JPH09129693A - Method of analyzing impurities on the surface of semiconductor substrate and thin film thereon - Google Patents
Method of analyzing impurities on the surface of semiconductor substrate and thin film thereonInfo
- Publication number
- JPH09129693A JPH09129693A JP28287295A JP28287295A JPH09129693A JP H09129693 A JPH09129693 A JP H09129693A JP 28287295 A JP28287295 A JP 28287295A JP 28287295 A JP28287295 A JP 28287295A JP H09129693 A JPH09129693 A JP H09129693A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- semiconductor substrate
- impurities
- recovery
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Sampling And Sample Adjustment (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は半導体基板表面及び
基板上薄膜の不純物分析方法に係り、特に半導体基板表
面及び基板上薄膜の不純物として白金(Pt)を分析す
る分析方法に関する。The present invention relates to a method for analyzing impurities on the surface of a semiconductor substrate and a thin film on a substrate, and more particularly, to an analysis method for analyzing platinum (Pt) as an impurity on the surface of a semiconductor substrate and a thin film on the substrate.
【0002】[0002]
【従来の技術】電子工業分野では、デバイスの微細化、
高密度化に伴い、材料や製造プロセス起因の汚染の低減
が重要な問題となっている。特に、重金属汚染は半導体
デバイスの性能を著しく劣化させるため極力排除しなけ
ればならない。そして、この問題を解決するために金属
汚染検出のための半導体基板表面及び基板上薄膜の超高
感度分析が必要となっている。2. Description of the Related Art In the field of electronic industry, device miniaturization,
With the increase in density, reduction of contamination caused by materials and manufacturing processes has become an important issue. In particular, heavy metal contamination must be eliminated as much as possible because it significantly degrades the performance of semiconductor devices. In order to solve this problem, ultrasensitive analysis of the surface of the semiconductor substrate and the thin film on the substrate for detecting metal contamination is required.
【0003】従来の不純物分析方法としては、検出感度
が高く、操作も比較的簡便でデータ解析も容易である気
相分解(VPD:Vapor Phase Decomposition)法が広
く使用されている(特開平3−188642号公報、特
開平4−360551号公報)。As a conventional impurity analysis method, a Vapor Phase Decomposition (VPD) method, which has a high detection sensitivity, is relatively simple in operation, and easy to analyze data, is widely used (Japanese Unexamined Patent Application Publication No. Hei. No. 188,642, JP-A-4-360551).
【0004】図5及び図6はそれぞれ上記のVPD法で
用いられる装置の各例の断面図を示す。図5に示す装置
は、テフロン密閉容器1の底面にテフロン蒸発用のビー
カ2とテフロン製ウェハキャリア3、分解液受皿4をそ
れぞれ設け、ウェハ5をウェハキャリア3に数枚立て掛
けた後、蒸発用ビーカ2内に弗酸6を入れてこれを周囲
雰囲気温度で気化させ、これにより生じた弗酸ガスをウ
ェハ5上の酸化膜に反応して分解させ、その反応分解液
滴7を分解液受皿4で受け止める構成である。そして、
反応分解液滴7をマイクロピペットを用いて回収した
後、純水で一定量に希釈し、これを試料溶液とする。FIGS. 5 and 6 are cross-sectional views of respective examples of the apparatus used in the above-mentioned VPD method. The apparatus shown in FIG. 5 is provided with a beef 2 for evaporating Teflon, a Teflon wafer carrier 3 and a decomposed liquid receiving tray 4 on the bottom surface of a Teflon sealed container 1 respectively. Hydrofluoric acid 6 is introduced into beaker 2 and vaporized at ambient temperature. The generated hydrofluoric acid gas reacts with an oxide film on wafer 5 to be decomposed, and the reaction-decomposed droplet 7 is subjected to a decomposed liquid receiving tray. 4. And
After the reaction decomposition droplets 7 are collected using a micropipette, they are diluted to a certain amount with pure water and used as a sample solution.
【0005】図6に示す装置は、テフロン密閉容器1の
底面にテフロン製蒸発用ビーカ2とテフロン製テーブル
8をそれぞれ設け、ビーカ2内に混酸(20%弗酸と3
0%硝酸)9を入れて図示しないヒータにより加熱する
構成である。この図6に示す装置では、ウェハ5をテー
ブル8の凸部81に載置した後、ビーカ2内の混酸9を
加熱し、混酸ガスbを連続的に発生させ、ある時間後に
密閉容器1内に窒素ガスaを窒素ガス吸引口10を介し
て送り込む一方、密閉容器1内の窒素ガスを窒素ガス排
出口11を介して排出する。In the apparatus shown in FIG. 6, a Teflon evaporating beaker 2 and a Teflon table 8 are provided on the bottom of a Teflon sealed container 1, respectively, and mixed acid (20% hydrofluoric acid and
(0% nitric acid) 9 is put in and heated by a heater (not shown). In the apparatus shown in FIG. 6, after the wafer 5 is placed on the convex portion 81 of the table 8, the mixed acid 9 in the beaker 2 is heated to continuously generate the mixed acid gas b. While the nitrogen gas a is fed through the nitrogen gas suction port 10, the nitrogen gas in the closed container 1 is discharged through the nitrogen gas discharge port 11.
【0006】これにより、ビーカ2から上昇した混酸ガ
スbが窒素ガスaの流れに乗ってテーブル8上のウェハ
5に速やかに導かれる。このとき混酸ガスbはウェハ5
の表面(凸部81と反対側の面)に窒素ガスaの下降気
流に乗って効率的に導かれて、ウェハ5の表面の酸化膜
と化学反応を生じさせて酸化膜を分解し、これにより反
応分解液12が液滴となってウェハ5の表面に点在す
る。その後、密閉容器1を開けてウェハ5を取り出し、
その表面に回収液を滴下してウェハ5を傾け、反応分解
液12のすべての液滴を漏れなく表面上を転がしながら
マイクロピペットに回収する。As a result, the mixed acid gas b rising from the beaker 2 is quickly guided to the wafer 5 on the table 8 by carrying the flow of the nitrogen gas a. At this time, the mixed acid gas b
The surface of the wafer 5 (the surface opposite to the convex portion 81) is efficiently guided by the downward airflow of the nitrogen gas a, causing a chemical reaction with the oxide film on the surface of the wafer 5 to decompose the oxide film. As a result, the reaction decomposition liquid 12 becomes droplets and is scattered on the surface of the wafer 5. After that, the closed container 1 is opened, and the wafer 5 is taken out.
The recovery liquid is dropped on the surface, the wafer 5 is tilted, and all the droplets of the reaction decomposition liquid 12 are recovered by the micropipette while rolling on the surface without leaking.
【0007】半導体基板表面及び基板上薄膜の不純物分
析においては、このような図5及び図6に示す装置を用
いて、弗酸や混酸の蒸気により半導体基板であるウェハ
5上の自然酸化膜、酸化膜あるいは窒化膜等の薄膜を分
解し、更に半導体基板上に残留した金属不純物を回収液
で図7に示すような方法で回収し、この回収液内の不純
物を原子吸光分析装置(AAS:Atomic Absorption Sp
ectrometry)や誘導結合プラズマ質量分析装置(ICP
−MS:Inductively Coupled Plasma-Mass Spectromet
ry)などで分析する。In the analysis of impurities on the surface of a semiconductor substrate and a thin film on a substrate, a natural oxide film on a wafer 5 as a semiconductor substrate is removed using a device such as that shown in FIGS. A thin film such as an oxide film or a nitride film is decomposed, and metal impurities remaining on the semiconductor substrate are recovered by a recovery solution by a method as shown in FIG. 7, and impurities in the recovery solution are analyzed by an atomic absorption spectrometer (AAS: Atomic Absorption Sp
ectrometry) and inductively coupled plasma mass spectrometer (ICP)
-MS: Inductively Coupled Plasma-Mass Spectromet
ry).
【0008】このような弗酸などの蒸気による薄膜分解
と分析装置による測定・分析までの一連の作業を一般的
に使用する分析装置に応じて、VPD−AAS法、VP
D−ICP−MS法といっている。ここに示した装置以
外にも、同じ原理を持つ装置が他にもあるが、ここでは
省略する。なお、蒸気による薄膜分解を行う装置には、
後述する図4の装置も知られている(渡辺かおり他、
「半導体プロセスにおける超微量不純物評価技術」、電
子情報通信学会研究会SDM91−159、1991年
12月)が、これについては後述する。The VPD-AAS method and the VP method are generally used in accordance with an analyzer which generally uses a series of operations from thin film decomposition by vapor such as hydrofluoric acid to measurement and analysis by the analyzer.
It is called the D-ICP-MS method. There are other devices having the same principle other than the device shown here, but they are omitted here. In addition, in the device that performs thin film decomposition by steam,
The device of FIG. 4 described later is also known (Kaori Watanabe et al.,
"Technique for evaluating ultra-trace impurities in semiconductor processes", IEICE Technical Committee SDM 91-159, December 1991), which will be described later.
【0009】ここで、回収液による回収方法について説
明するに、まず、図7(A)に示すように、表面の自然
酸化膜、酸化膜あるいは窒化膜等の薄膜が分解された半
導体基板15上に、マイクロピペット17で回収液16
を滴下した後、同図(B)及び(C)に示すように、基
板表面にある金属不純物をすべて回収できるように、表
面全体を回収液16で隈なく走査して回収液中に取り込
む作業を行う。そして、最後に図7(D)に示すよう
に、走査後の回収液16をマイクロピペット17で回収
して分析装置に導入する。Here, a method of recovery using a recovery liquid will be described. First, as shown in FIG. 7A, a semiconductor substrate 15 on which a thin film such as a natural oxide film, an oxide film, or a nitride film on the surface is decomposed. Then, the collected solution 16 is collected with a micropipette 17.
After dropping, the entire surface is scanned with the collecting liquid 16 and taken into the collecting liquid so that all the metal impurities on the substrate surface can be collected as shown in FIGS. I do. Finally, as shown in FIG. 7D, the recovered liquid 16 after scanning is recovered by the micropipette 17 and introduced into the analyzer.
【0010】次に、回収液について説明する。通常のV
PD法の回収液には、純水、希薄な弗化水素酸−過酸化
水素混合溶液等が使用され、特にイオン化傾向の小さい
貴金属元素を測定したいときには、王水を従来より回収
液として使用している。貴金属元素の中でも特にPtは
回収が困難なため、基板を加熱状態にして王水を回収す
る。貴金属元素は弗化水素酸蒸気では十分に分解するこ
とができず、また、分解できてもイオン化傾向がシリコ
ンよりも小さいためシリコン基板表面に再付着してしま
うので、通常の純水や弗化水素酸−過酸化水素混合溶液
では回収が難しいからである。Next, the recovered liquid will be described. Normal V
Pure water, dilute hydrofluoric acid-hydrogen peroxide mixed solution, etc. are used as the recovery liquid for the PD method. Particularly when a precious metal element with a low ionization tendency is to be measured, aqua regia is used as the recovery liquid. ing. Among the noble metal elements, Pt is particularly difficult to recover, so the substrate is heated to recover aqua regia. Noble metal elements cannot be sufficiently decomposed by hydrofluoric acid vapor, and even if they can be decomposed, they tend to re-adhere to the silicon substrate surface because their ionization tendency is smaller than that of silicon. This is because recovery is difficult with a mixed solution of hydrogen acid and hydrogen peroxide.
【0011】要するに、貴金属元素を分析するには、酸
化性の極めて強い王水を使う以外に分解、回収できる薬
液がなく、Pt分析に至っては更に基板を加熱すること
で効率よく回収が行えることが知られている(SDM9
1−159)。In short, in order to analyze the noble metal element, there is no chemical solution that can be decomposed and recovered other than the use of aqua regia, which has an extremely strong oxidizing property, and the Pt analysis can be efficiently recovered by further heating the substrate. Is known (SDM9
1-159).
【0012】なお、VPD法の他にも、基板上に非常に
小さな入射角でX線を入射し、基板表面近傍に存在する
金属等の不純物から得られた蛍光X線により不純物定量
を行う全反射蛍光X線分析(TR−XRF:Total Refl
ection X-Ray Florescence spectrometry)や、シリコ
ン基板に1次イオンを入射し、基板中の金属をスパッタ
してイオン化された2次イオンを検出する2次イオン質
量分析(SIMS:Secondery Ion Mass Spectroscop
y)等が不純物分析には使われている。In addition to the VPD method, X-rays are incident on the substrate at a very small incident angle, and impurities are quantitatively determined by fluorescent X-rays obtained from impurities such as metals existing near the substrate surface. Reflection X-ray fluorescence analysis (TR-XRF: Total Refl
Section X-Ray Florescence spectrometry, or secondary ion mass spectrometry (SIMS) in which primary ions are incident on a silicon substrate and metal ions in the substrate are sputtered to detect ionized secondary ions.
y) etc. are used for impurity analysis.
【0013】[0013]
【発明が解決しようとする課題】しかるに、TR−XR
Fは非破壊分析でしかも測定が容易ではあるが、VPD
法ほど高感度な測定はできず、また、極表面のみ測定が
可能で薄膜中の不純物量測定には適さず、更に測定元素
が限られているなどの欠点がある。DISCLOSURE OF INVENTION Problems to be Solved by the Invention TR-XR
F is a non-destructive analysis and easy to measure, but VPD
The method has the drawbacks that measurement cannot be performed with high sensitivity as compared with the method, and that only the surface of the electrode can be measured.
【0014】また、SIMSは元素によっては感度が不
足し、かつ、定量分析が難しいという問題がある。ま
た、大掛かりで高価な装置を必要とし、分析操作やデー
タの解析に熟練を要するなどの欠点もある。Further, the SIMS has a problem that the sensitivity is insufficient for some elements and that quantitative analysis is difficult. Further, there are drawbacks such that a large-scale and expensive device is required and skill is required for analysis operation and data analysis.
【0015】これらの理由から、半導体基板表面の不純
物分析にはVPD法が最も多く使われている。また、前
記したように、貴金属元素、特にPtの分析の場合には
半導体基板を加熱状態で王水回収するVPD法が従来使
用されている。For these reasons, the VPD method is most often used for analyzing impurities on the surface of a semiconductor substrate. Further, as described above, in the case of analyzing a noble metal element, particularly Pt, a VPD method of recovering aqua regia in a heated state of a semiconductor substrate has been conventionally used.
【0016】しかし、このVPD法においても、僅かで
も加熱し過ぎた状態の半導体基板上に王水を滴下する
と、王水は半導体基板上で強烈に弾け飛び散るなど、分
析法としての安定性に乏しい。また、酸系の雰囲気を吸
引しないために局所排気設備を持ち、通常よりはるかに
安全性を保ったクリーンドラフト内で作業しなければな
らない。更に、上記のVPD法は半導体基板を加熱する
ことにより、多少なりとも王水が蒸発したり、弾けて飛
び散ったりするため、回収液量の確保が難しく、定量分
析結果への影響も大きい。However, even in the VPD method, if aqua regia is dropped onto a semiconductor substrate that is overheated even by a slight amount, the aqua regia will fly out strongly on the semiconductor substrate and the stability as an analytical method is poor. . In addition, local exhaust equipment must be installed to prevent suction of acid-based atmospheres, and work must be performed in a clean draft that is much safer than usual. Furthermore, in the above-mentioned VPD method, since the aqua regia evaporates or spatters to some extent by heating the semiconductor substrate, it is difficult to secure the amount of the recovered liquid, and the effect on the quantitative analysis result is large.
【0017】更に、上記のVPD法は、回収液である王
水はそのままAASやICP−MSなどの分析装置に導
入して測定することはできない。酸濃度が濃いために試
料導入部が腐食してしまったり、マトリクスの影響を受
けてしまうからである。また、極微量な不純物を測定し
ようとしているため、回収液である王水を希釈をして測
定することもできない。Furthermore, in the above-mentioned VPD method, aqua regia as a recovered liquid cannot be directly introduced into an analyzer such as AAS or ICP-MS for measurement. This is because the sample introduction portion is corroded due to the high acid concentration, or is affected by the matrix. In addition, since an attempt is made to measure a trace amount of impurities, it is not possible to dilute aqua regia, which is a recovered liquid, for measurement.
【0018】そこで、王水は蒸発乾固をして、残留物を
希薄な酸、例えば塩酸や硝酸で溶解して測定しなければ
ならない。このため、従来方法は当然手間や測定するま
での時間が増え、それにより汚染物質が混入したり、バ
ックグランドが悪くなってしまう問題もある。Therefore, the aqua regia must be evaporated to dryness, and the residue must be dissolved in a dilute acid such as hydrochloric acid or nitric acid for measurement. For this reason, the conventional method naturally has a problem that the trouble and the time until the measurement are increased, whereby contaminants are mixed in and the background is deteriorated.
【0019】本発明は以上の点に鑑みなされたもので、
回収液のまま高精度、かつ、高感度に不純物の分析がで
きる半導体基板表面及び基板上薄膜の不純物分析方法を
提供することを目的とする。The present invention has been made in view of the above points.
An object of the present invention is to provide a method for analyzing impurities on a semiconductor substrate surface and a thin film on a substrate, which can analyze impurities with high accuracy and high sensitivity as a recovered liquid.
【0020】また、本発明の他の目的は、安全性のある
作業で安定に不純物の分析ができる半導体基板表面及び
基板上薄膜の不純物分析方法を提供することにある。Another object of the present invention is to provide a method of analyzing impurities on a semiconductor substrate surface and a thin film on a substrate, which can stably analyze impurities by a safe operation.
【0021】更に、本発明の他の目的は、特にPtの回
収率を向上し、Ptの分析に適した半導体基板表面及び
基板上薄膜の不純物分析方法を提供することにある。It is a further object of the present invention to provide a method for analyzing impurities on a semiconductor substrate surface and a thin film on a substrate, which is particularly suitable for Pt analysis by improving the recovery rate of Pt.
【0022】[0022]
【課題を解決するための手段】上記の目的を達成するた
め、本発明は弗化水素酸蒸気により半導体基板表面及び
基板上薄膜を分解して、その分解物を回収液で回収し、
その回収液を分析する不純物分析方法において、回収液
に塩素酸を含む薬液を使用することを特徴とする。ここ
で、塩素酸を含む薬液は、塩素水と、塩素水−オゾン水
混合液と、塩酸を支持塩とした電解イオン水のうち、い
ずれか一の薬液である。In order to achieve the above object, the present invention decomposes a semiconductor substrate surface and a thin film on the substrate by hydrofluoric acid vapor, and recovers the decomposed product with a recovery liquid.
In the impurity analysis method for analyzing the recovered liquid, a chemical solution containing chloric acid is used as the recovered liquid. Here, the chemical solution containing chloric acid is any one of chlorine water, a mixed solution of chlorine water and ozone water, and electrolytic ionic water using hydrochloric acid as a supporting salt.
【0023】支持塩に塩酸を使用した電解イオン水を用
いると、半導体基板表面に付着したPtを電解時に発生
する塩素酸によって溶出させることができる。表1はP
tを蒸着させた半導体基板を電解イオン水で処理したと
きの金属溶出量を示す。When electrolytic ionized water using hydrochloric acid is used as the supporting salt, Pt attached to the surface of the semiconductor substrate can be eluted by chloric acid generated during electrolysis. Table 1 shows P
The figure shows the metal elution amount when the semiconductor substrate on which t was deposited was treated with electrolytic ionic water.
【0024】[0024]
【表1】 ここで、表1において、純水とは装置内を循環させだけ
の水を、電解オフアノード水とは支持塩の塩酸は入って
いるが、電気分解は行っていない水を、電解オンアノー
ド水とは電気分解を行い塩素酸を発生させた水をそれぞ
れ意味する。使用したアノード水の酸化還元電位は11
05mV、pHは1.2である。[Table 1] Here, in Table 1, pure water refers to water that only circulates in the apparatus, and electrolyzed off anode water refers to water that contains hydrochloric acid as a supporting salt but has not been electrolyzed, and electrolyzed on anode water. Means water which has undergone electrolysis to generate chloric acid. The oxidation-reduction potential of the anode water used was 11
05 mV, pH is 1.2.
【0025】表1より支持塩である塩酸を入れて電気分
解を行ったアノード水は、他の金属に比べてPtが多く
検出されていることがわかる。この原因は、アノード水
中に存在している塩素酸がPtと反応して溶出している
ためである。従って、半導体基板表面及び基板上薄膜の
Pt分析をVPD法で行うときに、回収液にアノード水
などの塩素酸を含む薬液を用いることにより、Ptの分
解、回収が可能である。From Table 1, it can be seen that Pt was detected in the anolyte water which was electrolyzed by adding hydrochloric acid as a supporting salt, as compared with other metals. This is because chloric acid present in the anode water reacts with Pt and elutes. Therefore, when the Pt analysis of the semiconductor substrate surface and the thin film on the substrate is performed by the VPD method, Pt can be decomposed and recovered by using a chemical solution containing chloric acid such as anode water as the recovery liquid.
【0026】[0026]
【発明の実施の形態】次に、本発明の実施の形態につい
て図面と共に説明する。図1は本発明になる半導体基板
表面及び基板上薄膜の不純物分析方法の第1の実施の形
態と従来方法のPtの回収率を対比して示す図である。
この実施の形態では、VPD法を適用した分解装置によ
り分解した半導体基板上の薄膜の不純物を、塩素水を回
収液として用いて回収し、AASで分析する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing the first embodiment of the method for analyzing impurities on the surface of a semiconductor substrate and a thin film on a substrate according to the present invention in comparison with the recovery rate of Pt according to a conventional method.
In this embodiment, impurities in a thin film on a semiconductor substrate decomposed by a decomposition apparatus to which the VPD method is applied are recovered using chlorine water as a recovery liquid, and analyzed by AAS.
【0027】ここで、上記の分解装置としては図5及び
図6に示した従来の装置も使用できるが、ここでは前記
文献(SDM91−159)に開示した図4に示す如き
構成の分解装置を用いる。同図において、弗化水素酸
(HF)22が収容されたテフロン製密閉容器21を、
ホットプレート23により加熱し、これによりテフロン
製密閉容器21内にHF蒸気25を発生させ、これを窒
素(N2)ガス24で配管内へ送り出す。Here, as the above-mentioned disassembling apparatus, the conventional apparatus shown in FIGS. 5 and 6 can be used, but here, the disassembling apparatus having the configuration shown in FIG. 4 disclosed in the above-mentioned document (SDM91-159) is used. Used. In the figure, a Teflon sealed container 21 containing hydrofluoric acid (HF) 22 is
It is heated by the hot plate 23, thereby generating HF vapor 25 in the Teflon sealed container 21, and sending out the HF vapor 25 into the pipe with nitrogen (N 2 ) gas 24.
【0028】N2ガス24で送り出されたHF蒸気25
は、真空ピンセット27により固定されたシリコンウェ
ハ26の全面に噴霧され、ウェハ26表面の薄膜や汚染
物を分解する。HF vapor 25 delivered by N 2 gas 24
Is sprayed on the entire surface of the silicon wafer 26 fixed by the vacuum tweezers 27 to decompose thin films and contaminants on the surface of the wafer 26.
【0029】その後、前記図7に示した方法で、かつ、
本実施の形態特有の塩素水である回収液でウェハ26の
表面を隈無く走査し、その後マイクロピペットで回収液
を回収して原子吸光分析装置(AAS)により不純物の
測定を行う。Thereafter, the method shown in FIG.
The entire surface of the wafer 26 is scanned with a recovery solution that is chlorine water unique to the present embodiment, and then the recovery solution is recovered by a micropipette, and impurities are measured by an atomic absorption spectrometer (AAS).
【0030】ここで、上記の塩素水は塩素濃度0.3%
のものを総塩素濃度が12ppmになるよう調整したも
のである。酸化還元電位は1020mV、pHは3であ
る。また、図1はVPD処理(一連の分解、回収操作)
を5回繰り返して回収率を求めたものである。このとき
の分析基板は、1×1013atoms/cm2に意図
的にPt汚染が施してある。Here, the chlorine water has a chlorine concentration of 0.3%.
Was adjusted so that the total chlorine concentration was 12 ppm. The oxidation-reduction potential is 1020 mV and the pH is 3. FIG. 1 shows VPD processing (a series of disassembly and recovery operations).
The recovery rate was obtained by repeating 5 times. At this time, the analysis substrate is intentionally subjected to Pt contamination at 1 × 10 13 atoms / cm 2 .
【0031】この結果、図1に白丸印で示すように、半
導体基板を加熱しながら王水回収する従来方法では1回
目の回収で70%程度の回収率であるが、この実施の形
態の塩素水を回収する方法では、図1に黒丸印で示すよ
うに1回の回収操作で90%が回収可能であり、従来方
法に比し回収率が約20%向上する。As a result, as shown by white circles in FIG. 1, the conventional method of recovering aqua regia while heating the semiconductor substrate has a recovery rate of about 70% in the first recovery, but the chlorine recovery of the present embodiment is about 70%. In the method of recovering water, as shown by the black circle in FIG. 1, 90% can be recovered by one recovery operation, and the recovery rate is improved by about 20% as compared with the conventional method.
【0032】また、従来は70%程度の回収率の回収液
(王水)を蒸発乾固し希薄な酸に溶解しなければならな
いので、その間の汚染が問題となる。これに対し、この
実施の形態では回収した塩素水の状態で測定することが
可能であり、従来の汚染等の問題が解決される。Further, conventionally, a recovery liquid (aqua regia) having a recovery rate of about 70% must be evaporated to dryness and dissolved in a dilute acid, so that contamination during that time becomes a problem. On the other hand, in the present embodiment, measurement can be performed in the state of the recovered chlorine water, and the conventional problem of contamination and the like is solved.
【0033】このときの定量下限は3×108atom
s/cm2であり、データの再現性も良いことから測定
上の問題はない。従来の定量下限は1×109atom
s/cm2であったことから本実施の形態の分析の定量
下限が約1桁向上していて高感度化されていることがわ
かる。At this time, the lower limit of quantification is 3 × 10 8 atoms.
s / cm 2 , and there is no problem in measurement because data reproducibility is good. The conventional lower limit of quantification is 1 × 10 9 atom
Since it was s / cm 2 , it can be seen that the lower limit of quantification of the analysis of the present embodiment was improved by about one digit, and the sensitivity was increased.
【0034】なお、回収液としての塩素水の濃度は5〜
20ppmが好ましい。5ppm以下の濃度では、塩素
酸が希薄すぎて半導体基板上のPtをすべて回収できな
いし、20ppm以上では塩素が濃過ぎるためにそのま
ま測定装置で測定することができなくなってしまうから
である。The concentration of chlorinated water as the recovery liquid is 5 to
20 ppm is preferred. At a concentration of 5 ppm or less, chloric acid is too dilute to collect all of Pt on the semiconductor substrate, and at a concentration of 20 ppm or more, chlorine is too concentrated and cannot be directly measured by a measuring device.
【0035】次に、本発明の第2の実施の形態について
説明する。図2は本発明方法の第2の実施の形態と従来
方法のPtの回収率を対比して示す図である。この実施
の形態では回収液として塩素水−オゾン水混合液を用い
たものである。このときの回収液は、塩素濃度0.3%
を総塩素濃度が12ppmに調整した塩素水と、オゾン
濃度6g/Nm3のガスを60リットル/時間で40分
バブリングしたオゾン水を混合し、pH3に調整したも
のである。Next, a second embodiment of the present invention will be described. FIG. 2 is a diagram comparing the second embodiment of the method of the present invention with the Pt recovery rate of the conventional method. In this embodiment, a mixed solution of chlorine water and ozone water is used as the recovery liquid. The recovered liquid at this time has a chlorine concentration of 0.3%.
Was adjusted to pH 3 by mixing chlorine water having a total chlorine concentration adjusted to 12 ppm and ozone water obtained by bubbling a gas having an ozone concentration of 6 g / Nm 3 at 60 liters / hour for 40 minutes.
【0036】この図2の特性は、図1の第1の実施の形
態と同様に、意図的に1×1013 atoms/cm2
にPt汚染した基板表面を5回繰り返して処理を行い、
回収率を求めたものである。その結果、図2に黒丸印で
示すように、本実施の形態では、塩素水−オゾン水混合
液での回収により1回の回収操作で基板表面に存在する
Ptの93%が回収でき、塩素水のみの回収よりもわず
かに回収率が良いことがわかった。The characteristic shown in FIG. 2 is different from that of the first embodiment shown in FIG.
Intentionally 1 × 1013 atoms / cm2
The substrate surface contaminated with Pt is repeatedly processed 5 times,
The recovery rate was determined. As a result, the black circles in Figure 2
As shown, in the present embodiment, chlorine water-ozone water mixing
Recovered in liquid, present on substrate surface in one recovery operation
93% of Pt can be recovered, which is less than the recovery of chlorine water alone.
It turned out that the recovery rate is good.
【0037】このときの定量下限は7.8×108at
oms/cm2であった。また、塩素水−オゾン水混合
液の回収液はpH4以下に調整する。pH4以上では酸
が弱すぎて回収効果が得られないからである。この実施
の形態も第1の実施の形態と同様の効果が得られる。The lower limit of quantification at this time is 7.8 × 10 8 at.
It was oms / cm 2 . The pH of the recovered liquid of the chlorinated water / ozone water mixed liquid is adjusted to 4 or less. If the pH is 4 or more, the acid is too weak to obtain a recovery effect. In this embodiment, the same effect as that of the first embodiment can be obtained.
【0038】次に、本発明の第3の実施の形態について
説明する。図3は本発明方法の第3の実施の形態と従来
方法のPtの回収率を対比して示す図である。この実施
の形態では回収液として塩酸を支持塩とした電解イオン
水のアノード水を用いた例である。このときの回収液
(アノード水)は、3層式電解層により純水を電解した
もので、支持塩に塩酸40mMを使用している。製造し
たアノード水の酸化還元電位は1100mV、pHは
1.30である。Next, a third embodiment of the present invention will be described. FIG. 3 is a diagram showing a comparison between the third embodiment of the method of the present invention and the Pt recovery rate of the conventional method. This embodiment is an example in which anode water of electrolytic ion water with hydrochloric acid as a supporting salt is used as the recovery liquid. The recovered liquid (anode water) at this time was obtained by electrolyzing pure water using a three-layer electrolytic layer, and 40 mM hydrochloric acid was used as a supporting salt. The oxidation-reduction potential of the produced anode water is 1100 mV, and the pH is 1.30.
【0039】図3の特性は、図1及び図2の各実施の形
態と同様に、意図的に1×1013atoms/cm2
にPt汚染した基板表面を5回繰り返して処理を行い、
回収率を求めたものである。ここで、既にアノード水中
に含まれていたPtの量はデータ計算時に除外してあ
る。その結果、アノード水を回収液にすると、1回の回
収操作で85%の回収率を得た。The characteristic shown in FIG. 3 is deliberately 1 × 10 13 atoms / cm 2 , as in the embodiments shown in FIGS.
The substrate surface contaminated with Pt is repeatedly processed 5 times,
The recovery rate was determined. Here, the amount of Pt already contained in the anode water was excluded when calculating the data. As a result, when the anode water was used as the recovery liquid, a recovery rate of 85% was obtained in one recovery operation.
【0040】アノード水中の塩素酸量は支持塩の注入量
や濃度、電気分解の条件によって増加させることもでき
るため、更に回収率を増加させることも可能である。こ
のときの定量下限は2.1×108atoms/cm2で
あった。回収液としてのアノード水は酸化還元電位10
00mV以上、pH2以下が好ましい。Since the amount of chloric acid in the anode water can be increased depending on the amount and concentration of the supporting salt and the conditions of the electrolysis, the recovery rate can be further increased. At this time, the lower limit of quantification was 2.1 × 10 8 atoms / cm 2 . The anode water as the recovery liquid has an oxidation-reduction potential of 10
It is preferably at least 00 mV and at most pH 2.
【0041】このように、以上の実施の形態によれば、
回収液にアノード水などの塩素酸を含む薬液を用いるこ
とにより、半導体基板に付着したPtを溶出させ、大な
る回収率を得ることができ、回収液のまま不純物分析の
測定が安全な作業でできる。このため、回収液として王
水を用いた従来方法に比し、測定までの時間や手間を不
要にでき、汚染物が混入したりバックグランド低下を防
止でき、よって、高精度に、しかも高感度にPtを含む
不純物分析ができる。更に、従来に比しPtの回収率を
向上させ、更に定量下限を約1桁向上させることができ
る。As described above, according to the above embodiment,
By using a chemical solution containing chloric acid, such as anode water, for the recovery liquid, Pt attached to the semiconductor substrate can be eluted, and a large recovery rate can be obtained. it can. For this reason, compared to the conventional method using aqua regia as the recovery liquid, the time and labor required for measurement can be eliminated, and contaminants can be prevented from entering and the background can be prevented from lowering, so that high accuracy and high sensitivity can be achieved. Can analyze impurities containing Pt. Furthermore, the recovery rate of Pt can be improved and the lower limit of quantification can be improved by about one digit as compared with the related art.
【0042】なお、以上の実施の形態では、AASで測
定を行っているが、ICP−MSで測定しても同様の結
果が得られる。In the above embodiment, the measurement is performed by AAS, but the same result can be obtained by measurement by ICP-MS.
【0043】[0043]
【発明の効果】以上説明したように、本発明によれば、
半導体基板表面及び基板上薄膜の不純物分析をVPD法
で行うときに、回収液にアノード水などの塩素酸を含む
薬液を用いることにより、貴金属元素、特にPtが塩素
酸と反応して回収液に溶出するため、Ptを回収液に分
解、回収ができ、また、塩素酸を含む薬液は危険性が少
なく、以上より従来危険性が極めて高く特殊な設備を必
要とし、回収液のまま測定することができなかった不純
物分析を、特殊な設備を用いることなく、安全な作業で
回収液のまま測定することができ、汚染物質混入を防止
できることによる高精度化、バックグランド低下による
高感度化、分析時間の短縮化を実現できる。As described above, according to the present invention,
When the impurity analysis of the semiconductor substrate surface and the thin film on the substrate is performed by the VPD method, a noble metal element, particularly Pt, reacts with chloric acid to form a recovered solution by using a chemical solution containing chloric acid such as anode water as the recovered solution. Since Pt is eluted, Pt can be decomposed and recovered as a recovery solution, and chemical solutions containing chloric acid have low danger and require special equipment, which is extremely dangerous and requires a special facility. Impurity analysis that could not be performed can be measured with the recovered liquid in a safe operation without using special equipment, high accuracy by preventing contamination, high sensitivity by lowering background, analysis Time can be reduced.
【0044】また、本発明によれば、従来方法に比べて
Ptの回収率を大幅に(例えば21%)向上でき、更に
定量下限を約1桁向上させることができるため、半導体
製造における貴金属元素の汚染低減を実現でき、高品
質、高生産歩留りな半導体製品製造に寄与するところ大
である。According to the present invention, the recovery rate of Pt can be greatly improved (for example, 21%) and the lower limit of quantification can be improved by about one digit compared with the conventional method. It can greatly reduce the contamination of semiconductors and contribute to the production of semiconductor products with high quality and high production yield.
【図1】本発明方法の第1の実施の形態と従来方法のP
tの回収率を対比して示す図である。FIG. 1 shows a first embodiment of the method of the present invention and P
It is a figure which shows the collection rate of t in comparison.
【図2】本発明方法の第2の実施の形態と従来方法のP
tの回収率を対比して示す図である。FIG. 2 shows a second embodiment of the method of the present invention and P of the conventional method.
It is a figure which shows the collection rate of t in comparison.
【図3】本発明方法の第3の実施の形態と従来方法のP
tの回収率を対比して示す図である。FIG. 3 shows a third embodiment of the method of the present invention and P of the conventional method.
It is a figure which shows the collection rate of t in comparison.
【図4】本発明方法に用いられる分解装置の一例の構成
図である。FIG. 4 is a configuration diagram of an example of a decomposition apparatus used in the method of the present invention.
【図5】従来の分析方法に用いられる装置の一例の断面
図である。FIG. 5 is a cross-sectional view of an example of an apparatus used for a conventional analysis method.
【図6】従来の分析方法に用いられる装置の他の例の断
面図である。FIG. 6 is a cross-sectional view of another example of a device used in a conventional analysis method.
【図7】回収液による回収方法の説明図である。FIG. 7 is an explanatory diagram of a collecting method using a collecting liquid.
15 半導体基板 16 回収液 17 マイクロピペット 21 テフロン製密閉容器 22 弗化水素酸(HF) 23 ホットプレート 24 N 2ガス 25 HF蒸気 26 半導体シリコンウェハ 27 真空ピンセット Reference Signs List 15 semiconductor substrate 16 recovery liquid 17 micropipette 21 sealed container made of Teflon 22 hydrofluoric acid (HF) 23 hot plate 24N TwoGas 25 HF vapor 26 Semiconductor silicon wafer 27 Vacuum tweezers
Claims (2)
び基板上薄膜を分解して、その分解物を回収液で回収
し、その回収液を分析する不純物分析方法において、 前記回収液に塩素酸を含む薬液を使用することを特徴と
する半導体基板表面及び基板上薄膜の不純物分析方法。1. An impurity analysis method for decomposing a semiconductor substrate surface and a thin film on a substrate by hydrofluoric acid vapor, recovering the decomposed product with a recovery liquid, and analyzing the recovery liquid, wherein the recovery liquid is chloric acid. A method for analyzing impurities on the surface of a semiconductor substrate and a thin film on a substrate, characterized by using a chemical solution containing:
素水−オゾン水混合液と、塩酸を支持塩とした電解イオ
ン水のうち、いずれか一の薬液であることを特徴とする
請求項1記載の半導体基板表面及び基板上薄膜の不純物
分析方法。2. The chemical solution containing chloric acid is any one of chlorine water, a mixed solution of chlorine water and ozone water, and electrolytic ionic water using hydrochloric acid as a supporting salt. The method for analyzing impurities on a surface of a semiconductor substrate and a thin film on the substrate according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28287295A JP2701813B2 (en) | 1995-10-31 | 1995-10-31 | Method for analyzing impurities on semiconductor substrate surface and thin film on substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28287295A JP2701813B2 (en) | 1995-10-31 | 1995-10-31 | Method for analyzing impurities on semiconductor substrate surface and thin film on substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09129693A true JPH09129693A (en) | 1997-05-16 |
JP2701813B2 JP2701813B2 (en) | 1998-01-21 |
Family
ID=17658184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28287295A Expired - Fee Related JP2701813B2 (en) | 1995-10-31 | 1995-10-31 | Method for analyzing impurities on semiconductor substrate surface and thin film on substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2701813B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030013792A (en) * | 2001-08-09 | 2003-02-15 | 주식회사 실트론 | Method for the analysis of the metallic impurities in silicon |
JP2019201118A (en) * | 2018-05-17 | 2019-11-21 | 信越半導体株式会社 | Evaluation method for semiconductor substrate |
-
1995
- 1995-10-31 JP JP28287295A patent/JP2701813B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030013792A (en) * | 2001-08-09 | 2003-02-15 | 주식회사 실트론 | Method for the analysis of the metallic impurities in silicon |
JP2019201118A (en) * | 2018-05-17 | 2019-11-21 | 信越半導体株式会社 | Evaluation method for semiconductor substrate |
Also Published As
Publication number | Publication date |
---|---|
JP2701813B2 (en) | 1998-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Neumann et al. | Ultra-trace analysis of metallic contaminations on silicon wafer surfaces by vapour phase decomposition/total reflection X-ray fluorescence (VPD/TXRF) | |
JP3494102B2 (en) | Evaluation method of metal impurity concentration in silicon wafer | |
JP3473699B2 (en) | Silicon wafer etching method and apparatus and impurity analysis method | |
JP3436123B2 (en) | Method for analyzing metal impurities on silicon wafer surface and method for pretreatment thereof | |
JP4857973B2 (en) | Method for analyzing polishing slurry of silicon wafer | |
US6444010B1 (en) | Platinum group impurity recovery liquid and method for recovering platinum group impurity | |
JP2701813B2 (en) | Method for analyzing impurities on semiconductor substrate surface and thin film on substrate | |
JP2001242052A (en) | Method for analyzing impurity in semiconductor substrate or chemicals | |
US7387720B2 (en) | Electrolytic method and apparatus for trace metal analysis | |
JP3804864B2 (en) | Impurity analysis method | |
CN113588584B (en) | Method for measuring oxygen content in lanthanum, cerium metal or lanthanum-cerium alloy | |
JP4877897B2 (en) | Method for removing impurities from silicon wafer and analysis method | |
JP2000321266A (en) | Apparatus and method for evaluation of water quality of ultrapure water | |
JP2950310B2 (en) | Method for analyzing metal impurities on semiconductor substrate surface and substrate | |
JP3532786B2 (en) | Method for preparing sample for analysis of metal impurities contained in synthetic resin and method for measuring metal impurities using the same | |
JP2005249546A (en) | Analysis method for metal element on wafer surface | |
JP2004109072A (en) | Analysis method for metal impurity in solution | |
JP4760458B2 (en) | Method for analyzing metal contamination of semiconductor wafer storage container | |
JP2002184828A (en) | Method of analyzing metallic impurities in semiconductor substrate | |
Frame | Determination of trace impurities in materials | |
JP3477216B2 (en) | Etching method for ultra-trace metal analysis on silicon wafer surface | |
JP3824158B2 (en) | Urea detection method | |
JP2005326219A (en) | Analysis sample preparing apparatus, analysis sample preparing method and semiconductor sample analysis method | |
JP2762814B2 (en) | Impurity analysis method | |
JPH05283381A (en) | Recovery of contaminant metal element on silicon wafer surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |