JPH091291A - Continuous casting method - Google Patents

Continuous casting method

Info

Publication number
JPH091291A
JPH091291A JP15036195A JP15036195A JPH091291A JP H091291 A JPH091291 A JP H091291A JP 15036195 A JP15036195 A JP 15036195A JP 15036195 A JP15036195 A JP 15036195A JP H091291 A JPH091291 A JP H091291A
Authority
JP
Japan
Prior art keywords
molten steel
slab
cast
cast slab
vertical height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15036195A
Other languages
Japanese (ja)
Inventor
Akihiro Yamanaka
章裕 山中
Yoshio Okuda
美夫 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP15036195A priority Critical patent/JPH091291A/en
Publication of JPH091291A publication Critical patent/JPH091291A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE: To produce a cast slab having little center segregation and center porosity by discharging non-solidified remaining molten steel at the part of a specific value or higher of the vertical height, rolling the cast slab surface and press-sticking a discharged interface of the non-solidified remaining molten steel. CONSTITUTION: The vertical height H at the part, in which a solid phase ratio at the central part of the cast slab 8 is not exceeded to 0.3, is kept so as to become >=1.5m height from the molten steel surface level in a mold 1 and the cast slab 8 is continuously cast and drawn upward as an arc state. Then, the non-solidified remaining molten steel 11 at the part having >=1.5m vertical height H is discharged with a gravity. The cast slab 8 is rolled with rolling reduction rolls 5 arranged just after or after discharging to press stick the discharged interface of the non-solidified remaining molten steel developing a cavity 12. In the case the solid phase ratio exceeds 0.3, an apparent viscous resistance becomes large and the fluid discharge of the molten steel only with the gravity becomes difficult. The upper limit of the desirable vertical height is about 2.5m. In such a way, the continuous cast slab of the steel having little center segregation and center porosity can be cast.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、中心部の偏析またはポ
ロシティの著しく少ない、鋼、合金鋼およびステンレス
鋼などの鋳片を製造するのに好適な連続鋳造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method suitable for producing a slab of steel, alloy steel, stainless steel or the like having a significantly low center segregation or porosity.

【0002】[0002]

【従来の技術】鋳片の中心偏析およびセンターポロシテ
ィは、従来から連続鋳造における大きな問題の一つであ
る。たとえば、線材向けのブルームあるいはビレット鋳
片の中心偏析およびセンターポロシティは伸線加工時の
断線の原因となり、管材向けの同上鋳片のセンターポロ
シティは製管加工時の管内面疵の原因となる。また、厚
板材向けのスラブ鋳片の中心偏析およびセンターポロシ
ティは、製品の水素誘起割れの原因となる。
2. Description of the Related Art Center segregation and center porosity of a slab have been one of the major problems in continuous casting. For example, center segregation and center porosity of a bloom or billet slab for wire rods cause disconnection during wire drawing, and center porosity of the same slab for pipes causes inner surface flaws during pipe manufacturing. Further, the center segregation and center porosity of the slab slab for thick plate material cause hydrogen-induced cracking of the product.

【0003】このように、連続鋳造鋳片の中心偏析およ
びセンターポロシティは製品欠陥と直結するものであ
り、従来からこれらを低減するために多大な努力がはら
われている。
As described above, the center segregation and center porosity of continuously cast slabs are directly connected to product defects, and a great deal of effort has been conventionally made to reduce them.

【0004】これらを低減するための代表的な方法とし
て、鋳片の未凝固軽圧下法がある。
As a typical method for reducing these, there is an unsolidified light reduction method for cast pieces.

【0005】中心偏析およびセンターポロシティは凝固
末期における凝固収縮が原因となっており、未凝固軽圧
下法は、この凝固収縮量を補償するために鋳片表面から
収縮量に見合うだけの圧下を加えるものである。
The center segregation and the center porosity are caused by solidification shrinkage at the final stage of solidification. In the non-solidification light reduction method, in order to compensate for this solidification shrinkage amount, a reduction corresponding to the shrinkage amount is applied from the surface of the slab. It is a thing.

【0006】一方、特開昭59−39451号公報には
以下の方法が開示されている。すなわち、鋳型から下方
に鋳片を引き抜いた後、内部の未凝固残溶鋼が完全に凝
固する前に、鋳型内溶鋼面レベルの上方部に鋳片をガイ
ドし、鋳片のクレータエンドを鋳片内の未凝固残溶鋼面
レベルよりも上方に位置させ、その後、クレータエンド
と鋳片内の未凝固残溶鋼面レベルとの間に形成された真
空空洞を圧着し、収縮孔や中心偏析等の内部欠陥のない
鋳片を製造するものである。
On the other hand, Japanese Patent Laid-Open No. 59-39451 discloses the following method. That is, after pulling out the slab downward from the mold, before the unsolidified residual molten steel inside is completely solidified, guide the slab to the upper part of the molten steel surface level in the mold, and the crater end of the slab is cast. Located above the unsolidified residual molten steel surface level in the inside, and then crimping the vacuum cavity formed between the crater end and the unsolidified residual molten steel surface level in the slab, such as shrinkage holes and center segregation. It is intended to produce a cast product having no internal defects.

【0007】[0007]

【発明が解決しようとする課題】従来の未凝固軽圧下法
では、中心偏析およびセンターポロシティはかなりの軽
減がみられているものの完全には解消されず、この方法
はほぼ技術的限界に達している。
In the conventional uncoagulated light reduction method, although center segregation and center porosity are considerably reduced, they are not completely eliminated, and this method has reached the technical limit. There is.

【0008】前記特開昭59−39451号公報の方法
は有力な方法であるが、以下の二つの課題がある。
Although the method disclosed in Japanese Patent Laid-Open No. 59-39451 is a promising method, it has the following two problems.

【0009】ただ単に、鋳片のクレータエンドを鋳片
内の未凝固残溶鋼面レベルよりも上方に位置させ、クレ
ータエンド部の残溶鋼を重力により排出して真空空洞を
形成させる方法では、残溶鋼はクレータエンド部では凝
固組織の間に挟まれた状態で存在し毛管力の作用を受け
ているため、充分に流動排出されず、凝固組織間に懸垂
した状態で残る可能性がある。この残溶鋼は凝固末期の
ものであるために、この部分には不純成分が濃化してお
り、上記のように残溶鋼が懸垂した状態で界面を圧着す
るような圧下を加えた場合、残溶鋼同士が集積し、新た
な粒状の偏析として残る。
In the method of simply locating the crater end of the slab above the level of the unsolidified residual molten steel surface in the slab and discharging the residual molten steel at the crater end by gravity to form a vacuum cavity, The molten steel exists between the solidified tissues at the crater end and is subjected to the action of the capillary force. Therefore, the molten steel may not be sufficiently fluidized and discharged, and may remain suspended between the solidified tissues. Since this residual molten steel is in the final stage of solidification, impure components are concentrated in this part, and if a reduction is applied to crimp the interface while the residual molten steel is suspended as described above, the residual molten steel is They accumulate and remain as a new granular segregation.

【0010】鋳片を圧下して真空空洞を圧着する場
合、圧下面と垂直な部分の凝固シェルの変形抵抗により
充分に圧下が効かない。さらに溶鋼排出後の鋳片は冷却
が速く、それに応じて変形抵抗も大きくなる。
When the cast slab is pressed down and the vacuum cavity is pressure-bonded, the reduction does not work sufficiently due to the deformation resistance of the solidified shell in the portion perpendicular to the pressing surface. Further, the cast slab after the molten steel is discharged is cooled quickly, and accordingly the deformation resistance is increased.

【0011】本発明は上記課題を解決するためのもので
あり、本発明の目的は、中心部の偏析またはポロシティ
の著しく少ない鋳片を製造することができる鋼の連続鋳
造方法を提供することにある。
The present invention is intended to solve the above problems, and an object of the present invention is to provide a continuous casting method for steel capable of producing a slab having a significantly reduced center segregation or porosity. is there.

【0012】[0012]

【課題を解決するための手段】本発明者らは、重力によ
って鋳片内の未凝固残溶鋼を効果的に排出させるための
鋳造条件、特に排出部分の鋳片の固相率条件および垂直
方向高さ位置条件を明らかにして本発明をなした。
DISCLOSURE OF THE INVENTION The inventors of the present invention have found that casting conditions for effectively discharging unsolidified residual molten steel in a slab by gravity, in particular, solid phase condition of the slab at the discharging portion and vertical direction. The present invention was made by clarifying the height position condition.

【0013】本発明の要旨は次の連続鋳造方法にある。The gist of the present invention resides in the following continuous casting method.

【0014】鋳片を上方向に円弧状に鋳造し、鋳片内の
未凝固残溶鋼を重力によって排出した後、未凝固圧着を
施す連続鋳造方法であって、下記〜の条件で引き抜
き、排出、圧下および圧着を行うことを特徴とする連続
鋳造方法。
A continuous casting method in which a slab is cast upward in an arc shape, the unsolidified residual molten steel in the slab is discharged by gravity, and then the unsolidified pressure is applied, which is drawn out and discharged under the following conditions. A continuous casting method characterized by performing reduction and pressure bonding.

【0015】鋳片を垂直方向から水平方向までの範囲
で連続的に引き抜いて重力による排出を行わないとした
場合の、鋳片の中心部固相率が0.3を超えない部分の
垂直高さを、鋳型内の溶鋼面レベルから1.5m以上に
維持して連続的に引き抜く。
When the slab is continuously drawn out in the range from the vertical direction to the horizontal direction and gravity is not used for discharging, the vertical height of the portion where the solid fraction of the central portion of the slab does not exceed 0.3. Is continuously drawn from the molten steel in the mold at a level of 1.5 m or more.

【0016】前記垂直高さが1.5m以上の部分の鋳
片内の未凝固残溶鋼を重力により連続的に排出する。
The unsolidified residual molten steel in the cast slab having a vertical height of 1.5 m or more is continuously discharged by gravity.

【0017】上記排出直後またはそれ以降に設けた圧
下装置により鋳片表面に圧下を加え、凝固シェル内側の
未凝固残溶鋼排出界面を連続的に圧着する。
The surface of the slab is pressed by a pressing device provided immediately after the discharging or after that, and the discharging interface of the unsolidified residual molten steel inside the solidified shell is continuously crimped.

【0018】この方法は、鋼または合金鋼もしくはステ
ンレス鋼のビレットまたはブルームなどの製造に適用す
るのが望ましい。
This method is preferably applied to the production of billets or blooms of steel or alloy steel or stainless steel.

【0019】圧下装置として望ましいのは、凸型圧下ロ
ールを備えた装置である。
Desirable as the rolling down device is a device equipped with a convex rolling down roll.

【0020】[0020]

【作用】図1により、本発明方法を実施するための連続
鋳造機の構成例および本発明方法を説明する。図1(a)
は湾曲型連続造鋳機および鋳片の側面方向の縦断面図で
ある。この装置は、少なくとも鋳型1、タンディッシュ
(図示せず)と連結された浸漬ノズル2、鋳造方向に二
次冷却スプレー3、ガイドロール4群、一対の圧下ロー
ル5、矯正ロール6群および一対のピンチロール7を備
えており、図示するような円弧状の湾曲型である。図1
において符号8は鋳片、9は溶鋼、10は凝固シェルお
よび12は空洞である。すなわち、この図1に示す鋳片
8は、重力による未凝固溶鋼が排出され、空洞12が形
成された状態を示している。
The construction of a continuous casting machine for carrying out the method of the present invention and the method of the present invention will be described with reference to FIG. Fig. 1 (a)
FIG. 3 is a vertical cross-sectional view of a curved continuous casting machine and a slab in a lateral direction. This apparatus includes at least a mold 1, a dipping nozzle 2 connected to a tundish (not shown), a secondary cooling spray 3 in the casting direction, a group of guide rolls 4, a pair of reduction rolls 5, a group of straightening rolls 6 and a pair of rolls. It is provided with a pinch roll 7 and is a curved type having an arc shape as illustrated. FIG.
In FIG. 8, reference numeral 8 is a slab, 9 is molten steel, 10 is a solidified shell, and 12 is a cavity. That is, the cast piece 8 shown in FIG. 1 shows a state in which the unsolidified molten steel due to gravity is discharged and the cavity 12 is formed.

【0021】圧下ロール5としては、二対以上のロール
を用いてもよい。望ましい円弧の範囲は2〜10mR程
度、鋳片の断面形状は100〜350mm×100〜4
50mm角程度のビレットまたはブルームなどである。
二次冷却スプレー3は二次冷却帯が鋳型1の直下で0.
8〜5m程度の長さとなるように設け、冷却媒体として
は水、エアーミストなどを用い、望ましい二次冷却比水
量の範囲は0.4〜2リットル/kg−steel である。矯
正ロール6群は、鋳片8の引き抜き速度方向と鋳型内溶
鋼面とが平行になる位置(鋳型1レベル上部の鋳片8の
3/4周位置)に設けるのが望ましい。鋳片8の鋳造速
度Vc はピンチロール7によって制御され、望ましい鋳
造速度Vc の範囲は0.5〜4m/min程度である。
As the reduction roll 5, two or more pairs of rolls may be used. The desirable arc range is about 2 to 10 mR, and the slab has a cross-sectional shape of 100 to 350 mm × 100 to 4
The billet or bloom is about 50 mm square.
The secondary cooling spray 3 has a secondary cooling zone of just below the mold 1.
It is provided so as to have a length of about 8 to 5 m, water, air mist or the like is used as a cooling medium, and a desirable secondary cooling specific water amount range is 0.4 to 2 liters / kg-steel. It is desirable that the straightening rolls 6 are provided at a position where the drawing speed direction of the cast slab 8 is parallel to the molten steel surface in the mold (3/4 circumferential position of the cast slab 8 at the level above the mold 1). The casting speed Vc of the slab 8 is controlled by the pinch roll 7, and the desirable casting speed Vc is in the range of 0.5 to 4 m / min.

【0022】本発明方法では、上記のような装置と条件
により、図1(a) に示すとおり鋳片8が上方向に円弧状
となるように鋳造し、鋳片8の中心部固相率が0.3を
超えない部分の垂直高さHを、鋳型1内の溶鋼面レベル
から1.5m以上高くなるように維持して連続鋳造、連
続的引き抜きを行う。
In the method of the present invention, the cast piece 8 is cast in an upward arc shape as shown in FIG. Continuous casting and continuous drawing are performed while maintaining the vertical height H of the portion not exceeding 0.3 so as to be higher than the molten steel surface level in the mold 1 by 1.5 m or more.

【0023】ここでいう「中心部固相率」の定義は、通
常の連続鋳造方法により、鋳片を垂直方向または斜め下
方向もしくは水平方向に連続的に抜き抜いて、重力によ
る排出を行わないとした場合における中心部固相率であ
る。中心部固相率が0.3を超えない部分は、一定条件
下では一点として決めることができる。
The term "central solid fraction" as used herein is defined by a normal continuous casting method, in which a slab is continuously extracted vertically or obliquely downward or horizontally, and is not discharged by gravity. Is the solid fraction of the central part in the case of. The portion where the solid fraction of the central portion does not exceed 0.3 can be determined as one point under certain conditions.

【0024】そして、上記垂直高さHが1.5m以上の
部分の鋳片8内の未凝固残溶鋼を重力により連続的に排
出する。図1(b) および図1(c) に基づいて、これを説
明する。
Then, the unsolidified residual molten steel in the slab 8 at the portion where the vertical height H is 1.5 m or more is continuously discharged by gravity. This will be described with reference to FIGS. 1 (b) and 1 (c).

【0025】図1(b) は、排出前の状態を示す鋳片要部
の側面方向の縦断面図である。図中符号11が鋳片8の
中心部固相率が0.3を超えない部分の鋳片内未凝固残
溶鋼である。図示するように、この未凝固残溶鋼11の
部分の垂直高さHを鋳型内溶鋼面レベルから1.5m以
上高くなるように維持して、未凝固残溶鋼11を重力に
より下方の溶鋼9へ連続的に排出する。
FIG. 1 (b) is a side sectional vertical view of the main part of the cast slab showing a state before discharge. In the figure, reference numeral 11 is the unsolidified residual molten steel in the slab in the portion where the solid fraction of the central part of the slab 8 does not exceed 0.3. As shown in the figure, the vertical height H of the unsolidified residual molten steel 11 is maintained to be higher than the molten steel surface level in the mold by 1.5 m or more, and the unsolidified residual molten steel 11 is moved to the lower molten steel 9 by gravity. Discharge continuously.

【0026】図1(c) は、排出後の状態を示す鋳片要部
の側面方向の縦断面図である。排出後は、内部に空洞1
2を有する鋳片8となる。
FIG. 1 (c) is a vertical cross-sectional view in the side direction of the main part of the cast slab showing a state after discharge. Cavity 1 inside after discharging
A cast piece 8 having 2 is obtained.

【0027】次いで、この排出直後またはそれ以降に設
けた少なくとも一対の圧下ロール5により、鋳片8の表
面に圧下を加え、未凝固残溶鋼11の排出後に空洞12
が形成された凝固シェル10の内側の未凝固残溶鋼排出
界面を連続的に圧着する。
Next, at least a pair of reduction rolls 5 provided immediately after or after the discharge, apply a reduction to the surface of the slab 8 to discharge the unsolidified residual molten steel 11 and then the cavity 12
The discharge interface of the unsolidified residual molten steel inside the solidified shell 10 in which is formed is continuously crimped.

【0028】鋳片内未凝固残溶鋼を重力により連続的に
排出する部分を、鋳片の中心部固相率が0.3を超えな
い部分とし、その部分の垂直高さHを鋳型内の溶湯レベ
ルから1.5m以上に高く維持するとした理由は、以下
のとおりである。
The portion where the unsolidified residual molten steel in the slab is continuously discharged by gravity is defined as the portion where the solid fraction of the central portion of the slab does not exceed 0.3, and the vertical height H of the portion is set within the mold. The reason why the molten metal level is maintained at 1.5 m or higher is as follows.

【0029】鋼または合金鋼もしくはステンレス鋼にお
いて、固相率が0.3より大きくなると見かけの粘性が
急激に大きくなり、流動性が極めて悪くなる。このよう
な凝固状態では、未凝固軽圧下によって外部から強制的
に力を与えた場合でも、溶鋼流動は簡単には起らず、ま
してや重力だけで溶鋼の流動排出は起こるものではな
い。
In steel, alloy steel or stainless steel, when the solid fraction exceeds 0.3, the apparent viscosity rapidly increases and the fluidity becomes extremely poor. In such a solidified state, the molten steel flow does not easily occur even when a force is externally forcibly applied by the unsolidified light reduction, let alone the gravity, the molten steel flow discharge does not occur.

【0030】しかし、中心部固相率が0.3以下の場
合、固相も含めた見かけの粘性抵抗は小さく、このため
液体単体の粘性と大差なく、従って中心部固相率が0.
3を超えない部分の垂直高さHを鋳型内溶湯レベルから
1.5m以上の高さとすることで、重力により未凝固残
溶鋼の排出が可能となる。これは、鋼または合金鋼もし
くはステンレス鋼の溶鋼密度が7〜7.3g/cm3
あり、鋳型内溶鋼面レベルの大気圧(1033g/cm
2)に勝る溶鋼ヘッドが得られるからである。
However, when the central solid fraction is 0.3 or less, the apparent viscous resistance including the solid phase is small, so that it is not much different from the viscosity of the liquid simple substance, and therefore the central solid fraction is 0.
By setting the vertical height H of the portion not exceeding 3 to a height of 1.5 m or more from the molten metal level in the mold, it is possible to discharge the unsolidified residual molten steel by gravity. This is because the molten steel density of steel or alloy steel or stainless steel is 7 to 7.3 g / cm 3 , and the atmospheric pressure of the molten steel surface level in the mold (1033 g / cm
This is because a molten steel head superior to 2 ) can be obtained.

【0031】このようにすれば、内部に空洞12を有す
る鋳片8が得られることになるが、より確実にするに
は、中心部固相率が0を超えない部分を、鋳型内溶鋼面
レベルから1.5m以上の高さとするのがよい。望まし
い垂直高さHの上限は2.5m程度である。
In this way, the cast slab 8 having the cavity 12 inside can be obtained, but in order to be more reliable, the portion where the solid fraction of the central portion does not exceed 0 should be the molten steel surface in the mold. It is recommended that the height is 1.5m or more from the level. The upper limit of the desirable vertical height H is about 2.5 m.

【0032】圧下を加える位置は、排出直後またはそれ
以降の矯正ロール6の入り側までの間のいずれでもよい
が、前者とするのが望ましい。これは、後者では、排出
により凝固シェル10の温度が急激に低下するため、排
出界面の圧着性が悪化する場合があるからである。
The position to which the pressure reduction is applied may be immediately after the discharge or until the entrance side of the straightening roll 6 thereafter, but the former is preferable. This is because, in the latter case, the temperature of the solidified shell 10 is drastically lowered by discharging, so that the pressure bonding property at the discharging interface may be deteriorated.

【0033】このようにして得られた空洞12を圧下す
る装置としては、図2に示すような凸部を備えた凸型ロ
ールを圧下ロールとして用いるのが極めて有効である。
図2は、図1における圧下ロール5が凸型ロールである
場合の、線A−A部の断面を示す図である。図示するよ
うな凸部14を有する凸型圧下ロール13であれば、凸
部14以外の鋳片8の凝固シェル10を圧下することな
く、空洞12部のみに圧下を加えることができる。この
場合、鋳片の最終断面形状は凸部14による圧下に応じ
て凹部のあるものとなるが、連続鋳造後の圧延工程等に
おいて適宜圧下整形すればよい。望ましい凸部14の形
状は高さで5〜40mm程度、幅で20〜100mm程
度である。
As a device for rolling down the cavity 12 thus obtained, it is extremely effective to use a convex roll having a convex portion as shown in FIG. 2 as a rolling down roll.
FIG. 2 is a view showing a cross section taken along the line AA in the case where the reduction roll 5 in FIG. 1 is a convex roll. With the convex-type reduction roll 13 having the protrusions 14 as shown in the figure, it is possible to apply the reduction to only the cavity 12 without reducing the solidification shell 10 of the cast piece 8 other than the protrusions 14. In this case, the final cross-sectional shape of the cast piece has a concave portion depending on the reduction by the convex portion 14, but it may be appropriately shaped by reduction in a rolling process after continuous casting. The desirable shape of the convex portion 14 is about 5 to 40 mm in height and about 20 to 100 mm in width.

【0034】圧下ロール5および凸型圧下ロール13の
最大押付け反力の範囲は20〜80トン程度、最大ロー
ル間隔(鋳片厚み方向)の減少幅の程度は10〜80m
m程度である。
The maximum pressing reaction force of the pressing roll 5 and the convex pressing roll 13 is in the range of about 20 to 80 tons, and the maximum roll interval (in the thickness direction of the slab) is reduced by 10 to 80 m.
m.

【0035】[0035]

【実施例】【Example】

(本発明例1)図1に示す構成の湾曲型連鋳機(円孤:
3mR)を用いて下記条件で鋳造を行い、鋳片の中心偏
析およびセンターポロシティを調査した。
(Invention Example 1) A curved continuous casting machine having the structure shown in FIG.
(3 mR) was cast under the following conditions, and the center segregation and center porosity of the slab were investigated.

【0036】鋼種:0.8%C鋼(0.8 %C−0.2 %S
i−0.02%P−0.01%S) 温度:タンディッシュ内溶鋼過熱度40℃ 鋳片寸法:150mm角(ビレット) 二次冷却スプレー:スプレー帯長さは鋳型直下1m、水
スプレー方式 二次冷却比水量は0.8リットル/kg−steel 圧下ロール:凸型(凸部径は190mm、凸部以外の径
は150mm、凸部長は70mm、全長は200mm) 圧下ロールの最大押付け反力:50トン(ディスタンス
ピースを設けることにより、最大ロール間隔の減少は3
0mm) 鋳造速度(Vc):2m/min 矯正ロールは鋳型上部3/4周位置に設け、ピンチロー
ルによって鋳片を上記鋳造速度で連続的に引き抜いた。
これにより、鋳片中心部の固相率が0.3となる部分の
位置を鋳型内溶鋼面レベルから高さ1.5mとした。
Steel type: 0.8% C steel (0.8% C-0.2% S
i-0.02% P-0.01% S) Temperature: Molten steel superheat degree in tundish 40 ° C Slab size: 150 mm square (billet) Secondary cooling spray: Spray belt length is 1 m directly under the mold, water spray system secondary cooling ratio The amount of water is 0.8 liter / kg-steel Rolling roll: Convex type (diameter of convex part is 190 mm, diameter other than convex part is 150 mm, convex part length is 70 mm, total length is 200 mm) Maximum pressing reaction force of pressing roll: 50 tons ( By providing a distance piece, the maximum roll interval can be reduced by 3
0 mm) Casting speed (Vc): 2 m / min A straightening roll was provided at the upper 3/4 circumference of the mold, and a slab was continuously drawn at the above casting speed by a pinch roll.
As a result, the position of the portion where the solid fraction was 0.3 in the center of the slab was set to 1.5 m in height from the molten steel surface level in the mold.

【0037】(本発明例2)圧下ロールとして径150
mmのフラットロールを用い、その他の条件は本発明例
1と同一で鋳片を圧下した。
(Inventive Example 2) As a reduction roll, a diameter of 150
Using a flat roll of mm, the other conditions were the same as those of Example 1 of the present invention, and the cast piece was rolled down.

【0038】(比較例)圧下ロールは本発明例2と同じ
とし、鋳造速度を1.7m/minに低下させ、鋳型内
溶鋼面レベルから1.5mの位置にクレータエンド部
(中心部固相率:0.8)が位置するようにして鋳造し
た。その他の条件は本発明例1と同一とした。
(Comparative Example) The reduction roll was the same as in Inventive Example 2, the casting speed was reduced to 1.7 m / min, and the crater end portion (central solid phase) was placed at a position 1.5 m from the molten steel surface level in the mold. The ratio was 0.8). The other conditions were the same as those of Example 1 of the present invention.

【0039】いずれの試験においても、鋳造後の定常部
鋳片から長さ2mのサンプルを切り出し、中央縦継面を
観察することにより、中心偏析およびセンターポロシテ
ィを調査した。表1にこれらの結果をまとめて示す。
In each of the tests, a center segregation and center porosity were investigated by cutting out a 2 m long sample from a cast piece of a stationary part after casting and observing the center longitudinal joint surface. Table 1 summarizes these results.

【0040】[0040]

【表1】 [Table 1]

【0041】表1に示すように、本発明例1では、中心
偏析およびセンターポロシティともに無しであった。本
発明例2では圧下が充分に進まず、センターポロシティ
が少し残存するという結果になった。ただし、中心偏析
に関しては、中心部固相率0.3からの未凝固残溶鋼の
排出が充分に進み、0という結果になった。
As shown in Table 1, in Example 1 of the present invention, neither center segregation nor center porosity was found. In the invention example 2, the reduction did not proceed sufficiently and the center porosity remained a little. However, regarding the center segregation, the discharge of the unsolidified residual molten steel from the solid fraction of the central portion of 0.3 proceeded sufficiently, resulting in 0.

【0042】一方、比較例では、クレータエンド部から
の未凝固残溶鋼の排出であるために、一部偏析溶鋼が懸
垂残存した結果、粒状偏析が発生した。また、本発明例
2と同様に圧下が不充分なために、センターポロシティ
も残存した。
On the other hand, in the comparative example, since the unsolidified residual molten steel was discharged from the crater end portion, a part of the segregated molten steel remained suspended, resulting in granular segregation. Further, as in the case of Example 2 of the present invention, the center porosity remained because the reduction was insufficient.

【0043】[0043]

【発明の効果】本発明方法によれば、中心偏析およびセ
ンターポロシティの著しく少ない、鋼の連続鋳造鋳片の
製造が可能である。
According to the method of the present invention, it is possible to manufacture a continuously cast slab of steel which is remarkably low in center segregation and center porosity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法を実施するための連続鋳造機の構成
例を示す図である。(a) は湾曲型連続造鋳機および鋳片
の側面方向の縦断面図である。(b) 、(c) は、それぞれ
排出前後の状態を示す鋳片要部の側面方向の縦断面図で
ある。
FIG. 1 is a diagram showing a configuration example of a continuous casting machine for carrying out the method of the present invention. (a) is a vertical cross-sectional view in a lateral direction of a curved continuous casting machine and a cast piece. (b) and (c) are vertical cross-sectional views in the side surface direction of the main part of the cast slab showing the states before and after discharging.

【図2】図1における圧下ロールが凸型ロールである場
合の、線A−A部の断面を示す図である。
FIG. 2 is a view showing a cross section taken along line AA in the case where the reduction roll in FIG. 1 is a convex roll.

【符号の説明】[Explanation of symbols]

1:鋳型、 2:浸漬ノズル、 3:二
次冷却スプレー、4:ガイドロール、 5:圧下ロー
ル、 6:矯正ロール、7:ピンチロール、
8:鋳片、 9:溶鋼、10:凝固シェル、1
1:中心部固相率が0.3 を超えない部分の鋳片内未凝固
残溶鋼、12:空洞、 13:凸型圧下ロール、
14:凸部
1: Mold, 2: Immersion nozzle, 3: Secondary cooling spray, 4: Guide roll, 5: Reduction roll, 6: Straightening roll, 7: Pinch roll,
8: cast slab, 9: molten steel, 10: solidified shell, 1
1: Unsolidified residual molten steel in the slab where the solid fraction of the central part does not exceed 0.3, 12: Cavity, 13: Convex rolling roll,
14: convex

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鋳片を上方向に円弧状に鋳造し、鋳片内の
未凝固残溶鋼を重力によって排出した後、未凝固圧着を
施す連続鋳造方法であって、鋳片を垂直方向から水平方
向までの範囲で連続的に引き抜いて重力による排出を行
わないとした場合の鋳片の中心部固相率が0.3を超え
ない部分の垂直高さを、鋳型内の溶鋼面レベルから1.
5m以上に維持して連続的に引き抜くことにより、前記
垂直高さが1.5m以上の部分の鋳片内の未凝固残溶鋼
を重力により連続的に排出し、その直後またはそれ以降
に設けた圧下装置により鋳片表面に圧下を加え、凝固シ
ェル内側の未凝固残溶鋼排出界面を連続的に圧着するこ
とを特徴とする連続鋳造方法。
1. A continuous casting method in which a slab is cast upward in an arc shape, the unsolidified residual molten steel in the slab is discharged by gravity, and then the unsolidified pressure is applied to the slab. The vertical height of the part where the solid fraction of the central part of the slab does not exceed 0.3, when it is assumed that the slab is continuously drawn out in the horizontal direction and is not discharged by gravity, is calculated from the molten steel surface level in the mold. 1.
The unsolidified residual molten steel in the slab having the vertical height of 1.5 m or more was continuously discharged by gravity by continuously pulling it out while maintaining it at 5 m or more, and provided immediately after or after that. A continuous casting method characterized by applying a reduction to the surface of a slab with a reduction device to continuously press the discharge interface of the unsolidified residual molten steel inside the solidified shell.
JP15036195A 1995-06-16 1995-06-16 Continuous casting method Pending JPH091291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15036195A JPH091291A (en) 1995-06-16 1995-06-16 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15036195A JPH091291A (en) 1995-06-16 1995-06-16 Continuous casting method

Publications (1)

Publication Number Publication Date
JPH091291A true JPH091291A (en) 1997-01-07

Family

ID=15495318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15036195A Pending JPH091291A (en) 1995-06-16 1995-06-16 Continuous casting method

Country Status (1)

Country Link
JP (1) JPH091291A (en)

Similar Documents

Publication Publication Date Title
JP3104635B2 (en) Manufacturing method of round billet slab by continuous casting
JPH091291A (en) Continuous casting method
JP3271574B2 (en) Continuous casting method of billet slab
JP2983152B2 (en) Continuous casting method and continuous casting equipment
JPH0957411A (en) Continuous casting method
JP3092543B2 (en) Manufacturing method of round billet slab by continuous casting
JPH08224650A (en) Method for preventing segregation and center porosity in continuous casting slab of steel
JP3149818B2 (en) Manufacturing method of round billet slab by continuous casting
JPH08164460A (en) Production of continuously cast slab having good internal quality
JP3351375B2 (en) Continuous casting method
JP3104627B2 (en) Unsolidified rolling production method of round billet
JP3374761B2 (en) Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate
JP3319379B2 (en) Continuous casting method of steel billet
JP2001334353A (en) Method for continuously casting steel
JP3114671B2 (en) Steel continuous casting method
JP2982622B2 (en) Cooling method of slab in continuous casting
JP3240978B2 (en) Manufacturing method of continuous cast slab
JPH09201601A (en) Production of continuously cast round billet for producing seamless steel pipe having good workability
JP3394730B2 (en) Continuous casting method of steel slab
JPH01258801A (en) Method for forging round shaped continuous cast billet
JP3275828B2 (en) Continuous casting method
JP3463556B2 (en) Manufacturing method of round billet slab by continuous casting
JP3297802B2 (en) Continuous casting method
JP3402250B2 (en) Manufacturing method of round billet slab by continuous casting
JPS5997747A (en) Production of ultrathin slab by continuous casting method