in contact with the metal reflection film, a metal antiferromagnetic material is preferably used, and Ir-Mn or the like is suitable. Conversely, as the antiferromagnetic material not in contact with the metal reflection film, an insulating antiferromagnetic material of an oxide such as Ni-O is suitable. Also in this case, the nonmagnetic layer between the metal reflection film and the antiferromagnetic material has the effect of further increasing the MR ratio.

【0066】なお以上述べた基板1ー磁性膜8の各層の
構成方法としては、スパッタリング法または蒸着法が考
えられる。いずれの方法でも本発明の磁気抵抗効果素子
を作製できる。スパッタリング法としてはDCスパッタ
リング法、RFスパッタリング法、イオンビームスパッ
タリング法などがある。いずれの方法でも本発明の磁気
抵抗効果素子を作製できる。また、蒸着法の場合には、
超高真空蒸着法が特によい。
As a method of forming each layer of the substrate 1 and the magnetic film 8 described above, a sputtering method or a vapor deposition method can be considered. Either method can produce the magnetoresistive element of the present invention. Examples of the sputtering method include a DC sputtering method, an RF sputtering method, and an ion beam sputtering method. Either method can produce the magnetoresistive element of the present invention. In the case of the vapor deposition method,
Ultra-high vacuum deposition is particularly preferred.

【0067】以上述べたような本発明の磁気抵抗効果素
子を用いて、磁気抵抗効果型ヘッドを構成することがで
きる。図6にMRヘッドの一例としてハード膜バイアス
型のMRヘッドの構成の一例を示す。図6ではMR素子
部20は上部および下部のシールドギャップ11、14
に挟まれるように構成されている。シールドギャップ材
としては、Al2O3、SiO2等の絶縁膜が使われる。シール
ドギャップ11、14の更に外側はシールド10、15
がある。これにはNi-Fe合金などの軟磁性膜が用いられ
る。MR素子の磁区制御のためにCo-Pt合金等のハード
膜によるバイアス磁界を加えるためにハードバイアス部
12が設けられる。バイアスの印加方法としては、ハー
ド膜を用いる場合について説明したが、Fe-Mn等の反強
磁性体を用いた場合も同様である。MR素子部20はシ
ールドギャップ11、14によってシールド10、15
等と絶縁されている。リード部13を介して電流を流す
ことにより、MR素子部20の抵抗変化が読みとられ
る。
A magnetoresistive head can be constructed using the magnetoresistive element of the present invention as described above. FIG. 6 shows an example of the configuration of a hard film bias type MR head as an example of the MR head. In FIG. 6, the MR element section 20 includes upper and lower shield gaps 11 and 14.
It is configured to be sandwiched between. As a shield gap material, an insulating film such as Al 2 O 3 or SiO 2 is used. The shields 10, 15 are further outside the shield gaps 11, 14.
There is. For this, a soft magnetic film such as a Ni-Fe alloy is used. A hard bias section 12 is provided for applying a bias magnetic field by a hard film such as a Co-Pt alloy for controlling the magnetic domain of the MR element. The case of using a hard film has been described as a method of applying a bias, but the same applies to the case of using an antiferromagnetic material such as Fe-Mn. The MR element 20 is shielded by shields 10 and 15 by shield gaps 11 and 14.
Insulated from etc. By passing a current through the lead portion 13, a change in resistance of the MR element portion 20 is read.

【0068】将来のハードディスクドライブの高密度化
を考慮すると、記録波長を短くする必要性がある。その
ためには図6に示したシールド間の距離dを短くする必
要がある。そのためには図6から明らかな様に、MR素
子部20の幅を薄くする必要があり、少なくとも20nm以
下とするのが望ましい。
In consideration of the high density of hard disk drives in the future, it is necessary to shorten the recording wavelength. For this purpose, it is necessary to reduce the distance d between the shields shown in FIG. For this purpose, as is clear from FIG. 6, it is necessary to reduce the width of the MR element section 20, and it is desirable that the width be at least 20 nm or less.

【0069】またMR素子部20において、軟磁性膜の
磁化反転時にバルクハウゼンノイズの発生を押さえる必
要がある。図1−図5に示す軟磁性膜3は、その磁化容
易軸が、検知すべき信号磁界方向に垂直となるように構
成されているのがよい。
In the MR element section 20, it is necessary to suppress the generation of Barkhausen noise when the magnetization of the soft magnetic film is reversed. The soft magnetic film 3 shown in FIGS. 1 to 5 is preferably configured such that the axis of easy magnetization is perpendicular to the direction of the signal magnetic field to be detected.

【0070】[0070]

【実施例】本願発明の磁気抵抗効果素子および磁気抵抗
効果型ヘッドを以下具体的な実施例を用いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A magnetoresistive element and a magnetoresistive head according to the present invention will be described below using specific examples.

【0071】(実施例1)基板としてMgO(100)単結晶基
板を用い、超高真空蒸着法で、硬質磁性膜を用いた図1
のタイプのスピンバルブ素子を作製して、MR特性を評価
した。軟磁性膜3としては、Ni0.8Fe0.2(組成は原子組
成比を示す)合金を、硬質磁性膜5としてはCoを、非磁
性膜4としてはCuを、金属反射膜としてAgまたはAuを用
いた。蒸発源としては、Ni-Fe、Co、Ptの場合は電子ビ
ーム蒸発源を、Cu、Ag、AuはKセルを用いた。
Example 1 A MgO (100) single crystal substrate was used as a substrate, and a hard magnetic film was formed by an ultra-high vacuum deposition method.
Were fabricated and their MR characteristics were evaluated. An Ni 0.8 Fe 0.2 (composition indicates an atomic composition ratio) alloy is used as the soft magnetic film 3, Co is used as the hard magnetic film 5, Cu is used as the nonmagnetic film 4, and Ag or Au is used as the metal reflective film. Was. As the evaporation source, an electron beam evaporation source was used for Ni-Fe, Co, and Pt, and a K cell was used for Cu, Ag, and Au.

【0072】まず、はじめに、MgO基板を超高真空蒸着
装置内で500℃に保持し、下地層としてPt膜を10nm基板
にエピタキシャルに形成した。その後室温まで基板を冷
却し、Cu層をやはり下地層として5nm形成した。その試
料を200℃で30分加熱し、表面性を良くした後、室温
で、以下の表1−1に示すスピンバルブ膜を形成した。
First, an MgO substrate was kept at 500 ° C. in an ultra-high vacuum evaporation apparatus, and a Pt film was formed epitaxially on a 10 nm substrate as a base layer. Thereafter, the substrate was cooled to room temperature, and a Cu layer was formed to a thickness of 5 nm also as an underlayer. After heating the sample at 200 ° C. for 30 minutes to improve the surface properties, a spin valve film shown in Table 1-1 below was formed at room temperature.

【0073】Cu下地膜形成後の200℃での熱処理は、平
滑な表面を得るために重要であり、これを行わなかった
下地上にスピンバルブ素子を形成してもMR比は小さかっ
た。なお、表1−1では基板側のMgO/Pt(10nm)/Cu(5nm)
の記述は省略してある。
The heat treatment at 200 ° C. after the formation of the Cu underlayer is important for obtaining a smooth surface, and the MR ratio was small even if the spin-valve element was formed on the underlayer where this was not performed. In Table 1-1, MgO / Pt (10 nm) / Cu (5 nm) on the substrate side
Is omitted.

【0074】表1−1 No. 試料構成 MR比(%) A1 Ni-Fe(3nm)/Cu(2.1nm)/Co(3nm) 2.8 A2 Ni-Fe(3nm)/Cu(2.1nm)/Co(3nm)/Ag(2nm) 3.9 A3 Ni-Fe (3nm)/Cu(2.1nm)/Co(3nm)/Cu(1.2nm) 2.4 A4 Ni-Fe(3nm)/Cu(2.1nm)/Co(3nm)/Cu(1.2nm)/Ag(2nm) 5.1 A5 Ni-Fe(3nm)/Cu(2.1nm)/Co(3nm)/Cu(1.2nm)/Pt(2nm) 1.9 A6 Ni-Fe(3nm)/Cu(2.1nm)/Co(3nm)/Cu(1.2nm)/Au(2nm) 4.7 成膜を観察したRHEED(反射高速電子線回折)図形によ
ると、上記のA1-A6の全ての試料において、Ni-Fe,Cu,C
o,Ptでは(100)面が基板面(膜表面)に平行に成長(エ
ピタキシャル成長)していたが、Ag,Au膜では主に(111)
面が膜面に平行に成長していた。
Table 1-1 No. Sample composition MR ratio (%) A1 Ni-Fe (3 nm) / Cu (2.1 nm) / Co (3 nm) 2.8 A2 Ni-Fe (3 nm) / Cu (2.1 nm) / Co (3nm) / Ag (2nm) 3.9 A3 Ni-Fe (3nm) / Cu (2.1nm) / Co (3nm) / Cu (1.2nm) 2.4 A4 Ni-Fe (3nm) / Cu (2.1nm) / Co ( 3nm) / Cu (1.2nm) / Ag (2nm) 5.1 A5 Ni-Fe (3nm) / Cu (2.1nm) / Co (3nm) / Cu (1.2nm) / Pt (2nm) 1.9 A6 Ni-Fe (3nm ) / Cu (2.1nm) / Co (3nm) / Cu (1.2nm) / Au (2nm) 4.7 According to the RHEED (reflection high-energy electron diffraction) pattern observing the film formation, all the samples of A1-A6 above In, Ni-Fe, Cu, C
For o and Pt, the (100) plane grows parallel to the substrate surface (film surface) (D
(Pitaxial growth) , but the Ag and Au films are mainly (111)
The plane grew parallel to the film plane.

【0075】作製した素子の表面を、STMを用いて観察
した。その結果、試料A4では、100x100オングストロー
ムの視野で凹凸が約2オングストロームと非常に平滑な
表面が形成されている部分が50%以上存在した。それ
に対して同じようにして観察した素子の表面粗さは試料
A3では約7オングストローム、試料A2では約3オングス
トロームであった。
The surface of the fabricated device was observed using STM. As a result, in Sample A4, 50% or more of the portion having a very smooth surface with irregularities of about 2 Å was observed in a 100 × 100 Å field of view. On the other hand, the surface roughness of the element observed in the same way
A3 was about 7 angstroms, and sample A2 was about 3 angstroms.

【0076】このように作製した素子の特性を、室温で
約 500 Oeの外部磁界を印加して直流4端子法で評価し
た。この評価結果を表1−1に示す。表1−1で、単純
なスピンバルブ構造を有する従来例の試料A1の場合に
は、MR比は低い。試料A1に金属反射膜であるAg層を設け
た、図1(a)の構成を有する実施例の試料A2ではMR比が
約1%増加している。これに対してCu等の材料で金属反射
層の代わりをさせようとしても比較例の試料A3に示すよ
うに従来例の試料A1と比較してもMR比が低下している。
The characteristics of the device thus manufactured were evaluated by a DC four-terminal method by applying an external magnetic field of about 500 Oe at room temperature. The evaluation results are shown in Table 1-1. In Table 1-1, in the case of the conventional sample A1 having a simple spin valve structure, the MR ratio is low. In the sample A2 of the embodiment having the configuration shown in FIG. 1A in which the Ag layer as the metal reflection film is provided on the sample A1, the MR ratio is increased by about 1%. On the other hand, even if an attempt is made to substitute the metal reflection layer with a material such as Cu, the MR ratio is lower than that of the sample A1 of the conventional example as shown in the sample A3 of the comparative example.

【0077】しかしながら、図1(b)の構成に示すよう
に、Cu層上に更に、Ag層を構成すると、実施例の試料A4
に示すように、MR比が実施例の試料A2より更に大きくな
る。Auもほぼ同等の効果があり、実施例の試料A6に示す
ようにMR比が増大する。この場合に、Agの代わりにPtを
用いると、比較例の試料A5に示すようにMR比が低下す
る。
However, as shown in the structure of FIG. 1B, when an Ag layer is further formed on the Cu layer, the sample A4
As shown in (2), the MR ratio becomes larger than that of the sample A2 of the example. Au has almost the same effect, and the MR ratio increases as shown in sample A6 of the example. In this case, when Pt is used instead of Ag, the MR ratio decreases as shown in Sample A5 of the comparative example.

【0078】以上、軟磁性膜を硬質磁性膜より先に形成
する場合について述べたが、図1(c)に示すように硬質
磁性膜から構成する場合も同様である。この時の結果を
表1−2に示す。表1−2も表1−1と同様に、基板側
のMgO/Pt(10nm)/Cu(5nm)を省略してある。
The case where the soft magnetic film is formed earlier than the hard magnetic film has been described above. The same applies to the case where the hard magnetic film is formed as shown in FIG. 1 (c). The results at this time are shown in Table 1-2. In Table 1-2, similarly to Table 1-1, MgO / Pt (10 nm) / Cu (5 nm) on the substrate side is omitted.

【0079】 表1−2 No. 試料構成 MR比(%)) A7 Co(3nm)/Cu(2.1nm)/Ni-Fe(3nm) 3 A8 Ag(1nm)/Co(3nm)/Cu(2.1nm)/Ni-Fe(3nm) 4.5 A9 Ag(1nm)/Cu(1nm)/Co(3nm)/Cu(2.1nm)/Ni-Fe(3nm) 5.5 表1-2より、従来のスピンバルブ膜の試料A7に比較し
て、基板側に硬質磁性膜を設けた実施例の試料A8および
A9はMR比が大きいことがわかった。
Table 1-2 No. Sample composition MR ratio (%)) A7 Co (3 nm) / Cu (2.1 nm) / Ni-Fe (3 nm) 3 A8 Ag (1 nm) / Co (3 nm) / Cu (2.1 nm) / Ni-Fe (3nm) 4.5 A9 Ag (1nm) / Cu (1nm) / Co (3nm) / Cu (2.1nm) / Ni-Fe (3nm) 5.5 From Table 1-2, conventional spin-valve film As compared with the sample A7, the sample A8 of the embodiment in which the hard magnetic film is provided on the substrate side and
A9 was found to have a large MR ratio.

【0080】また、以上は硬質磁性膜側に、金属反射膜
を設けた場合について述べたが、軟磁性膜側に金属反射
膜を設けた図2(a)のような場合も同様な効果がある。
表1-1、1-2の場合と全く同様にして、表1-3に示
すようなスピンバルブ素子を作製し評価した。
Although the case where the metal reflection film is provided on the hard magnetic film side has been described above, the same effect can be obtained in the case as shown in FIG. 2A where the metal reflection film is provided on the soft magnetic film side. is there.
Spin valve elements as shown in Table 1-3 were prepared and evaluated in exactly the same manner as in Tables 1-1 and 1-2.

【0081】 表1-3 No. 試料構成 MR比(%) A10 Co(5nm)/Cu(2.1nm)/Ni-Fe(5nm) 4.0 A11 Co(5nm)/Cu(2.1nm)/Ni-Fe(5nm)/Ag(3nm) 5.6 A12 Co(5nm)/Cu(2.1nm)/Ni-Fe(5nm)/Cu(1.2nm) 3.2 A13 Co(5nm)/Cu(2.1nm)/Ni-Fe(5nm)/Cu(1.2nm)/Ag(3nm) 7.1 表1-3より、本発明の実施例の試料A11,A13は、従来例
の試料A10,A12よりもMR比が高いことは明らかである。
Table 1-3 No. Sample composition MR ratio (%) A10 Co (5 nm) / Cu (2.1 nm) / Ni-Fe (5 nm) 4.0 A11 Co (5 nm) / Cu (2.1 nm) / Ni-Fe (5nm) / Ag (3nm) 5.6 A12 Co (5nm) / Cu (2.1nm) / Ni-Fe (5nm) / Cu (1.2nm) 3.2 A13 Co (5nm) / Cu (2.1nm) / Ni-Fe ( 5 nm) / Cu (1.2 nm) / Ag (3 nm) 7.1 From Table 1-3, it is clear that the samples A11 and A13 of the examples of the present invention have a higher MR ratio than the samples A10 and A12 of the conventional example. .

【0082】表1-3の場合は、硬質磁性層側から形成
した場合について説明したが、軟磁性側から形成した場
合も全く同様に試料を作成して評価した。その結果を表
1-4に示す。
In the case of Table 1-3, the case of forming from the hard magnetic layer side was described, but the case of forming from the soft magnetic side was prepared and evaluated in exactly the same manner. The results are shown in Table 1-4.

【0083】 表1-4 No. 試料構成 MR比(%) A14 Ni-Fe(5nm)/Cu(2.1nm)/Co(5nm) 4.2 A15 Ag(1nm)/Ni-Fe(5nm)/Cu(2.1nm)/Co(5nm) 5.5 A16 Cu(1nm)/Ni-Fe(5nm)/Cu(2.1nm)/Co(5nm) 3.3 A17 Ag(1nm)/Cu(1nm)/Ni-Fe(5nm)/Cu(2.1nm)/Co(5nm) 6.2 表1-4より、本発明の実施例の試料A15,A17は、従来例
の試料A14,A16よりもMR比が高いことは明らかである。
Table 1-4 No. Sample composition MR ratio (%) A14 Ni-Fe (5 nm) / Cu (2.1 nm) / Co (5 nm) 4.2 A15 Ag (1 nm) / Ni-Fe (5 nm) / Cu ( 2.1nm) / Co (5nm) 5.5 A16 Cu (1nm) / Ni-Fe (5nm) / Cu (2.1nm) / Co (5nm) 3.3 A17 Ag (1nm) / Cu (1nm) / Ni-Fe (5nm) / Cu (2.1 nm) / Co (5 nm) 6.2 From Table 1-4, it is clear that the samples A15 and A17 of the example of the present invention have a higher MR ratio than the samples A14 and A16 of the conventional example.

【0084】次に、下地膜を表1-1のスピンバルブ膜
と全く同様に形成した後、図3のタイプのデュアルスピ
ンバルブ膜を形成した。表1-5にその試料の構成と、M
R比測定結果を示す。
Next, a base film was formed in exactly the same manner as the spin valve film shown in Table 1-1, and then a dual spin valve film of the type shown in FIG. 3 was formed. Table 1-5 shows the composition of the sample and M
The R ratio measurement results are shown.

【0085】 表1-5 No. 試料構成 MR比(%) A18 Co(3nm)/Cu(2.1nm)/Ni-Fe(3nm)/Cu(2.1nm)/Co(3nm) 6.2 A19 Ag(1nm)/Co(3nm)/Cu(2.1nm)/Ni-Fe(3nm)/Cu(2.1nm)/Co(3nm)/Ag(1nm) 8.3 A20 Ag(1nm)/Cu(1nm)/Co(3nm)/Cu(2.1nm)/Ni-Fe(3nm)/Cu(2.1nm)/Co(3nm)/Cu (1nm)/Ag(1nm) 10.1 表1-5からわかるように、本実施例のスピンバルブ素
子の試料A19,A20は、従来のスピンバルブ素子の試料A18
に比べてMR比が大きい。
Table 1-5 No. Sample composition MR ratio (%) A18 Co (3 nm) / Cu (2.1 nm) / Ni-Fe (3 nm) / Cu (2.1 nm) / Co (3 nm) 6.2 A19 Ag (1 nm) ) / Co (3nm) / Cu (2.1nm) / Ni-Fe (3nm) / Cu (2.1nm) / Co (3nm) / Ag (1nm) 8.3 A20 Ag (1nm) / Cu (1nm) / Co (3nm ) / Cu (2.1 nm) / Ni-Fe (3 nm) / Cu (2.1 nm) / Co (3 nm) / Cu (1 nm) / Ag (1 nm) 10.1 As can be seen from Table 1-5, the spin of this example is Samples A19 and A20 of the valve element are samples A18 of the conventional spin valve element.
The MR ratio is large compared to.

【0086】(実施例2)基板にSi(111)単結晶基板を
用いて、図2(b)に示すようなNi-Fe/Cu/Coのスピンバル
ブ素子を超高真空蒸着法にて形成した。まずSi基板をHF
水溶液に浸けて、表面の自然酸化層を除去した後、超高
真空蒸着装置にセットする。薄膜の形成方法に関して
は、実施例1に準ずる方法で行った。
(Example 2) Using a Si (111) single crystal substrate as a substrate, a Ni-Fe / Cu / Co spin valve element as shown in FIG. 2 (b) was formed by ultrahigh vacuum evaporation. did. First, the Si substrate is HF
After being immersed in an aqueous solution to remove the natural oxide layer on the surface, the substrate is set in an ultra-high vacuum deposition apparatus. The method for forming the thin film was the same as in Example 1.

【0087】まずSi基板上に、金属反射膜としてAg層を
7nmエピタキシャル成長させた後、約100℃で、20分間基
板を保持する。その後、基板を室温にして、非磁性膜と
してCu層を5nm形成する。その後、基板を200℃に加熱し
て20分間保持した。
First, an Ag layer as a metal reflection film was formed on a Si substrate.
After the epitaxial growth of 7 nm, the substrate is held at about 100 ° C. for 20 minutes. Thereafter, the temperature of the substrate is set to room temperature, and a Cu layer is formed to a thickness of 5 nm as a nonmagnetic film. Thereafter, the substrate was heated to 200 ° C. and held for 20 minutes.

【0088】Ag層形成後とCu層形成後の基板加熱は平滑
な表面を得るのに大変重要である。その後基板を室温に
して、Ni-Fe/Cu/Co/Cu/Ag膜を形成した。
Heating the substrate after the formation of the Ag layer and the formation of the Cu layer is very important for obtaining a smooth surface. Thereafter, the temperature of the substrate was set to room temperature to form a Ni-Fe / Cu / Co / Cu / Ag film.

【0089】このようにして作製したスピンバルブ膜の
構成と実施例1と同様の方法で測定したMR比を表2に示
す。表2で基板側のSi/Ag(7nm)/Cu(5nm)は共通であり省
略してある。
Table 2 shows the structure of the spin valve film thus manufactured and the MR ratio measured by the same method as in Example 1. In Table 2, Si / Ag (7 nm) / Cu (5 nm) on the substrate side is common and omitted.

【0090】 表2 No. 試料構成 MR比(%) B1 Ni-Fe(2nm)/Cu(3nm)/Co(2nm) 3.4 B2 Ni-Fe(2nm)/Cu(3nm)/Co(2nm)/Ag(5nm) 5.2 B3 Ni-Fe(2nm)/Cu(3nm)/Co(2nm)/Cu(0.5nm)/Ag(5nm) 6.1 B4 Ni-Fe(2nm)/Cu(3nm)/Co(2nm)/Cu(0.5nm)/Au(5nm) 5.8 表2で、実施例の試料B1は下地膜が金属反射膜となって
いるため、普通のMR比を示す。しかし、実施例の試料B2
に示すようにスピンバルブ膜の両側に金属反射膜層を設
けると、よりMR比が大きくなる。磁性層のCo層と金属反
射膜層のAg層との界面に非磁性層としてCu層を挿入する
と更にMR比が大きくなる(試料B3)。なお反射膜層は実
施例の試料B4に示したようにスピンバルブ膜の両側で、
Si基板上に、金属反射膜としてエピタキシャル成長させ
たAgとAuというぐあいに異なった材料であっても良い
し、膜厚が異なっていても良い。
Table 2 No. Sample composition MR ratio (%) B1 Ni-Fe (2 nm) / Cu (3 nm) / Co (2 nm) 3.4 B2 Ni-Fe (2 nm) / Cu (3 nm) / Co (2 nm) / Ag (5nm) 5.2 B3 Ni-Fe (2nm) / Cu (3nm) / Co (2nm) / Cu (0.5nm) / Ag (5nm) 6.1 B4 Ni-Fe (2nm) / Cu (3nm) / Co (2nm ) / Cu (0.5 nm) / Au (5 nm) 5.8 In Table 2, sample B1 of the example shows a normal MR ratio because the base film is a metal reflection film. However, sample B2 of the example
As shown in (2), when the metal reflection film layers are provided on both sides of the spin valve film, the MR ratio is further increased. When a Cu layer is inserted as a nonmagnetic layer at the interface between the Co layer of the magnetic layer and the Ag layer of the metal reflection film layer, the MR ratio is further increased (Sample B3). Note that the reflective film layer is on both sides of the spin valve film as shown in Sample B4 of the example,
Different materials may be used between Ag and Au epitaxially grown as a metal reflection film on the Si substrate, or the film thickness may be different.

【0091】(実施例3)6元のターゲットを用いたR
Fマグネトロンスパッタ装置を用いて、水冷ガラス基板
上に、3nmの厚みのTa下地層を介して図4(a)の構成の磁
気抵抗効果素子を作製した。図4(a)の金属反射膜の構
成をいろいろと変えて種種の素子を作製し、実施例1と
同様の方法でMR比を評価した。その結果を表3に示
す。(各合金の組成はターゲットの原子組成比で示して
ある。) 表3 No. 試料構成 MR比(%) C1 Ni0.8Co0.1Fe0.1(5nm)/Cu(2nm)/Co(2nm)/Ir0.2Mn0.8(8nm) 4.0 C2 Cu(1nm)/Ni0.8Co0.1Fe0.1(5nm)/Cu(2nm)/Co(2nm)/Ir0.2Mn0.8(8nm) 3.3 C3 Ag(1nm)/Ni0.8Co0.1Fe0.1(5nm)/Cu(2nm)/Co(2nm)/Ir0.2Mn0.8(8nm) 5.2 C4 Ag(1nm)/Cu(1nm)/Ni0.8Co0.1Fe0.1(5nm)/Cu(2nm)/Co(2nm)/Ir0.2Mn0.8(8 nm) 6.1 C5 Au(1nm)/Cu(1nm)/Ni0.8Co0.1Fe0.1(5nm)/Cu(2nm)/Co(2nm)/Ir0.2Mn0.8(8 nm) 5.8 C6 Bi(1nm)/Cu(1nm)/Ni0.8Co0.1Fe0.1(5nm)/Cu(2nm)/Co(2nm)/Ir0.2Mn0.8(8 nm) 5.1 C7 Sn(1nm)/Cu(1nm)/Ni0.8Co0.1Fe0.1(5nm)/Cu(2nm)/Co(2nm)/Ir0.2Mn0.8(8 nm) 4.8 C8 Pb(1nm)/Cu(1nm)/Ni0.8Co0.1Fe0.1(5nm)/Cu(2nm)/Co(2nm)/Ir0.2Mn0.8(8 nm) _____ 5.2 表3では、従来例の試料C1、C2のスピンバルブ膜に比較
して、金属反射膜を用いた本発明の実施例の試料C3-C8
がより大きなMR比を示すことがわかる。金属反射膜の材
料としては、Au,Ag,Bi,Sn,Pb等が適当であるが、特にA
u,Ag、とりわけAgが優れている。
(Embodiment 3) R using a 6-element target
Using an F magnetron sputtering apparatus, a magnetoresistive element having the configuration shown in FIG. 4A was formed on a water-cooled glass substrate with a 3 nm thick Ta underlayer interposed therebetween. Various elements were manufactured by changing the configuration of the metal reflection film of FIG. 4A in various ways, and the MR ratio was evaluated in the same manner as in Example 1. Table 3 shows the results. (The composition of each alloy is indicated by the atomic composition ratio of the target.) Table 3 No. Sample composition MR ratio (%) C1 Ni 0.8 Co 0.1 Fe 0.1 (5 nm) / Cu (2 nm) / Co (2 nm) / Ir 0.2 Mn 0.8 (8 nm) 4.0 C2 Cu (1 nm) / Ni 0.8 Co 0.1 Fe 0.1 (5 nm) / Cu (2 nm) / Co (2 nm) / Ir 0.2 Mn 0.8 (8 nm) 3.3 C3 Ag (1 nm) / Ni 0.8 Co 0.1 Fe 0.1 (5 nm) / Cu (2 nm) / Co (2 nm) / Ir 0.2 Mn 0.8 (8 nm) 5.2 C4 Ag (1 nm) / Cu (1 nm) / Ni 0.8 Co 0.1 Fe 0.1 (5 nm) / Cu (2 nm) / Co (2nm) / Ir 0.2 Mn 0.8 (8 nm) 6.1 C5 Au (1nm) / Cu (1nm) / Ni 0.8 Co 0.1 Fe 0.1 (5nm) / Cu (2nm) / Co (2nm) / Ir 0.2 Mn 0.8 (8 nm) 5.8 C6 Bi (1 nm) / Cu (1 nm) / Ni 0.8 Co 0.1 Fe 0.1 (5 nm) / Cu (2 nm) / Co (2 nm) / Ir 0.2 Mn 0.8 (8 nm) 5.1 C7 Sn (1 nm) / Cu (1nm) / Ni 0.8 Co 0.1 Fe 0.1 (5nm) / Cu (2nm) / Co (2nm) / Ir 0.2 Mn 0.8 (8nm) 4.8 C8 Pb (1nm) / Cu (1nm) / Ni 0.8 Co 0.1 Fe 0.1 (5 nm) / Cu (2 nm) / Co (2 nm) / Ir 0.2 Mn 0.8 (8 nm) _____ 5.2 In Table 3, the metal reflective film was compared with the spin valve films of the conventional samples C1 and C2. Samples C3-C8 of Examples of the present invention used
Shows a larger MR ratio. As a material of the metal reflection film, Au, Ag, Bi, Sn, Pb, etc. are suitable.
u, Ag, especially Ag is excellent.

【0092】次に本発明の試料C3,C4と従来例の試料C1
との膜をMR素子部20として用いて、図6に示すよう
なMRヘッドを構成して、特性を評価した。この場合、
基板としてはAl2O3-TiC基板を用い、下部シールド1
0、上部シールド15の材料にはNi0.8Fe0.2合金を用
い、下部シールドギャップ11、上部シールドギャップ
14にはAl2O3を用いた。またハードバイアス部12に
はCo-Pt合金を用い、リード部13をAuで構成した。ま
た、軟磁性層の磁化容易方向が検知すべき信号磁界方向
と垂直になるように、反強磁性体膜より交換異方性を受
けた磁性膜の磁化容易軸の方向が、検知すべき信号磁界
方向と平行になるように磁性膜異方性を付与した。
Next, the samples C3 and C4 of the present invention and the sample C1 of the conventional example
Using this film as the MR element section 20, an MR head as shown in FIG. 6 was constructed, and the characteristics were evaluated. in this case,
An Al 2 O 3 -TiC substrate was used as the substrate, and the lower shield 1 was used.
The upper shield 15 was made of a Ni 0.8 Fe 0.2 alloy, and the lower shield gap 11 and the upper shield gap 14 were made of Al 2 O 3 . The hard bias portion 12 is made of a Co-Pt alloy, and the lead portion 13 is made of Au. Also, the direction of the axis of easy magnetization of the magnetic film that has undergone exchange anisotropy from the antiferromagnetic film is such that the direction of easy magnetization of the soft magnetic layer is perpendicular to the direction of the signal magnetic field to be detected. Magnetic film anisotropy was provided so as to be parallel to the direction of the magnetic field.

【0093】このための方法として、磁性膜を成膜する
際、膜面内で異方性を付与したい方向に、永久磁石で磁
界を付与して成膜した。これらのヘッドに約20Oeの交流
信号磁界を印加して両ヘッドの出力を評価したところ、
本発明のMRヘッドの試料C3,C4の出力は従来のMR素
子の試料C1を用いたヘッドに比べてそれぞれ約30%、60%
高出力であった。
As a method for this purpose, when forming a magnetic film, a magnetic field was applied by a permanent magnet in a direction in which anisotropy was to be provided in the film surface. When applying an AC signal magnetic field of about 20 Oe to these heads and evaluating the output of both heads,
The outputs of the samples C3 and C4 of the MR head of the present invention are about 30% and 60%, respectively, compared to the head using the sample C1 of the conventional MR element.
The output was high.

【0094】(実施例4)6元のターゲットを用いたR
Fマグネトロンスパッタ装置を用いて、水冷ガラス基板
上に、実施例3と同様の方法で、図4(b)の構成の磁気
抵抗効果素子を作製した。実施例1と同様の方法でMR
比を評価した。その結果を表4−1に示す。(各合金の
組成はターゲットの原子組成比で示してある。) 表4−1 No. 試料構成 MR比(%) D1 NiO(50nm)/Ni0.3Co0.6Fe0.1(5nm)/Cu(2nm)/Ni0.3Co0.6Fe0.1(5nm) 4.0 D2 NiO(50nm)/Ni0.3Co0.6Fe0.1(5nm)/Cu(2nm)/Ni0.3Co0.6Fe0.1(5nm)/Ag(3n m) 5.5 D3 NiO(50nm)/Ni0.3Co0.6Fe0.1(5nm)/Cu(2nm)/Ni0.3Co0.6Fe0.1(5nm)/Cu(1n m) 3.3 D4 NiO(50nm)/Ni0.3Co0.6Fe0.1(5nm)/Cu(2nm)/Ni0.3Co0.6Fe0.1(5nm)/Cu(1n m)/Ag(3nm) 6.3 表4-1では、従来例の試料D1,D3のスピンバルブ膜に比
較して、金属反射膜を用いた本発明の実施例の試料D2,D
4がより大きなMR比を示すことがわかる。
(Example 4) R using a six-element target
Using an F magnetron sputtering apparatus, a magnetoresistive element having the configuration shown in FIG. 4B was produced on a water-cooled glass substrate in the same manner as in Example 3. MR is performed in the same manner as in the first embodiment.
The ratio was evaluated. The results are shown in Table 4-1. (The composition of each alloy is indicated by the atomic composition ratio of the target.) Table 4-1 No. Sample composition MR ratio (%) D1 NiO (50 nm) / Ni 0.3 Co 0.6 Fe 0.1 (5 nm) / Cu (2 nm) / Ni 0.3 Co 0.6 Fe 0.1 (5 nm) 4.0 D2 NiO (50 nm) / Ni 0.3 Co 0.6 Fe 0.1 (5 nm) / Cu (2 nm) / Ni 0.3 Co 0.6 Fe 0.1 (5 nm) / Ag (3 nm) 5.5 D3 NiO (50 nm) / Ni 0.3 Co 0.6 Fe 0.1 (5 nm) / Cu (2 nm) / Ni 0.3 Co 0.6 Fe 0.1 (5 nm) / Cu (1 nm) 3.3 D4 NiO (50 nm) / Ni 0.3 Co 0.6 Fe 0.1 (5 nm) / Cu (2nm) / Ni 0.3 Co 0.6 Fe 0.1 (5nm) / Cu (1nm) / Ag (3nm) 6.3 In Table 4-1, compared to the spin valve films of the conventional samples D1 and D3, Samples D2 and D of Examples of the Invention Using Reflective Film
It can be seen that 4 shows a larger MR ratio.

【0095】次に、反強磁性体膜側に金属反射膜を設け
たタイフ゜のスピンバルブ膜も表4-1の試料と全く同様に
して作成した。
Next, a type spin valve film in which a metal reflection film was provided on the antiferromagnetic film side was prepared in exactly the same manner as the samples in Table 4-1.

【0096】 表4-2 No. 試料構成 MR比(%) D5 Ni0.8Fe0.2(5nm)/Cu(2.5nm)/Co(2nm)/Ir0.2Mn0.8(8nm) 3.3 D6 Ni0.8Fe0.2(5nm)/Cu(2.5nm)/Co(2nm)/Ir0.2Mn0.8(8nm)/Ag(1nm) 4.0 D7 Ni0.8Fe0.2(5nm)/Cu(2.5nm)/Co(2nm)/Ir0.2Mn0.8(8nm)/Cu(1nm) 2.4 D8 Ni0.8Fe0.2(5nm)/Cu(2.5nm)/Co(2nm)/Ir0.2Mn0.8(8nm)/Cu(1nm)/Ag(1nm) 4.8 表4-2では、従来例の試料D5,D7のスピンバルブ膜に比
較して、金属反射膜を用いた本発明の実施例の試料D6,D
8がより大きなMR比を示すことがわかる。
Table 4-2 No. Sample composition MR ratio (%) D5 Ni 0.8 Fe 0.2 (5 nm) / Cu (2.5 nm) / Co (2 nm) / Ir 0.2 Mn 0.8 (8 nm) 3.3 D6 Ni 0.8 Fe 0.2 ( 5nm) / Cu (2.5nm) / Co (2nm) / Ir 0.2 Mn 0.8 (8nm) / Ag (1nm) 4.0 D7 Ni 0.8 Fe 0.2 (5nm) / Cu (2.5nm) / Co (2nm) / Ir 0.2 Mn 0.8 (8 nm) / Cu (1 nm) 2.4 D8 Ni 0.8 Fe 0.2 (5 nm) / Cu (2.5 nm) / Co (2 nm) / Ir 0.2 Mn 0.8 (8 nm) / Cu (1 nm) / Ag (1 nm) 4.8 Table 4 -2, the samples D6 and D of the embodiment of the present invention using the metal reflection film were compared with the spin valve films of the samples D5 and D7 of the conventional example.
It can be seen that 8 shows a larger MR ratio.

【0097】次に従来例の試料D1および本発明の実施例
の試料D2,D4の膜をMR素子部20として用いて、図6
に示すようなMRヘッドを構成して、特性を評価した。
この場合、基板としてはAl2O3-TiC基板を用い、下部シ
ールド10、上部シールド15の材料にはNi0.8Fe0.2
金を用い、下部シールドギャップ11は絶縁膜であるNi
O膜(50nm)を素子部分と共用とし、上部シールドギャッ
プ14にはAl2O3を用いた。またハードバイアス部12
にはCo-Pt合金を用い、リード部13をAuで構成した。
また、軟磁性層の磁化容易方向が検知すべき信号磁界方
向と垂直になるように、反強磁性体膜より交換異方性を
受けた磁性膜の磁化容易軸の方向が、検知すべき信号磁
界方向と平行になるように磁性膜異方性を付与した。
Next, using the films of the sample D1 of the conventional example and the samples D2 and D4 of the example of the present invention as the MR element section 20, FIG.
The characteristics were evaluated by constructing an MR head as shown in FIG.
In this case, an Al 2 O 3 -TiC substrate is used as a substrate, a Ni 0.8 Fe 0.2 alloy is used as a material of a lower shield 10 and an upper shield 15, and a lower shield gap 11 is an insulating film of Ni.
An O film (50 nm) was used in common with the element portion, and Al 2 O 3 was used for the upper shield gap 14. The hard bias unit 12
The lead portion 13 was made of Au using a Co-Pt alloy.
Also, the direction of the axis of easy magnetization of the magnetic film that has undergone exchange anisotropy from the antiferromagnetic film is such that the direction of easy magnetization of the soft magnetic layer is perpendicular to the direction of the signal magnetic field to be detected. Magnetic film anisotropy was provided so as to be parallel to the direction of the magnetic field.

【0098】このための方法として、磁性膜を成膜する
際、膜面内で異方性を付与したい方向に、永久磁石で磁
界を付与して成膜した。これらの試料D2,D4のヘッドに
約20Oeの交流信号磁界を印加して両ヘッドの出力を評価
したところ、本発明のMRヘッドの試料D2,D4の出力
は、従来のMR素子の試料D1を用いたヘッドに比べてそ
れぞれ約35%、50%高出力であった。
As a method for this, when a magnetic film is formed, a magnetic field is applied by a permanent magnet in a direction in which anisotropy is desired to be provided in the film surface. When the output of both heads was evaluated by applying an AC signal magnetic field of about 20 Oe to the heads of these samples D2 and D4, the outputs of the samples D2 and D4 of the MR head of the present invention were compared with the sample D1 of the conventional MR element. The output was about 35% and 50% higher than the heads used, respectively.

【0099】(実施例5)6元のターゲットを用いたR
Fマグネトロンスパッタ装置を用いて、水冷ガラス基板
上に、図5の構成の磁気抵抗効果素子を作製した。実施
例1と同様の方法でMR比を評価した。その結果を表5
に示す。(各合金の組成はターゲットの原子組成比で示
してある。) 表5 No. 試料構成 MR比(%) E1 NiO(50nm)/Ni0.8Fe0.2(5nm)/Cu(2nm)/Ni0.8Fe0.2(5nm)/Cu(2nm)/Ni0.8Fe 0.2(5nm)/Ir0.2Mn0.8(8nm) 6 E2 NiO(50nm)/Ni0.8Fe0.2(5nm)/Cu(2nm)/Ni0.8Fe0.2(5nm)/Cu(2nm)/Ni0.8Fe 0.2(5nm)/Ir0.2Mn0.8(8nm)/Ag(3nm) 8.3 E3 NiO(50nm)/Ni0.8Fe0.2(5nm)/Cu(2nm)/Ni0.8Fe0.2(5nm)/Cu(2nm)/Ni0.8Fe 0.2(5nm)/Ir0.2Mn0.8(8nm)/Cu(1nm) 4.4 E4 NiO(50nm)/Ni0.8Fe0.2(5nm)/Cu(2nm)/Ni0.8Fe0.2(5nm)/Cu(2nm)/Ni0.8Fe 0.2(5nm)/Ir0.2Mn0.8(8nm)/Cu(1nm)/Ag(3nm) 9.9 表5では、従来例の試料E1,E3のスピンバルブ膜に比較
して、金属反射膜を用いた本発明の実施例の試料E2,E4
がより大きなMR比を示すことがわかる。
(Embodiment 5) R using a 6-element target
Using an F magnetron sputtering apparatus, a magnetoresistive element having the configuration shown in FIG. 5 was formed on a water-cooled glass substrate. The MR ratio was evaluated in the same manner as in Example 1. Table 5 shows the results.
Shown in (The composition of each alloy is indicated by the atomic composition ratio of the target.) Table 5 No. Sample composition MR ratio (%) E1 NiO (50 nm) / Ni 0.8 Fe 0.2 (5 nm) / Cu (2 nm) / Ni 0.8 Fe 0.2 (5 nm) / Cu (2 nm) / Ni 0.8 Fe 0.2 (5 nm) / Ir 0.2 Mn 0.8 (8 nm) 6 E2 NiO (50 nm) / Ni 0.8 Fe 0.2 (5 nm) / Cu (2 nm) / Ni 0.8 Fe 0.2 ( 5nm) / Cu (2nm) / Ni 0.8 Fe 0.2 (5nm) / Ir 0.2 Mn 0.8 (8nm) / Ag (3nm) 8.3 E3 NiO (50nm) / Ni 0.8 Fe 0.2 (5nm) / Cu (2nm) / Ni 0.8 Fe 0.2 (5 nm) / Cu (2 nm) / Ni 0.8 Fe 0.2 (5 nm) / Ir 0.2 Mn 0.8 (8 nm) / Cu (1 nm) 4.4 E4 NiO (50 nm) / Ni 0.8 Fe 0.2 (5 nm) / Cu (2 nm) / Ni 0.8 Fe 0.2 (5 nm) / Cu (2 nm) / Ni 0.8 Fe 0.2 (5 nm) / Ir 0.2 Mn 0.8 (8 nm) / Cu (1 nm) / Ag (3 nm) 9.9 In Table 5, the samples E1, Compared to the spin valve film of E3, samples E2 and E4 of the embodiment of the present invention using a metal reflection film
Shows a larger MR ratio.

【0100】次に従来例の試料E1および本発明の実施例
の試料E2,E4の膜をMR素子部20として用いて、図6
に示すようなMRヘッドを構成して、特性を評価した。
この場合、基板としてはAl2O3-TiC基板を用い、下部シ
ールド10、上部シールド15の材料にはNi0.8Fe0.2
金を用い、下部シールドギャップ11は絶縁膜であるNi
O膜(50nm)を素子部分と共用とし、上部シールドギャッ
プ14にはAl2O3を用いた。またハードバイアス部12
にはCo-Pt合金を用い、リード部13をAuで構成した。
また、軟磁性層の磁化容易方向が検知すべき信号磁界方
向と垂直になるように、反強磁性体膜より交換異方性を
受けた磁性膜の磁化容易軸の方向が、検知すべき信号磁
界方向と平行になるように磁性膜異方性を付与した。
Next, using the films of the sample E1 of the conventional example and the samples E2 and E4 of the example of the present invention as the MR element section 20, FIG.
The characteristics were evaluated by constructing an MR head as shown in FIG.
In this case, an Al 2 O 3 -TiC substrate is used as a substrate, a Ni 0.8 Fe 0.2 alloy is used as a material of a lower shield 10 and an upper shield 15, and a lower shield gap 11 is an insulating film of Ni.
An O film (50 nm) was used in common with the element portion, and Al 2 O 3 was used for the upper shield gap 14. The hard bias unit 12
The lead portion 13 was made of Au using a Co-Pt alloy.
Also, the direction of the axis of easy magnetization of the magnetic film that has undergone exchange anisotropy from the antiferromagnetic film is such that the direction of easy magnetization of the soft magnetic layer is perpendicular to the direction of the signal magnetic field to be detected. Magnetic film anisotropy was provided so as to be parallel to the direction of the magnetic field.

【0101】このための方法として、磁性膜を成膜する
際、膜面内で異方性を付与したい方向に、永久磁石で磁
界を付与して成膜した。これらのヘッドに約20Oeの交流
信号磁界を印加して両ヘッドの出力を評価したところ、
本発明のMRヘッドの試料E2,E4の出力は従来のMR素
子の試料E1を用いたヘッドに比べてそれぞれ約40%、80%
高出力であった。
As a method for this, when a magnetic film is formed, a magnetic field is applied by a permanent magnet in a direction in which anisotropy is desired to be provided in the film surface. When applying an AC signal magnetic field of about 20 Oe to these heads and evaluating the output of both heads,
The outputs of the samples E2 and E4 of the MR head of the present invention are about 40% and 80%, respectively, compared to the head using the sample E1 of the conventional MR element.
The output was high.

【0102】(実施例6)6元のターゲットを用いたR
Fマグネトロンスパッタ装置を用いて、水冷ガラス基板
上に、表6に示す構成の磁気抵抗効果素子を作製した。
実施例1と同様の方法でMR比を評価した。その結果を
表6に示す。(各合金の組成はターゲットの原子組成比
で示してある。) 表6 No. 試料構成 MR比(%) F1 Ir0.2Mn0.8(8nm)/Ni0.8Fe0.2(5nm)/Cu(2nm)/Ni0.8Fe0.2(5nm)/Cu(2nm)/N i0.8Fe0.2(5nm)/Ir0.2Mn0.8(8nm) 4.5 F2 Ag(3nm)/Ir0.2Mn0.8(8nm)/Ni0.8Fe0.2(5nm)/Cu(2nm)/Ni0.8Fe0.2(5nm)/C u(2nm)/Ni0.8Fe0.2(5nm)/Ir0.2Mn0.8(8nm)/Ag(3nm) 5.5 F3 Cu(1nm)/Ir0.2Mn0.8(8nm)/Ni0.8Fe0.2(5nm)/Cu(2nm)/Ni0.8Fe0.2(5nm)/C u(2nm)/Ni0.8Fe0.2(5nm)/Ir0.2Mn0.8(8nm)/Cu(1nm) 3.9 F4 Ag(3nm)/Cu(1nm)/Ir0.2Mn0.8(8nm)/Ni0.8Fe0.2(5nm)/Cu(2nm)/Ni0.8Fe0. 2(5nm)/Cu(2nm)/Ni0.8Fe0.2(5nm)/Ir0.2Mn0.8(8nm)/Cu(1nm)/Ag(3nm) 7.1 表6では、従来例の試料F1,F3のスピンバルブ膜に比較
して、金属反射膜を用いた本発明の実施例の試料F2,F4
がより大きなMR比を示すことがわかる。
(Example 6) R using a six-element target
Using a F magnetron sputtering apparatus, a magnetoresistive element having the configuration shown in Table 6 was produced on a water-cooled glass substrate.
The MR ratio was evaluated in the same manner as in Example 1. Table 6 shows the results. (The composition of each alloy is indicated by the atomic composition ratio of the target.) Table 6 No. Sample composition MR ratio (%) F1 Ir 0.2 Mn 0.8 (8 nm) / Ni 0.8 Fe 0.2 (5 nm) / Cu (2 nm) / Ni 0.8 Fe 0.2 (5 nm) / Cu (2 nm) / N i 0.8 Fe 0.2 (5 nm) / Ir 0.2 Mn 0.8 (8 nm) 4.5 F2 Ag (3 nm) / Ir 0.2 Mn 0.8 (8 nm) / Ni 0.8 Fe 0.2 (5 nm ) / Cu (2nm) / Ni 0.8 Fe 0.2 (5nm) / C u (2nm) / Ni 0.8 Fe 0.2 (5nm) / Ir 0.2 Mn 0.8 (8nm) / Ag (3nm) 5.5 F3 Cu (1nm) / Ir 0.2 Mn 0.8 (8nm) / Ni 0.8 Fe 0.2 (5nm) / Cu (2nm) / Ni 0.8 Fe 0.2 (5nm) / C u (2nm) / Ni 0.8 Fe 0.2 (5nm) / Ir 0.2 Mn 0.8 (8nm) / Cu (1nm) 3.9 F4 Ag (3nm ) / Cu (1nm) / Ir 0.2 Mn 0.8 (8nm) / Ni 0.8 Fe 0.2 (5nm) / Cu (2nm) / Ni 0.8 Fe 0. 2 (5nm) / Cu (2nm) / Ni 0.8 Fe 0.2 (5 nm) / Ir 0.2 Mn 0.8 (8 nm) / Cu (1 nm) / Ag (3 nm) 7.1 In Table 6, the metal reflective film was compared with the spin valve films of the conventional samples F1 and F3. Samples F2 and F4 of Examples of the present invention using
Shows a larger MR ratio.

【0103】(実施例7) 6元のターゲットを用いたRFマグネトロンスパッタ装
置を用いて、水冷ガラス基板上に、実施例3と同様の方
法で、図4(b)の構成の磁気抵抗効果素子を作製した。
実施例1と同様の方法でMR比を評価した。その結果を
表7に示す。(各合金の組成はターゲットの原子組成比
で示してある。) 表7 No. 試料構成 MR比(%) G1 Fe2O3(50nm)/Co(5nm)/Cu(2.2nm)/Ni0.3Co0.6Fe0.1(5nm) 3.8 G2 Fe2O3(50nm)/Co(5nm)/Cu(2.2nm)/Ni0.3Co0.6Fe0.1(5nm)/Ag(2nm) 5.4 G3 Fe2O3(50nm)/Co(5nm)/Cu(2.2nm)/Ni0.3Co0.6Fe0.1(5nm)/Cu(1nm) 3.1 G4 Fe2O3(50nm)/Co(5nm)/Cu(2.2nm)/Ni0.3Co0.6Fe0.1(5nm)/Cu(1nm)/Ag(2nm ) 6.2 G5 Fe2O3(50nm)/Co(5nm)/Cu(2.2nm)/Ni0.3Co0.6Fe0.1(2nm)/Cu(1nm)/Ni0.3C o0.6Fe0.1(2nm)/Cu(1nm)/Ag(2nm) 6.0 表7では、従来例の試料G1,G3のスピンバルブ膜に比較
して、金属反射膜を用いた本発明の実施例の試料G2,G4,
G5がより大きなMR比を示すことがわかる。また、実施例
の試料G5は、試料G4に比べて、MR比は大差ないが、軟磁
性層の保持力が約100eから50eに下がった。このよう
に、軟磁性層を、非磁性膜を介して積層された2層以上
の磁性膜から構成することにより,軟磁気特性を改善
し、磁界感度を上昇させることができる。
Example 7 A magnetoresistive element having the structure shown in FIG. 4B was formed on a water-cooled glass substrate in the same manner as in Example 3 using an RF magnetron sputtering apparatus using a six-element target. Was prepared.
The MR ratio was evaluated in the same manner as in Example 1. Table 7 shows the results. (The composition of each alloy is indicated by the atomic composition ratio of the target.) Table 7 No. Sample composition MR ratio (%) G1 Fe 2 O 3 (50 nm) / Co (5 nm) / Cu (2.2 nm) / Ni 0.3 Co 0.6 Fe 0.1 (5nm) 3.8 G2 Fe 2 O 3 (50nm) /Co(5nm)/Cu(2.2nm)/Ni 0.3 Co 0.6 Fe 0.1 (5nm) / Ag (2nm) 5.4 G3 Fe 2 O 3 (50nm ) / Co (5nm) / Cu (2.2nm) / Ni 0.3 Co 0.6 Fe 0.1 (5nm) / Cu (1nm) 3.1 G4 Fe 2 O 3 (50nm) / Co (5nm) / Cu (2.2nm) / Ni 0.3 Co 0.6 Fe 0.1 (5 nm) / Cu (1 nm) / Ag (2 nm) 6.2 G5 Fe 2 O 3 (50 nm) / Co (5 nm) / Cu (2.2 nm) / Ni 0.3 Co 0.6 Fe 0.1 (2 nm) / Cu ( 1 nm) / Ni 0.3 Co 0.6 Fe 0.1 (2 nm) / Cu (1 nm) / Ag (2 nm) 6.0 In Table 7, the metal reflective film was used as compared with the spin valve films of the conventional samples G1 and G3. Samples G2, G4,
It can be seen that G5 shows a larger MR ratio. Further, the sample G5 of the example had the MR ratio not much different from the sample G4, but the coercive force of the soft magnetic layer was reduced from about 100e to 50e. As described above, by forming the soft magnetic layer from two or more magnetic films stacked with a non-magnetic film interposed therebetween, the soft magnetic characteristics can be improved and the magnetic field sensitivity can be increased.

【0104】次に従来例の試料G1および本発明の実施例
の試料G2,G4の膜をMR素子部20として用いて、図6
に示すようなMRヘッドを構成して、特性を評価した。
この場合、基板としてはAl2O3-TiC基板を用い、下部シ
ールド10、上部シールド15の材料にはNi0.8Fe0.2
金を用い、シールドギャップ11は絶縁膜である膜Fe2O
3(50nm)を素子部分と共用とし、上部シールドギャップ
14にはAl2O3を用いた。またハードバイアス部12に
はCo-Pt合金を用い、リード部13をAuで構成した。ま
た、軟磁性層の磁化容易方向が検知すべき信号磁界方向
と垂直になるように、反強磁性体膜より交換異方性を受
けた磁性膜の磁化容易軸の方向が、検知すべき信号磁界
方向と平行になるように磁性膜に異方性を付与した。
Next, using the films of the sample G1 of the conventional example and the samples G2 and G4 of the example of the present invention as the MR element section 20, FIG.
The characteristics were evaluated by constructing an MR head as shown in FIG.
In this case, an Al 2 O 3 —TiC substrate is used as a substrate, a Ni 0.8 Fe 0.2 alloy is used as a material of a lower shield 10 and an upper shield 15, and a shield gap 11 is a film Fe 2 O which is an insulating film.
3 (50 nm) was shared with the element portion, and Al 2 O 3 was used for the upper shield gap 14. The hard bias portion 12 is made of a Co-Pt alloy, and the lead portion 13 is made of Au. Also, the direction of the axis of easy magnetization of the magnetic film that has undergone exchange anisotropy from the antiferromagnetic film is such that the direction of easy magnetization of the soft magnetic layer is perpendicular to the direction of the signal magnetic field to be detected. The magnetic film was given anisotropy so as to be parallel to the direction of the magnetic field.

【0105】このための方法として、磁性膜を成膜する
際、膜面内で異方性を付与したい方向に、永久磁石で磁
界を付与して成膜した。これらの試料G2,G4のヘッドに
約20Oeの交流信号磁界を印加して両ヘッドの出力を評価
したところ、本発明の試料のG2,G4に係るMRヘッドの
出力は従来の試料G1を用いたヘッドに比べてそれぞれ約
30%、45%高出力であった。
As a method for this, when a magnetic film is formed, a magnetic field is applied by a permanent magnet in a direction in which anisotropy is desired to be provided within the film surface. When the output of both heads was evaluated by applying an AC signal magnetic field of about 20 Oe to the heads of these samples G2 and G4, the output of the MR head according to G2 and G4 of the sample of the present invention used the conventional sample G1. About each compared to the head
The output was 30% and 45% higher.

【0106】(実施例8)6元のターゲットを用いたR
Fマグネトロンスパッタ装置を用いて、水冷ガラス基板
上に、図5の構成の磁気抵抗効果素子を作製した。実施
例1と同様の方法でMR比を評価した。その結果を表8
に示す。(各合金の組成はターゲットの原子組成比で示
してある。) 表8 No. 試料構成 MR比(%) H1 Fe2O3(50nm)/Ni0.8Fe0.2(4nm)/Cu(2nm)/Ni0.8Fe0.2(6nm)/Cu(2nm)/Ni0.8 Fe0.2(5nm)/Ir0.2Mn0.8(8nm) 5.5 H2 Fe2O3(50nm)/Ni0.8Fe0.2(4nm)/Cu(2nm)/Ni0.8Fe0.2(6nm)/Cu(2nm)/Ni0.8 Fe0.2(5nm)/Ir0.2Mn0.8(8nm)/Ag(3nm) 7.5 H3 Fe2O3(50nm)/Ni0.8Fe0.2(4nm)/Cu(2nm)/Ni0.8Fe0.2(6nm)/Cu(2nm)/Ni0.8 Fe0.2(5nm)/Ir0.2Mn0.8(8nm)/Cu(1nm) 4.1 H4 Fe2O3(50nm)/Ni0.8Fe0.2(4nm)/Cu(2nm)/Ni0.8Fe0.2(6nm)/Cu(2nm)/Ni0.8 Fe0.2(5nm)/Ir0.2Mn0.8(8nm)/Cu(1nm)/Ag(3nm) 9.0 H5 Fe2O3(50nm)/Ni0.8Fe0.2(4nm)/Cu(2nm)/Ni0.8Fe0.2(1.5nm)/Cu(0.8nm)/N i0.8Fe0.2(1.5nm)/Cu(0.8nm)/Ni0.8Fe0.2(1.5nm)/Cu(2nm)/Ni0.8Fe0.2(5 nm)/Ir0.2Mn0.8(8nm)/Cu(1nm)/Ag(2nm) 9.2 表8では、従来例の試料H1,H3のスピンバルブ膜に比較
して、金属反射膜を用いた本発明の実施例の試料H2,H4,
H5がより大きなMR比を示すことがわかる。また、実施例
の試料H5は、H4に比べて、MR比は大差ないが、軟磁性層
の保持力が約90eから30eに下がった。このように、軟磁
性層を、非磁性膜を介して積層された2層以上の磁性膜
から構成することにより,軟磁気特性を改善し、磁界感
度を上昇させることができる。
(Embodiment 8) R using a six-element target
Using an F magnetron sputtering apparatus, a magnetoresistive element having the configuration shown in FIG. 5 was formed on a water-cooled glass substrate. The MR ratio was evaluated in the same manner as in Example 1. Table 8 shows the results.
Shown in (The composition of each alloy is indicated by the atomic composition ratio of the target.) Table 8 No. Sample composition MR ratio (%) H1 Fe 2 O 3 (50 nm) / Ni 0.8 Fe 0.2 (4 nm) / Cu (2 nm) / Ni 0.8 Fe 0.2 (6 nm) / Cu (2 nm) / Ni 0.8 Fe 0.2 (5 nm) / Ir 0.2 Mn 0.8 (8 nm) 5.5 H2 Fe 2 O 3 (50 nm) / Ni 0.8 Fe 0.2 (4 nm) / Cu (2 nm) / Ni 0.8 Fe 0.2 (6 nm) / Cu (2 nm) / Ni 0.8 Fe 0.2 (5 nm) / Ir 0.2 Mn 0.8 (8 nm) / Ag (3 nm) 7.5 H3 Fe 2 O 3 (50 nm) / Ni 0.8 Fe 0.2 (4 nm ) / Cu (2nm) / Ni 0.8 Fe 0.2 (6nm) / Cu (2nm) / Ni 0.8 Fe 0.2 (5nm) / Ir 0.2 Mn 0.8 (8nm) / Cu (1nm) 4.1 H4 Fe 2 O 3 (50nm) / Ni 0.8 Fe 0.2 (4 nm) / Cu (2 nm) / Ni 0.8 Fe 0.2 (6 nm) / Cu (2 nm) / Ni 0.8 Fe 0.2 (5 nm) / Ir 0.2 Mn 0.8 (8 nm) / Cu (1 nm) / Ag (3 nm ) 9.0 H5 Fe 2 O 3 (50 nm) / Ni 0.8 Fe 0.2 (4 nm) / Cu (2 nm) / Ni 0.8 Fe 0.2 (1.5 nm) / Cu (0.8 nm) / N i 0.8 Fe 0.2 (1.5 nm) / Cu (0.8 nm) / Ni 0.8 Fe 0.2 (1.5 nm) / Cu (2 nm) / Ni 0.8 Fe 0.2 (5 nm) / Ir 0.2 Mn 0.8 (8 nm) / Cu (1 nm) / Ag (2 nm) 9.2 Samples H2, H4, and H4 of Examples of the present invention using a metal reflective film as compared with the spin valve films of Samples H1 and H3 of the conventional example.
It can be seen that H5 shows a larger MR ratio. Further, the sample H5 of the example had a smaller MR ratio than H4, but the coercive force of the soft magnetic layer was reduced from about 90e to 30e. As described above, by forming the soft magnetic layer from two or more magnetic films stacked with a non-magnetic film interposed therebetween, the soft magnetic characteristics can be improved and the magnetic field sensitivity can be increased.

【0107】次に従来例の試料H1および本発明の実施例
の試料H2,H4の膜をMR素子部20として用いて、図6
に示すようなMRヘッドを構成して、特性を評価した。
この場合、基板としてはAl2O3-TiC基板を用い、下部シ
ールド10、上部シールド15の材料にはNi0.8Fe0.2
金を用い、下部シールドギャップ11は絶縁膜であるFe
2O3(50nm)を素子部分と共用とし、、上部シールドギャ
ップ14にはAl2O3を用いた。またハードバイアス部1
2にはCo-Pt合金を用い、リード部13をAuで構成し
た。
Next, using the films of the sample H1 of the conventional example and the samples H2 and H4 of the example of the present invention as the MR element section 20, FIG.
The characteristics were evaluated by constructing an MR head as shown in FIG.
In this case, an Al 2 O 3 —TiC substrate is used as a substrate, a Ni 0.8 Fe 0.2 alloy is used as a material of a lower shield 10 and an upper shield 15, and a lower shield gap 11 is an insulating film Fe
2 O 3 (50 nm) was shared with the element portion, and Al 2 O 3 was used for the upper shield gap 14. Hard bias unit 1
2 was made of a Co-Pt alloy, and the lead portion 13 was made of Au.

【0108】また、軟磁性層の磁化容易方向が検知すべ
き信号磁界方向と垂直になるように、反強磁性体膜より
交換異方性を受けた磁性膜の磁化容易軸の方向が、検知
すべき信号磁界方向と平行になるように磁性膜異方性を
付与した。
The direction of the axis of easy magnetization of the magnetic film that has undergone exchange anisotropy from the antiferromagnetic film is detected so that the direction of easy magnetization of the soft magnetic layer is perpendicular to the direction of the signal magnetic field to be detected. Magnetic film anisotropy was provided so as to be parallel to the direction of the signal magnetic field to be performed.

【0109】このための方法として、磁性膜を成膜する
際、膜面内で異方性を付与したい方向に、永久磁石で磁
界を付与して成膜した。これらの試料H2,H4のヘッドに
約20Oeの交流信号磁界を印加して両ヘッドの出力を評価
したところ、本発明の試料H2,H4に係るMRヘッドの出
力は従来のMR素子の試料H1を用いたヘッドに比べてそ
れぞれ約30%、70%高出力であった。
As a method for this purpose, when forming a magnetic film, a magnetic field was applied by a permanent magnet in a direction in which anisotropy was to be provided in the film plane. When the output of both heads was evaluated by applying an AC signal magnetic field of about 20 Oe to the heads of these samples H2 and H4, the outputs of the MR heads according to the samples H2 and H4 of the present invention were the same as the sample H1 of the conventional MR element. The output was about 30% and 70% higher than the used heads, respectively.

【0110】(実施例9)サファイア(11-20)基板を用
い、rfスパッタ法を用いてα-Fe2O3膜を100nmの厚みに
形成した。その後試料を超高真空蒸着装置に移し、RHEE
D観察したところ基板と同方位にα-Fe2O3がエピタキシ
ャル成長していた。続いて超高真空蒸着装置内でCo, C
u, Ni-Fe, Cu, Ag膜を作製して、実施例1と同様の方法
でMR特性を評価した。その結果を表9に示す。
Example 9 Using an sapphire (11-20) substrate, an α-Fe 2 O 3 film was formed to a thickness of 100 nm by rf sputtering. Thereafter, the sample was transferred to an ultra-high vacuum
D observation revealed that α-Fe 2 O 3 was epitaxially grown in the same direction as the substrate. Then, Co, C in the ultra-high vacuum deposition equipment
u, Ni—Fe, Cu, and Ag films were prepared, and MR characteristics were evaluated in the same manner as in Example 1. Table 9 shows the results.

【0111】表9 No. 試料構成 MR比(%) I1 Fe2O3(100nm)/Co(3nm)/Cu(2nm)/Ni0.8Fe0.2(5nm) 5.1 I2 Fe2O3(100nm)/Co(3nm)/Cu(2nm)/Ni0.8Fe0.2(5nm)/Ag(3nm) 7.3 I3 Fe2O3(100nm)/Co(3nm)/Cu(2nm)/Ni0.8Fe0.2(5nm)/Cu(1nm) 3.4 I4 Fe2O3(100nm)/Co(3nm)/Cu(2nm)/Ni0.8Fe0.2(5nm)/Cu(1nm)/Ag(3nm) 9.2 I5 Fe2O3(100nm)/Co(3nm)/Cu(2nm)/Ni0.8Fe0.2(5nm)/Co(0.6nm)/Cu(1nm)/Ag (3nm) 11.1 I6 Fe2O3(100nm)/Co(3nm)/Cu(2nm)/Co(0.6nm)/Ni0. 8Fe0.2(5nm)/Co(0.6nm) / Cu(1nm)/Ag(3nm) 12.1 I7 Fe2O3(100nm)/Co(3nm)/Cu(2nm)/Ni0.8Fe0.2(5nm)/Co(0.6nm)/Cu(1nm) 3.3 表9では、従来例の試料I1,I3のスピンバルブ膜に比較
して、金属反射膜を用いた本発明の実施例の試料I2,I4
がより大きなMR比を示すことがわかる。またCo層から成
る界面磁性層を非磁性層と磁性層との界面に挿入するこ
とにより更にMR比が大きくなることは実施例の試料I5,I
6より明らかである。一方、比較例の試料I7の場合には
試料I3の場合に比較してほとんどMR比に変化がない。こ
の原因は、Cu表面での電子の鏡面反射がほとんどないた
め、Co/Cu界面でスピン方向に依存した散乱がほとんど
増えないためと考えられる。表9の試料I3と試料I7とを
比較すると、金属反射膜がない場合には界面磁性層はほ
とんど効果がない。これに対して試料I4と試料I5とを比
較すると、金属反射膜がある場合には界面磁性層の効果
は明白である。非磁性層の効果は、金属反射膜の特性を
改善することに効果がある点を考慮すれば、非磁性層が
なく、直接界 面磁性層が金属反射膜と接する場合にも界
面磁性層が有効であることは明白である。
Table 9 No. Sample composition MR ratio (%) I1 Fe 2 O 3 (100 nm) / Co (3 nm) / Cu (2 nm) / Ni 0.8 Fe 0.2 (5 nm) 5.1 I2 Fe 2 O 3 (100 nm) / Co (3nm) / Cu (2nm) / Ni 0.8 Fe 0.2 (5nm) / Ag (3nm) 7.3 I3 Fe 2 O 3 (100nm) / Co (3nm) / Cu (2nm) / Ni 0.8 Fe 0.2 (5nm) / Cu (1 nm) 3.4 I4 Fe 2 O 3 (100 nm) / Co (3 nm) / Cu (2 nm) / Ni 0.8 Fe 0.2 (5 nm) / Cu (1 nm) / Ag (3 nm) 9.2 I5 Fe 2 O 3 (100 nm) / Co (3nm) / Cu (2nm) / Ni 0.8 Fe 0.2 (5nm) / Co (0.6nm) / Cu (1nm) / Ag (3nm) 11.1 I6 Fe 2 O 3 (100nm) / Co (3nm) / Cu (2nm) / Co (0.6nm) / Ni 0.8 Fe 0.2 (5nm) / Co (0.6nm) / Cu (1nm) / Ag (3nm) 12.1 I7 Fe 2 O 3 (100nm) / Co (3nm) / Cu (2 nm) / Ni 0.8 Fe 0.2 (5 nm) / Co (0.6 nm) / Cu (1 nm) 3.3 In Table 9, the metal reflective film was used in comparison with the spin valve films of the conventional samples I1 and I3. Samples I2 and I4 of Examples of the present invention
Shows a larger MR ratio. Further, by inserting an interfacial magnetic layer composed of a Co layer at the interface between the nonmagnetic layer and the magnetic layer, the MR ratio was further increased.
It is clearer than 6. On the other hand, in the case of the sample I7 of the comparative example, the MR ratio hardly changes compared to the case of the sample I3. It is considered that this is because the mirror reflection of electrons on the Cu surface is scarce, and the scattering depending on the spin direction at the Co / Cu interface hardly increases. Sample I3 and Sample I7 in Table 9
In comparison, when there is no metal reflective film, the interface magnetic layer is almost
Mostly not effective. On the other hand, sample I4 and sample I5 were compared.
In comparison, if there is a metal reflective film, the effect of the interface magnetic layer
Is obvious. The effect of the nonmagnetic layer depends on the characteristics of the metal reflective film.
Considering that the improvement is effective, the non-magnetic layer
Without field even when the direct field surface magnetic layer is in contact with the metal reflective layer
It is clear that the plane magnetic layer is effective.

【0112】また、実施例の試料I5,I6では界面磁性層
がCo層である場合について説明したが、Co高濃度のCo-F
e合金を用いた場合もほぼ同様の効果が得られる。
In the samples I5 and I6 of the embodiment, the case where the interface magnetic layer is a Co layer has been described.
Almost the same effects can be obtained when an e-alloy is used.

【0113】(実施例10)実施例9と同様にして、rf
スパッタ法を用いて、サファイア(11-20)基板上に50nm
の厚みのα-Fe2O3膜をエピタキシャル成長させた。続い
て同じrfスパッタ法でCo, Cu, Ni-Fe, Cu, Ag,Ir-Mn膜
を作製して、実施例1と同様の方法でMR特性を評価し
た。その結果を表10に示す。
(Embodiment 10) In the same manner as in Embodiment 9, rf
50nm on sapphire (11-20) substrate by sputtering
An α-Fe 2 O 3 film having a thickness of 5 was epitaxially grown. Subsequently, Co, Cu, Ni-Fe, Cu, Ag, and Ir-Mn films were produced by the same rf sputtering method, and the MR characteristics were evaluated in the same manner as in Example 1. Table 10 shows the results.

【0114】 表10 No. 試料構成 MR比(%) J1 Fe2O3(50nm)/Co(4nm)/Cu(2nm)/Ni0.8Fe0.2(6nm)/Cu(2nm)/Co(5nm)/Ir0.2 Mn0.8(8nm) 5.8 J2 Fe2O3(50nm)/Co(4nm)/Cu(2nm)/Ni0.8Fe0.2(6nm)/Cu(2nm)/Co(5nm)/Ir0.2 Mn0.8(8nm)/Ag(3nm) 8.2 J3 Fe2O3(50nm)/Co(4nm)/Cu(2nm)/Ni0.8Fe0.2(6nm)/Cu(2nm)/Co(5nm)/Ir0.2 Mn0.8(8nm)/Cu(1.5nm) 4.9 J4 Fe2O3(50nm)/Co(4nm)/Cu(2nm)/Ni0.8Fe0.2(6nm)/Cu(2nm)/Co(5nm)/Ir0.2 Mn0.8(8nm)/Cu(1.5nm)/Ag(3nm) 10.3 表10では、従来例の試料J1,J3のスピンバルブ膜に比
較して、金属反射膜を用いた本発明の実施例の試料J2,J
4がより大きなMR比を示すことがわかる。
Table 10 No. Sample composition MR ratio (%) J1 Fe 2 O 3 (50 nm) / Co (4 nm) / Cu (2 nm) / Ni 0.8 Fe 0.2 (6 nm) / Cu (2 nm) / Co (5 nm) / Ir 0.2 Mn 0.8 (8nm) 5.8 J2 Fe 2 O 3 (50nm) / Co (4nm) / Cu (2nm) / Ni 0.8 Fe 0.2 (6nm) / Cu (2nm) / Co (5nm) / Ir 0.2 Mn 0.8 (8nm) / Ag (3nm) 8.2 J3 Fe 2 O 3 (50nm) / Co (4nm) / Cu (2nm) / Ni 0.8 Fe 0.2 (6nm) / Cu (2nm) / Co (5nm) / Ir 0.2 Mn 0.8 (8nm) / Cu (1.5nm) 4.9 J4 Fe 2 O 3 (50nm) / Co (4nm) / Cu (2nm) / Ni 0.8 Fe 0.2 (6nm) / Cu (2nm) / Co (5nm) / Ir 0.2 Mn 0.8 (8 nm) / Cu (1.5 nm) / Ag (3 nm) 10.3 In Table 10, compared to the spin valve films of the conventional samples J1 and J3, the sample J2 of the embodiment of the present invention using the metal reflective film was used. , J
It can be seen that 4 shows a larger MR ratio.

【0115】[0115]

【発明の効果】以上説明したように、本発明のスピンバ
ルブ型磁気抵抗効果素子は、従来のスピンバルブ型磁気
抵抗効果素子に比べて大きなMR比が得られる。そのた
め、磁気ヘッドとして用いた場合、より大きな再生出力
を得ることができる。
As described above, the spin-valve magnetoresistive element of the present invention can obtain a larger MR ratio than the conventional spin-valve magnetoresistive element. Therefore, when used as a magnetic head, a larger reproduction output can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施の形態に係る磁気抵抗効果素子の断面の
模式図である。
FIG. 1 is a schematic diagram of a cross section of a magnetoresistive effect element according to an embodiment.

【図2】本実施の形態に係る他の磁気抵抗効果素子の断
面の模式図である。
FIG. 2 is a schematic diagram of a cross section of another magnetoresistive element according to the embodiment.

【図3】本実施の形態に係る他の磁気抵抗効果素子の断
面の模式図である。
FIG. 3 is a schematic diagram of a cross section of another magnetoresistive element according to the embodiment.

【図4】本実施の形態に係る他の磁気抵抗効果素子の断
面の模式図である。
FIG. 4 is a schematic view of a cross section of another magnetoresistive element according to the embodiment.

【図5】本実施の形態に係る他の磁気抵抗効果素子の断
面の模式図である。
FIG. 5 is a schematic diagram of a cross section of another magnetoresistive element according to the embodiment.

【図6】本実施の形態に係る磁気抵抗効果型磁気ヘッド
の一例の断面図である。
FIG. 6 is a cross-sectional view of an example of the magneto-resistance effect type magnetic head according to the embodiment.

【符号の説明】[Explanation of symbols]

1 基板 2 下地膜 3 軟磁性膜 4 非磁性膜 5 硬質磁性膜 6 金属反射膜 7 非磁性膜 8 磁性膜 10 下部シールド 11 下部シールドギャップ 12 ハードバイアス部 13 リード部 14 上部シールドギャップ 15 上部シールド 20 MR素子部 DESCRIPTION OF SYMBOLS 1 Substrate 2 Underlayer 3 Soft magnetic film 4 Nonmagnetic film 5 Hard magnetic film 6 Metal reflection film 7 Nonmagnetic film 8 Magnetic film 10 Lower shield 11 Lower shield gap 12 Hard bias part 13 Lead part 14 Upper shield gap 15 Upper shield 20 MR element

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−325934(JP,A) 特開 平6−236527(JP,A) 特開 平7−262529(JP,A) 特開 平5−234754(JP,A) 特開 平7−297465(JP,A) 特開 平8−51022(JP,A) 特開 平7−288347(JP,A) 特開 平8−138935(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 43/08 G11B 5/39 H01F 10/16 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-325934 (JP, A) JP-A-6-236527 (JP, A) JP-A-7-262529 (JP, A) JP-A-5-262529 234754 (JP, A) JP-A-7-297465 (JP, A) JP-A-8-51022 (JP, A) JP-A-7-288347 (JP, A) JP-A 8-138935 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) H01L 43/08 G11B 5/39 H01F 10/16

Claims (30)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 非磁性膜を介して積層された少なくとも
2つの磁性膜と、 該磁性膜の最も外側の磁性膜の少なくとも一方に、該磁
性膜と接して非磁性膜と反対側に形成された、電子のス
ピン方向を維持したまま反射散乱を生じやすい金属反射
膜とを有し、 該金属反射膜は、その表面の少なくとも10%以上が、
3オングストローム以下の凹凸の平滑な表面である こと
を特徴とする磁気抵抗効果素子。
At least two magnetic films laminated with a non-magnetic film interposed therebetween, and at least one of the outermost magnetic films of the magnetic film formed in contact with the magnetic film and on the side opposite to the non-magnetic film. A metal reflective film that easily causes reflection scattering while maintaining the electron spin direction , wherein the metal reflective film has at least 10% or more of its surface;
A magnetoresistive element having a smooth surface with irregularities of 3 angstroms or less .
【請求項2】 非磁性膜を介して積層された少なくとも
2つの磁性膜と、 該磁性膜の最も外側の磁性膜の少なくとも一方に、該磁
性膜と接して非磁性膜と反対側に形成された、電子のス
ピン方向を維持したまま反射散乱を生じやすい金属反射
膜とを有し、 該金属反射膜と該磁性膜の間に、更に非磁性膜を有する
磁気抵抗効果素子。
2. A semiconductor device comprising :
The magnetic film is provided on at least one of the two magnetic films and the outermost magnetic film of the magnetic film.
Electrons formed on the opposite side of the non-magnetic film in contact with the conductive film
Metal reflection that easily causes reflection scattering while maintaining the pin direction
And a non-magnetic film between the metal reflective film and the magnetic film.
Magnetoresistive element.
【請求項3】 該金属反射膜と該磁性膜の間に、更に非
磁性膜を有する、請求項1に記載の磁気抵抗効果素子。
3. The magnetoresistive element according to claim 1, further comprising a nonmagnetic film between said metal reflection film and said magnetic film.
【請求項4】 該非磁性膜がCuであり、該金属反射膜
が、Ag,Au,Bi,Sn,Pbのうちのいずれか一つ以上を主成分
とすることを特徴とする、請求項3に記載の磁気抵抗効
果素子。
Wherein a nonmagnetic layer is Cu, the metal reflective film, characterized by Ag, Au, Bi, Sn, any one or more of Pb as a main component, according to claim 3 3. The magnetoresistive effect element according to item 1.
【請求項5】 該金属反射膜と非磁性膜を介して接する
該磁性膜がCoまたはCo高濃度のCo-Fe合金を主成分とす
ることを特徴とする、請求項3に記載の磁気抵抗効果素
子。
5. A magnetic film in contact through the metal reflective layer and the non-magnetic film is characterized in that a main component Co-Fe alloy of Co or Co-rich magnetic resistance according to claim 3 Effect element.
【請求項6】 該磁性膜が、磁性層と、CoまたはCo高濃
度のCo-Fe合金を主成分とする界面磁性層との少なくと
も2層から成り、該界面磁性層が、該非磁性膜を介して
該金属反射膜と接していることを特徴とする、請求項3
に記載の磁気抵抗効果素子。
6. The magnetic film comprises at least two layers of a magnetic layer and an interfacial magnetic layer containing Co or a Co-rich Co-Fe alloy as a main component. 4. The semiconductor device according to claim 3 , wherein the metal reflection film is in contact with the metal reflection film.
3. The magnetoresistive effect element according to item 1.
【請求項7】 該非磁性膜を介して該金属反射膜と接し
ている該磁性膜が、軟磁性層を挟んだCoまたはCo高濃度
のCo-Fe合金を主成分とする界面磁性層から成ることを
特徴とする、請求項3に記載の磁気抵抗効果素子。
7. The magnetic film in contact with the metal reflection film via the non-magnetic film is made of an interface magnetic layer containing Co or a high-concentration Co-Fe alloy as a main component with a soft magnetic layer interposed therebetween. 4. The magnetoresistive element according to claim 3 , wherein:
【請求項8】 該金属反射膜は、その表面が平滑である
ことを特徴とする、請求項1に記載の磁気抵抗効果素
子。
8. The magnetoresistive element according to claim 1, wherein said metal reflection film has a smooth surface.
【請求項9】 該非磁性膜がCuであり、該金属反射膜
が、Ag,Au,Bi,Sn,Pbのうちのいずれか一つ以上を主成分
とすることを特徴とする、請求項1に記載の磁気抵抗効
果素子。
9. The method according to claim 1 , wherein the non-magnetic film is Cu, and the metal reflection film contains at least one of Ag, Au, Bi, Sn, and Pb as a main component. 3. The magnetoresistive effect element according to item 1.
【請求項10】 該金属反射膜と直接接する磁性膜がCo
主成分とすることを特徴とする、請求項1に記載の磁
気抵抗効果素子。
10. A magnetic film which is in direct contact with said metal reflection film is made of Co.
2. The magnetoresistive element according to claim 1, wherein said element is a main component.
【請求項11】 該磁性膜が、磁性層と、CoまたはCo高
濃度のCo-Fe合金を主成分とする界面磁性層との少なく
とも2層から成り、該界面磁性層が、直接該金属反射膜
と接していることを特徴とする、請求項1に記載の磁気
抵抗効果素子。
11. The magnetic film comprises at least two layers of a magnetic layer and an interfacial magnetic layer containing Co or a Co-rich Co-Fe alloy as a main component. 2. The magnetoresistive element according to claim 1, wherein the element is in contact with the film.
【請求項12】 直接該金属反射膜と接している該磁性
膜が、軟磁性層を挟んだCoまたはCo高濃度のCo-Fe合金
を主成分とする界面磁性層から成ることを特徴とする、
請求項1に記載の磁気抵抗効果素子。
12. The magnetic film, which is in direct contact with the metal reflection film, comprises an interfacial magnetic layer mainly composed of Co or a Co-rich Co-Fe alloy sandwiching a soft magnetic layer. ,
The magnetoresistance effect element according to claim 1.
【請求項13】 少なくとも2つの該磁性膜のうち、少
なくとも一つの磁性膜の保磁力が他の磁性膜と異なって
いることを特徴とする、請求項1に記載の磁気抵抗効果
素子。
13. The magnetoresistive element according to claim 1, wherein at least one of the at least two magnetic films has a coercive force different from that of the other magnetic films.
【請求項14】 該非磁性膜を介して積層された第1,
および第2の磁性膜と、該第1の磁性膜に対して該非磁
性膜と反対側に形成された反強磁性体と、該第2の磁性
に対して該非磁性膜と反対側に形成された金属反射膜
を有することを特徴とする、請求項1記載の磁気抵抗効
果素子。
14. A method according to claim 1, further comprising the steps of :
A and the second magnetic layer, formed on the antiferromagnetic material is formed on the opposite side of the non-magnetic film with respect to the first magnetic layer, a nonmagnetic layer with respect to the second magnetic layer opposite 2. The magnetoresistive element according to claim 1, further comprising a metal reflective film formed thereon.
【請求項15】 該金属反射膜と該磁性膜の間に、更に
非磁性膜を有することを特徴とする、請求項14に記載
の磁気抵抗効果素子。
15. The magnetoresistive element according to claim 14 , further comprising a nonmagnetic film between said metal reflection film and said magnetic film.
【請求項16】 該反強磁性体膜が酸化物であることを
特徴とする、請求項14に記載の磁気抵抗効果素子。
16. The magnetoresistive element according to claim 14 , wherein said antiferromagnetic film is an oxide.
【請求項17】 該反強磁性体膜がNi-Oであることを特
徴とする、請求項14に記載の磁気抵抗効果素子。
17. The magnetoresistive element according to claim 14 , wherein said antiferromagnetic film is made of Ni—O.
【請求項18】 該反強磁性体膜がα-Fe2O3であること
を特徴とする、請求項14に記載の磁気抵抗効果素子。
18. The magnetoresistive element according to claim 14 , wherein said antiferromagnetic film is α-Fe 2 O 3 .
【請求項19】 該第2の磁性膜が、非磁性膜を介して
積層された2層以上の磁性膜からなることを特徴とする
請求項14に記載の磁気抵抗効果素子。
19. The method according to claim 19, wherein the second magnetic film comprises two or more magnetic films laminated with a non-magnetic film interposed therebetween.
The magnetoresistance effect element according to claim 14 .
【請求項20】 該反強磁性体膜が基板にエピタキシャ
ルに形成されていることを特徴とする、請求項14に記
載の磁気抵抗効果素子。
20. The magnetoresistance effect element according to claim 14 , wherein said antiferromagnetic film is formed epitaxially on a substrate.
【請求項21】 第1の磁性膜,該非磁性膜、第2の磁
性膜、反強磁性体膜、および該金属反射膜が順次形成さ
れた構成となっていることを特徴とする、請求項1に記
載の磁気抵抗効果素子。
21. A structure in which a first magnetic film, said non-magnetic film, a second magnetic film, an antiferromagnetic film, and said metal reflection film are sequentially formed. 2. The magnetoresistance effect element according to 1.
【請求項22】 該反強磁性体膜と該金属反射膜の間に
非磁性膜を有することを特徴とする、請求項21に記載
の磁気抵抗効果素子。
22. The magnetoresistive element according to claim 21 , further comprising a nonmagnetic film between said antiferromagnetic film and said metal reflection film.
【請求項23】 該反強磁性体膜がIr-Mn合金であるこ
とを特徴とする、請求項22に記載の磁気抵抗効果素
子。
23. The magnetoresistive element according to claim 22 , wherein said antiferromagnetic film is an Ir-Mn alloy.
【請求項24】 該反強磁性体膜がIr-Mn合金であるこ
とを特徴とする、請求項21に記載の磁気抵抗効果素
子。
24. The magnetoresistive element according to claim 21 , wherein said antiferromagnetic film is an Ir-Mn alloy.
【請求項25】 該非磁性膜が基板にエピタキシャルに
形成されていることを特徴とする、請求項1に記載の磁
気抵抗効果素子。
25. The magnetoresistive element according to claim 1, wherein said nonmagnetic film is formed epitaxially on a substrate.
【請求項26】 薄膜成長方向と垂直に該非磁性膜の(1
00)面がエピタキシャル成長していることを特徴とす
る、請求項25に記載の磁気抵抗効果素子。
26. The (1) of the nonmagnetic film perpendicular to the thin film growth direction.
26. The magnetoresistance effect element according to claim 25 , wherein the ( 00) plane is epitaxially grown.
【請求項27】 MgO(100)基板上に、Pt下地層を介して
該非磁性膜がエピタキシャル成長していることを特徴と
する、請求項26に記載の磁気抵抗効果素子。
27. The magnetoresistive element according to claim 26 , wherein said nonmagnetic film is epitaxially grown on a MgO (100) substrate via a Pt underlayer.
【請求項28】 非磁性膜を介して積層された少なくと
も2つの磁性膜と、該磁性膜の最も外側の磁性膜の少な
くとも一方に、該磁性膜と接して非磁性膜と反対側に形
成された、電子のスピン方向を維持したまま反射散乱を
生じやすい金属反射膜とを有し、該金属反射膜は、その
表面の少なくとも10%以上が、3オングストローム以
下の凹凸の平滑な表面である磁気抵抗効果素子と、 該磁気抵抗効果素子に電流を供給するリード部とを備
え、 該磁気抵抗素子の保持力の最も小さい磁性膜磁化容易
軸が、検知すべき信号磁界方向に垂直となるように構成
されたことを特徴とする磁気抵抗効果型ヘッド。
28. At least two magnetic films laminated with a non-magnetic film interposed therebetween, and at least one of the outermost magnetic films of the magnetic film, formed on the opposite side of the non-magnetic film in contact with the magnetic film. A metal reflective film that easily causes reflection scattering while maintaining the electron spin direction , and the metal reflective film is
At least 10% of the surface is less than 3 Å
A magnetoresistive element having a smooth surface with lower irregularities; and a lead for supplying a current to the magnetoresistive element, wherein an easy axis of magnetization of the magnetic film having the smallest coercive force of the magnetoresistive element is detected. A magnetoresistive head configured to be perpendicular to a signal magnetic field direction to be performed.
【請求項29】29. 非磁性膜を介して積層された少なくとAt least laminated through non-magnetic film
も2つの磁性膜と、該磁性膜の最も外側の磁性膜の少なAlso two magnetic films and a small number of outermost magnetic films of the magnetic films.
くとも一方に、該磁性膜と接して非磁性膜とAt least on one side, a non-magnetic film is in contact with the magnetic film. 反対側に形Shape on the other side
成された、電子のスピン方向を維持したまま反射散乱をReflection scattering while maintaining the electron spin direction
生じやすい金属反射膜とを有し、該金属反射膜と該磁性A metal reflective film which is apt to occur,
膜の間に、更に非磁性膜を有する磁気抵抗効果素子と、A magnetoresistive element further comprising a nonmagnetic film between the films, 該磁気抵抗効果素子に電流を供給するリード部とを備A lead section for supplying a current to the magnetoresistive element.
え、e, 該磁気抵抗素子の保持力の最も小さい磁性膜の磁化容易Easy magnetization of the magnetic film having the smallest coercive force of the magnetoresistive element
軸が、検知すべき信号磁界方向に垂直となるように構成The axis is perpendicular to the direction of the signal magnetic field to be detected
されたことを特徴とする磁気抵抗効果型ヘッド。A magnetoresistive head characterized in that:
【請求項30】30. 非磁性膜を介して積層された少なくとAt least laminated through non-magnetic film
も2つの磁性膜と、該磁性膜の最も外側の磁性膜の少なAlso two magnetic films and a small number of outermost magnetic films of the magnetic films.
くとも一方に、該磁性膜と接して非磁性膜と反対側に形At least one side is formed in contact with the magnetic film and on the side opposite to the non-magnetic film.
成された、電子のスピン方向を維持したまま反射散乱をReflection scattering while maintaining the electron spin direction
生じやすい金属反射膜とを有し、該金属反射膜は、そのAnd a metal reflective film that is likely to occur, and the metal reflective film
表面の少なくとも10%以上が、3オングストローム以At least 10% of the surface is less than 3 Å
下の凹凸の平滑な表面であり、該非磁性膜を介して積層It has a smooth surface with lower irregularities, and is laminated via the non-magnetic film.
された第1,および第2の磁性膜と、該第1の磁性膜とFirst and second magnetic films, and the first magnetic film
接して該非磁性膜と反対側に形成された反強磁性体と、An antiferromagnetic material formed in contact with and opposite to the nonmagnetic film;
該第2の磁性膜と接して該非磁性膜と反対側に形成されFormed on the opposite side of the non-magnetic film in contact with the second magnetic film;
た金属反射膜を有することを特徴とする磁気抵抗効果素Characterized by having a reflective metal film
子と、With the child, 該磁気抵抗効果素子に電流を供給するリード部とを備A lead section for supplying a current to the magnetoresistive element.
え、e, 該磁気抵抗素子の反強磁性体と接しない磁性膜の磁化容Magnetization volume of the magnetic film not in contact with the antiferromagnetic material of the magnetoresistive element
易軸が、検知すべき信号磁界方向に垂直となるように構The easy axis is perpendicular to the signal magnetic field direction to be detected.
成されたことを特徴とする磁気抵抗効果型ヘッド。A magnetoresistive effect type head characterized by being formed.
JP09326822A 1996-11-28 1997-11-27 Magnetoresistive element and magnetoresistive head Expired - Fee Related JP3092916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09326822A JP3092916B2 (en) 1996-11-28 1997-11-27 Magnetoresistive element and magnetoresistive head

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP31734496 1996-11-28
JP34296796 1996-12-24
JP8-317344 1997-04-25
JP8-342967 1997-04-25
JP9-108780 1997-04-25
JP10878097 1997-04-25
JP09326822A JP3092916B2 (en) 1996-11-28 1997-11-27 Magnetoresistive element and magnetoresistive head

Publications (2)

Publication Number Publication Date
JPH118424A JPH118424A (en) 1999-01-12
JP3092916B2 true JP3092916B2 (en) 2000-09-25

Family

ID=27469662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09326822A Expired - Fee Related JP3092916B2 (en) 1996-11-28 1997-11-27 Magnetoresistive element and magnetoresistive head

Country Status (1)

Country Link
JP (1) JP3092916B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101639523B1 (en) 2015-05-15 2016-07-13 김영주 Monies album

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6303218B1 (en) 1998-03-20 2001-10-16 Kabushiki Kaisha Toshiba Multi-layered thin-film functional device and magnetoresistance effect element
US6348274B1 (en) 1998-12-28 2002-02-19 Kabushiki Kaisha Toshiba Magnetoresistive element and magnetic recording apparatus
US6392853B1 (en) * 2000-01-24 2002-05-21 Headway Technologies, Inc. Spin valve structure design with laminated free layer
US6735060B2 (en) 2001-06-20 2004-05-11 International Business Machines Corporation Spin valve sensor with a metal and metal oxide cap layer structure
FR2918762B1 (en) * 2007-07-10 2010-03-19 Commissariat Energie Atomique LOW NOISE MAGNETIC FIELD SENSOR USING LATERAL SPIN TRANSFER.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101639523B1 (en) 2015-05-15 2016-07-13 김영주 Monies album

Also Published As

Publication number Publication date
JPH118424A (en) 1999-01-12

Similar Documents

Publication Publication Date Title
US6258470B1 (en) Exchange coupling film, magnetoresistance effect device, magnetoresistance effective head and method for producing exchange coupling film
US5874886A (en) Magnetoresistance effect element and magnetoresistance device
US7026063B2 (en) Spin-valve type magnetoresistance sensor and thin-film magnetic head
JP2690623B2 (en) Magnetoresistance effect element
JP2738312B2 (en) Magnetoresistive film and method of manufacturing the same
US7300711B2 (en) Magnetic tunnel junctions with high tunneling magnetoresistance using non-bcc magnetic materials
JP2748876B2 (en) Magnetoresistive film
US6597547B1 (en) Magnetoresistive device with an α-Fe2O3 antiferromagnetic film and indirect exchange coupling film layers of differing thickness
US6735058B2 (en) Current-perpendicular-to-plane read head with an amorphous magnetic bottom shield layer and an amorphous nonmagnetic bottom lead layer
US6535362B2 (en) Magnetoresistive device having a highly smooth metal reflective layer
US20080068767A1 (en) Exchange-coupled film, method for making exchange-coupled film, and magnetic sensing element including exchange-coupled film
JP2000156530A (en) Laminated thin-film function device and magnetic resistance effect element
JP2004524708A (en) Magnetoresistive element, magnetoresistive magnetic head using the same, magnetic recording device, and magnetoresistive memory device
JP2001077442A (en) Memory element
JP2924798B2 (en) Magnetoresistance thin film
JP3092916B2 (en) Magnetoresistive element and magnetoresistive head
JPH09205234A (en) Magnetoresistance effect element and magnetoresistance effect sensor
JP2924819B2 (en) Magnetoresistive film and method of manufacturing the same
US6245450B1 (en) Exchange coupling film magnetoresistance effect device magnetoresistance effective head and method for producing magnetoresistance effect device
JP4144831B2 (en) Magnetoresistive element and magnetic recording apparatus
JP2004047583A (en) Magnetoresistance effect element, and magnetic head, magnetic memory, and magnetic recording equipment using the magnetoresistance effect element
JP3137288B2 (en) Exchange coupling film, magnetoresistive element, magnetoresistive head, and method of manufacturing magnetoresistive element
JP2001284680A (en) Magnetoresistive effect element, manufacturing method thereof and magnetoresistive effect magnetic head
EP0917161B1 (en) Exchange coupling film, magnetoresistance effect device, magnetoresistance effective head and method for producing magnetoresistance effect device
JP2000068569A (en) Exchange coupled film and magneto resistive effect element using the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000712

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees