JPH091283A - Method for reconditioning molding sand and apparatus therefor - Google Patents

Method for reconditioning molding sand and apparatus therefor

Info

Publication number
JPH091283A
JPH091283A JP14873695A JP14873695A JPH091283A JP H091283 A JPH091283 A JP H091283A JP 14873695 A JP14873695 A JP 14873695A JP 14873695 A JP14873695 A JP 14873695A JP H091283 A JPH091283 A JP H091283A
Authority
JP
Japan
Prior art keywords
sand
water
kneading
vacuum
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14873695A
Other languages
Japanese (ja)
Other versions
JP3752269B2 (en
Inventor
Risaburo Kimura
利三郎 木村
Takashi Suginaka
隆司 杉中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP14873695A priority Critical patent/JP3752269B2/en
Priority to US08/529,758 priority patent/US5816312A/en
Priority to KR1019950032012A priority patent/KR100362782B1/en
Priority to DE19536803A priority patent/DE19536803B4/en
Publication of JPH091283A publication Critical patent/JPH091283A/en
Application granted granted Critical
Publication of JP3752269B2 publication Critical patent/JP3752269B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE: To uniformize a mold strength, to reduce a casting defect and to improve the dimensional precision of a cast product by adjusting the adding quantity of water based on molding sand temp. before vacuum kneading to a preset strength target value of reconditioned sand. CONSTITUTION: At the time of completing premixing, an FK sensor 5 measures the temp. and moisture content in the sand in a mixer 1 and these are inputted into a control unit 30. In the control unit 30, the moisture content of the reconditioing sand is set to a preset temp. target value of the reconditioned sand and the water quantity to be added is calculated based on the moisture content detected with the FK sensor 5 and divided into a primary water for kneading and a secondary water for cooling, and a primary water pouring control valve 18 is opened to pour the primary water. The inner part in a mixer 1 is made to a prescribed vacuum degree with a vacuum pump 23 to execute the kneading, and the secondary water for cooling is poured by opening a secondary water pouring control valve 19. At the time of completing the vacuum kneading, the kneading is executed in the atmosphere. The adding water in such a way is controlled to uniformize the mold strength, and the quality of the cast product can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、真空混練槽を用いて
回収鋳物砂を再生する鋳物砂の再生方法およびその装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reclaiming foundry sand and an apparatus for reclaiming recovered foundry sand using a vacuum kneading tank.

【0002】[0002]

【従来の技術】周知のように、鋳造用の生型を造形する
生型造形ラインでは、鋳物砂を混練して型の造形を行
い、この型を用いて鋳込みが行われた後、使用済みの型
をばらして鋳物砂を回収し、この回収された鋳物砂(以
下、これを単に回収砂と言う。)を用いて、あるいは必
要に応じて新砂を加えて再度混練を行い、次サイクルの
造形が行われる。鋳物砂はこのような一連の循環サイク
ルを通じて、何度も再生して使用される。
2. Description of the Related Art As is well known, in a green molding line for molding a green mold for casting, a molding sand is kneaded to form a mold, which is then used for casting and then used. The mold is separated to collect the foundry sand, and the recovered foundry sand (hereinafter, simply referred to as recovered sand) is used, or new sand is added if necessary, and the mixture is kneaded again. The modeling is done. Foundry sand is regenerated and used many times through such a series of circulation cycles.

【0003】上記回収砂を再生して使用する場合、鋳込
みを終えた型をばらして得られた回収砂は、回収時点で
はかなりの高温に保たれており、これをそのまま混練す
ると、得られた再生砂の温度は過度に高いものとなる。
そこで、従来では、回収砂を所謂サンドクーラで所定温
度(一般に40℃程度以下)に冷却し、この冷却された
回収砂を混練槽に供給するようにしている。
When the recovered sand is reclaimed and used, the recovered sand obtained by separating the mold after casting is kept at a considerably high temperature at the time of recovery, and is obtained by kneading it as it is. The temperature of the reclaimed sand will be too high.
Therefore, conventionally, the recovered sand is cooled to a predetermined temperature (generally about 40 ° C. or lower) by a so-called sand cooler, and the cooled recovered sand is supplied to the kneading tank.

【0004】ところで、近年では、生型造形ラインに用
いられる混練槽として、槽内を所定の真空度に維持した
状態で混練を行い得る真空混練槽が一部で導入され、既
に使用に供されつつある。この真空混練槽を用いること
により、40℃を越える(例えば40〜70℃程度)高
温の砂を混練槽内で急速に40℃以下の設定温度にまで
冷却することが可能になる。
By the way, in recent years, as a kneading tank used in a green molding line, a part of a vacuum kneading tank capable of kneading while maintaining the inside of the tank at a predetermined vacuum degree has been introduced and already used. It's starting. By using this vacuum kneading tank, it becomes possible to rapidly cool high-temperature sand exceeding 40 ° C. (for example, about 40 to 70 ° C.) to a set temperature of 40 ° C. or less in the kneading tank.

【0005】すなわち、鋳物砂を混練して生型を造形す
る場合、通常、高温の回収砂を(必要に応じて新砂を加
えて)混練槽内に投入し、これに砂粒の粘結剤としての
ベントナイトおよび所定量の水を添加して槽内で混練が
行われるが、真空混練槽を用いた場合には、槽内を減圧
して水の沸点を低下せしめることにより、添加した水の
一部(以下に述べる冷却水)を蒸発させ、このとき槽内
周囲から(つまり周囲の砂から)気化潜熱を奪うことに
よって槽内の砂を一気に設定温度まで冷却することがで
きる。尚、この真空混練槽を用いる場合、槽内への水の
添加量は、基本的に、混練後の鋳物砂の含水量を所定値
に保つための混練用(保湿水)と、混練時に高温の回収
砂を冷却するための冷却用(冷却水)との総和として決
定される。このうち、混練時に槽内で蒸発するのは、冷
却水に相当する分である。
That is, when kneading molding sand to form a green mold, usually, high-temperature recovered sand (adding new sand if necessary) is put into a kneading tank and used as a binder for sand grains. The bentonite and the predetermined amount of water are added and kneading is performed in the tank.However, when a vacuum kneading tank is used, the boiling point of the water is lowered by depressurizing the tank to reduce the boiling point of the added water. By evaporating a part (cooling water described below) and removing the latent heat of vaporization from the inside of the tank (that is, from the surrounding sand) at this time, the sand in the tank can be cooled all at once to the set temperature. When this vacuum kneading tank is used, the amount of water added to the tank is basically the same as that for kneading (moisturizing water) to keep the water content of the foundry sand after kneading at a prescribed value, and high temperature during kneading. It is determined as the sum of cooling water (cooling water) for cooling the recovered sand. Of these, the amount that evaporates in the tank during kneading corresponds to the cooling water.

【0006】[0006]

【発明が解決しようとする課題】上記のような真空混練
を行う場合、混練槽内への水の添加量は、混練後の砂
(再生砂)の品質を確保し、目標の砂強度(つまり再生
砂で造形した生型の抗圧力)が得られるように制御され
る。一般に、砂の素性が一定であれば砂の含水量と抗圧
力との間には一定の相関関係があることが知られてお
り、従来では、回収砂の含水量を測定した上で、この相
関関係に基づいて、混練後の再生砂の含水量が一定にな
るように添加水量を制御するようにしている。
When performing the above-described vacuum kneading, the amount of water added to the kneading tank is such that the quality of the sand (regenerated sand) after kneading is ensured and the target sand strength (that is, It is controlled so as to obtain the coercive force of the raw mold formed from recycled sand. In general, it is known that there is a certain correlation between the water content of sand and the coercive pressure if the sand identity is constant, and conventionally, after measuring the water content of the recovered sand, Based on the correlation, the amount of added water is controlled so that the water content of the reclaimed sand after kneading is constant.

【0007】ところで、混練後の鋳物砂(再生砂)に含
まれる水分は、砂粒表面に単に付着した付着水と、ベン
トナイトの結晶層に浸透した吸着水とに分けることがで
きる。このうち、ベントナイト結晶層に浸透した吸着水
は蒸発しにくく、鋳物砂の保水性を向上させる。また、
この吸着水は、ベントナイトを活性化して砂強度(つま
り生型の抗圧力)の立ち上がりを早くし、かつ、強度そ
のものを高める働きをするものと考えられる。本願出願
人は、混練後の再生砂の含水量と回収砂の温度と生型の
抗圧力との関係について鋭意研究した結果、真空混練し
た鋳物砂の場合、通常の大気圧混練の場合に比べて抗圧
力が高く、しかも、真空混練した場合には、混練後の再
生砂の含水量が同じでも、回収砂の温度が高くなるほど
生型の抗圧力が高くなることを知見した。
By the way, the water contained in the foundry sand (reclaimed sand) after kneading can be divided into adhering water simply adhering to the surface of the sand grains and adsorbing water permeating into the bentonite crystal layer. Of these, the adsorbed water that has penetrated into the bentonite crystal layer is less likely to evaporate and improves the water retention of the foundry sand. Also,
It is considered that this adsorbed water activates bentonite to accelerate the rise of sand strength (that is, raw type coercive pressure) and to increase the strength itself. The applicant of the present invention has conducted extensive studies on the relationship between the water content of the reclaimed sand after kneading, the temperature of the recovered sand, and the coercive pressure of the green mold. It has been found that the coercive pressure of the raw type becomes higher as the temperature of the recovered sand becomes higher even if the water content of the reclaimed sand after kneading is the same, when the coercive pressure is high.

【0008】図5は、回収砂の温度をパラメータとし
て、混練後の再生砂の含水量と生型の抗圧力との関係を
調べた結果を示すグラフであり、直線Bが回収砂の温度
65℃の場合を、また直線Cが回収砂の温度25℃の場
合を、それぞれ表している。尚、この直線Bと直線Cと
では、ベントナイトの添加量や混練時の真空度など、他
の試験条件は全て同一に設定されている。この図5のグ
ラフから明らかなように、真空混練した場合には、再生
砂の含水量が同じでも、回収砂の温度が高くなるほど生
型の抗圧力が高くなっている。これは、回収砂の温度が
高くなるほど添加すべき冷却水量が多くなるので、真空
混練槽内での水蒸気の発生量が増加し、ベントナイト結
晶層に浸透する吸着水量が多くなり、ベントナイトの活
性化が進むためであると考えられる。従って、真空混練
槽内への水分添加量を制御するに際して、回収砂の温度
を制御ファクタとして取り込むようにすれば、再生砂の
品質をより安定したものとすることが可能となる。
FIG. 5 is a graph showing the results of examining the relationship between the water content of the reclaimed sand after kneading and the coercive pressure of the raw mold, using the temperature of the recovered sand as a parameter. C, and the straight line C shows the case where the temperature of the recovered sand is 25 ° C. In addition, in the straight line B and the straight line C, all other test conditions such as the amount of bentonite added and the degree of vacuum during kneading are set to be the same. As is clear from the graph of FIG. 5, when vacuum kneading, even if the water content of the reclaimed sand is the same, the higher the temperature of the recovered sand, the higher the coercive pressure of the raw mold. This is because the amount of cooling water to be added increases as the temperature of the recovered sand increases, so the amount of water vapor generated in the vacuum kneading tank increases and the amount of adsorbed water that permeates the bentonite crystal layer increases, activating bentonite. It is thought that this is because of the progress. Therefore, if the temperature of the recovered sand is taken in as a control factor when controlling the amount of water added to the vacuum kneading tank, the quality of the reclaimed sand can be made more stable.

【0009】そこで、この発明は、回収砂の温度と再生
砂の強度との相関関係に着目することにより、より安定
した品質の再生砂を得ることができる鋳物砂の再生方法
およびその装置を提供することを目的としてなされたも
のである。
Therefore, the present invention provides a method for reclaiming foundry sand and an apparatus therefor, which pays attention to the correlation between the temperature of recovered sand and the strength of reclaimed sand to obtain reclaimed sand of more stable quality. It was made for the purpose of doing.

【0010】[0010]

【課題を解決するための手段】このため、本願の請求項
1に係る発明(以下、第1の発明という)は、真空混練槽
内に回収鋳物砂を投入し、水および粘結剤を添加して混
練することにより上記回収鋳物砂を再生する鋳物砂の再
生方法であって、再生砂の砂強度の目標値を予め設定
し、該目標値に対し、真空混練前の槽内の鋳物砂の温度
に基づいて水の添加量を調整することを特徴としたもの
である。尚、混練時に新砂を加えない場合には、上記
「真空混練前の槽内の鋳物砂」は「回収砂」を指すこと
になる。このことは、以下の第2,第3の発明において
も同様である。
Therefore, in the invention according to claim 1 of the present application (hereinafter referred to as the first invention), the recovered molding sand is put into a vacuum kneading tank, and water and a binder are added. Is a method for reclaiming the molding sand by reclaiming the recovered molding sand by kneading it, wherein a target value of the sand strength of the reclaimed sand is preset, and the target value is the molding sand in the tank before vacuum kneading. The feature is that the amount of water added is adjusted based on the temperature. In addition, when new sand is not added at the time of kneading, the above "casting sand in the tank before vacuum kneading" means "recovered sand". This also applies to the following second and third inventions.

【0011】また、本願の請求項2に係る発明(以下、
第2の発明という)は、上記第1の発明において、上記
水の添加量は、再生砂の含水量と砂強度との関係デー
タ,目標冷却温度における真空混練前の槽内の鋳物砂の
温度と冷却水添加量との関係データおよび真空混練前の
槽内の鋳物砂の含水量に基づいて調整されることを特徴
としたものである。
Further, the invention according to claim 2 of the present application (hereinafter referred to as “the invention”)
2nd invention), in the above-mentioned 1st invention, the amount of water added is the relationship data between the water content of the reclaimed sand and the sand strength, the temperature of the foundry sand in the tank before vacuum kneading at the target cooling temperature. And the amount of cooling water added and the water content of the molding sand in the tank before vacuum kneading.

【0012】更に、本願の請求項3に係る発明(以下、
第3の発明という)は、内部を所定の真空度に維持した
状態で混練を行い得る真空混錬槽と、該真空混錬槽内に
所定量の回収鋳物砂を供給する回収砂供給装置と、真空
混練槽内に所定量の粘結剤を供給する粘結剤供給装置
と、真空混錬槽内に所定量の水を供給する水供給装置
と、真空混練前の槽内の鋳物砂の温度を検出する温度検
出手段と、真空混練前の槽内の鋳物砂の含水量を検出す
る含水量検出手段とを備えるとともに、再生砂の含水量
と砂強度との関係データ,目標冷却温度における真空混
練前の槽内の鋳物砂の温度と冷却水添加量との関係デー
タおよび真空混練前の槽内の鋳物砂の含水量に基づい
て、上記水供給装置による真空混練槽内への水の供給量
を制御する制御手段を備えたことを特徴としたものであ
る。
Further, the invention according to claim 3 of the present application (hereinafter referred to as “the invention”)
A third invention) is a vacuum kneading tank capable of kneading while maintaining the inside at a predetermined vacuum degree, and a recovered sand supply device for supplying a predetermined amount of recovered foundry sand into the vacuum kneading tank. , A binder supply device for supplying a predetermined amount of binder into the vacuum kneading tank, a water supply device for supplying a predetermined amount of water into the vacuum kneading tank, and a casting sand in the tank before vacuum kneading The temperature detection means for detecting the temperature and the water content detection means for detecting the water content of the foundry sand in the tank before vacuum kneading are provided, and the relational data between the water content of the reclaimed sand and the sand strength, the target cooling temperature Based on the relational data between the temperature of the molding sand in the tank before vacuum kneading and the amount of cooling water and the water content of the molding sand in the tank before vacuum kneading, the water into the vacuum kneading tank by the water supply device It is characterized in that a control means for controlling the supply amount is provided.

【0013】[0013]

【発明の効果】本願の第1の発明によれば、再生砂の砂
強度の目標値を設定し、該目標値に対し、真空混練前の
槽内の鋳物砂(主として回収砂)の温度に基づいて水の
添加量を調整するようにしたので、真空混練前の槽内の
鋳物砂の温度を添加水量調整時の制御ファクタとして取
り込むことができ、単に、含水量と砂強度との関係に基
づいて添加水量を設定していた従来に比べて、再生砂の
品質をより安定したものとすることができる。この結
果、鋳型(生型)強度をより均一に維持することがで
き、鋳造時の欠陥の減少および鋳造品の寸法精度の向上
に寄与することができる。
According to the first invention of the present application, a target value of the sand strength of reclaimed sand is set, and the temperature of the foundry sand (mainly recovered sand) in the tank before vacuum kneading is set to the target value. Since the amount of water added is adjusted based on this, the temperature of the foundry sand in the tank before vacuum kneading can be taken in as a control factor when adjusting the amount of added water, and the relationship between water content and sand strength can be simply calculated. The quality of the reclaimed sand can be made more stable as compared with the conventional method in which the amount of added water is set based on the above. As a result, the strength of the mold (green mold) can be maintained more uniformly, which can contribute to reduction of defects during casting and improvement of dimensional accuracy of the cast product.

【0014】また、本願の第2の発明によれば、基本的
には、上記第1の発明と同様の効果を奏することができ
る。特に、具体的に、再生砂の含水量と砂強度との関係
データ,目標冷却温度における真空混練前の槽内の鋳物
砂の温度と冷却水添加量との関係データおよび真空混練
前の槽内の鋳物砂の含水量に基づいて、添加水量を調整
するようにしたので、添加すべき水の総量と、この水の
混練用および冷却用への割り振りを最適に調整すること
ができる。
Further, according to the second invention of the present application, basically, the same effect as that of the first invention can be obtained. In particular, specifically, the relational data between the water content of the reclaimed sand and the sand strength, the relational data between the temperature of the molding sand in the tank before vacuum kneading at the target cooling temperature and the amount of cooling water added, and the inside of the tank before vacuum kneading Since the amount of added water is adjusted based on the water content of the foundry sand, the total amount of water to be added and the allocation of this water for kneading and cooling can be optimally adjusted.

【0015】更に、本願の第3の発明によれば、温度検
出手段および含水量検出手段を備えたので、真空混練前
の槽内の鋳物砂の温度および含水量をそれぞれ検出する
ことができ、また、上記制御手段を備えたので、再生砂
の含水量と砂強度との関係データ,目標冷却温度におけ
る真空混練前の槽内の鋳物砂の温度と冷却水添加量との
関係データおよび真空混練前の槽内の鋳物砂の含水量に
基づいて、上記水供給装置による真空混練槽内への水の
供給量を制御することができる。すなわち、真空混練前
の槽内の鋳物砂の温度を添加水量調整時の制御ファクタ
として取り込むことができ、単に、含水量と砂強度との
関係に基づいて添加水量を設定していた従来に比べて、
再生砂の品質をより安定したものとすることができる。
この結果、鋳型(生型)強度をより均一に維持すること
ができ、鋳造時の欠陥の減少および鋳造品の寸法精度の
向上に寄与することができる。また、添加すべき水の総
量と、この水の混練用および冷却用への割り振りを最適
に調整することができる。
Further, according to the third invention of the present application, since the temperature detecting means and the water content detecting means are provided, it is possible to detect the temperature and the water content of the foundry sand in the tank before vacuum kneading, respectively. Further, since the above-mentioned control means is provided, the relational data between the water content of the reclaimed sand and the sand strength, the relational data between the temperature of the molding sand in the tank before the vacuum kneading at the target cooling temperature and the addition amount of the cooling water, and the vacuum kneading. Based on the water content of the foundry sand in the previous tank, the amount of water supplied to the vacuum kneading tank by the water supply device can be controlled. That is, the temperature of the foundry sand in the tank before vacuum kneading can be taken in as a control factor when adjusting the amount of added water, and simply compared with the conventional method in which the amount of added water was set based on the relationship between water content and sand strength. hand,
The quality of recycled sand can be made more stable.
As a result, the strength of the mold (green mold) can be maintained more uniformly, which can contribute to reduction of defects during casting and improvement of dimensional accuracy of the cast product. Further, the total amount of water to be added and the allocation of this water for kneading and cooling can be optimally adjusted.

【0016】[0016]

【実施例】以下、この発明の実施例を、添付図面に基づ
いて詳細に説明する。図1は、本実施例に係る鋳物砂再
生装置の全体構成を概略的に示す説明図であるが、この
図に示すように、上記再生装置は、その内部を所定の真
空度に維持した状態で混練を行い得る真空ミキサー1
と、該真空ミキサー1に所定量の回収砂および添加剤と
しての粘結剤(例えばベントナイト)、更に必要に応じ
て新砂を投入するための計量ホッパ2と、上記真空ミキ
サー1に所定量の水を供給する水供給装置10とを備え
ている。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is an explanatory view schematically showing the overall structure of the foundry sand reclamation apparatus according to the present embodiment. As shown in this figure, the reclamation apparatus has a state in which the inside thereof is maintained at a predetermined vacuum degree. Vacuum mixer 1 capable of kneading in
A predetermined amount of recovered sand and a binder (eg bentonite) as an additive to the vacuum mixer 1, and a weighing hopper 2 for adding new sand as necessary, and a predetermined amount of water to the vacuum mixer 1. And a water supply device 10 for supplying water.

【0017】上記計量ホッパ2は、具体的には図示しな
かったが、生型造形ラインにおいて鋳込み終了後に使用
済みの型をばらして鋳物砂を回収する回収ステーショ
ン、添加剤としてのベントナイト(粘結剤)を供給する
ベントナイト供給装置および新砂を供給するための新砂
供給ステーションに、例えばコンベヤ装置やフィーダ装
置等の搬送手段を介して接続されている。上記水供給装
置10は、真空ミキサー1内に供給すべき水の量を計る
水計量器11と、供給すべき水をコンデンサ13側から
供給ラインLsを介して真空ミキサー1側に圧送する供
給ポンプ12と、リターンラインLrを介してコンデン
サ13内に戻された水を、クーリングタワー16に接続
された熱交換器15を通過させた上でコンデンサ13内
に還流させる循環ポンプ14とを備えており、略一定温
度に保たれた水を真空ミキサー1内に供給することがで
きる。
Although not specifically shown, the weighing hopper 2 is a collection station for separating the used molds after the completion of casting in the green molding line to collect molding sand, and bentonite (caking binder) as an additive. It is connected to a bentonite supply device for supplying a chemical agent) and a fresh sand supply station for supplying fresh sand via a conveying device such as a conveyor device or a feeder device. The water supply device 10 includes a water meter 11 for measuring the amount of water to be supplied into the vacuum mixer 1, and a supply pump for pumping the water to be supplied from the condenser 13 side to the vacuum mixer 1 side via the supply line Ls. 12 and a circulation pump 14 that causes the water returned into the condenser 13 via the return line Lr to pass through the heat exchanger 15 connected to the cooling tower 16 and then to recirculate into the condenser 13. Water kept at a substantially constant temperature can be supplied into the vacuum mixer 1.

【0018】上記水計量器11の下流側には1次および
2次の両注水制御弁18,19が設けられている。上記
1次注水制御弁18は、混練後の鋳物砂(再生砂)の含
水量を所定値に保つための混練用の保湿水を1次注水と
して真空ミキサー1内に注水するためのもので、一方、
2次注水制御弁19は、混練時に高温の回収砂を冷却す
るための冷却水を2次注水として真空ミキサー1内に注
水するためのものであり、真空ミキサー1内への注水量
は、これら1次および2次の両注水制御弁18,19に
よって制御される。
Downstream of the water meter 11, both primary and secondary water injection control valves 18 and 19 are provided. The primary water injection control valve 18 is for injecting moisturizing water for kneading for maintaining the water content of the foundry sand (reclaimed sand) after kneading at a predetermined value into the vacuum mixer 1 as primary water injection, on the other hand,
The secondary water injection control valve 19 is for injecting the cooling water for cooling the high temperature recovered sand at the time of kneading into the vacuum mixer 1 as secondary water injection. It is controlled by both primary and secondary water injection control valves 18, 19.

【0019】また、上記真空ミキサー1には、途中部に
真空遮断弁22が介設された真空ダクト21が接続さ
れ、該真空ダクト21は、上記コンデンサ13を介して
真空ポンプ23に接続されており、真空遮断弁22を開
いた状態で上記真空ポンプ23を駆動することにより、
真空ダクト21を介して真空ミキサー1内を所定の真空
度まで真空引きすることができるようになっている。更
に、真空ミキサー1には、該ミキサー1内に大気を導入
する大気開放弁26が接続され、この大気開放弁26を
開くことにより、ミキサー1内部の真空状態をほぼ瞬時
に解除することができる。
Further, the vacuum mixer 1 is connected to a vacuum duct 21 having a vacuum cutoff valve 22 provided in the middle thereof, and the vacuum duct 21 is connected to a vacuum pump 23 via the condenser 13. By driving the vacuum pump 23 with the vacuum shutoff valve 22 open,
The inside of the vacuum mixer 1 can be evacuated to a predetermined degree of vacuum via the vacuum duct 21. Further, the vacuum mixer 1 is connected to an atmosphere release valve 26 for introducing atmosphere into the mixer 1, and by opening this atmosphere release valve 26, the vacuum state inside the mixer 1 can be released almost instantly. .

【0020】また、更に、上記真空ミキサー1には、該
ミキサー1内に投入された砂(主として回収砂)の温度
と含水量とを検出するFKセンサ5が挿入されており、
このFKセンサ5は、図2に示すように、再生装置の作
動を制御する制御ユニット30に電気的に接続され、該
制御ユニット30に検出信号を入力するようになってい
る。上記制御ユニット30は、例えばマイクロコンピュ
ータを主要部として構成され、上記FKセンサ5の他
に、水計量器11内のロードセル11a及び注水制御弁
18,19が信号授受可能に接続されており、上記ロー
ドセル11aの検出信号が制御ユニット30に入力され
るとともに、上記注水制御弁18,19には、制御ユニ
ット30から制御信号が出力されるようになっている。
尚、具体的には図示しなかったが、上記制御ユニット3
0には、上記以外にも、例えば、計量ホッパ2のロード
セルからの検出信号,水供給装置10の供給ラインLs
の水温の検出信号など、種々の信号がそれぞれ入力さ
れ、また、例えば、真空遮断弁22や大気開放弁26等
のバルブ類あるいは供給ポンプ12や真空ポンプ23等
のポンプ類などの機器類には、種々の制御信号がそれぞ
れ出力されるようになっている。
Further, an FK sensor 5 for detecting the temperature and the water content of the sand (mainly recovered sand) charged in the mixer 1 is inserted in the vacuum mixer 1.
As shown in FIG. 2, the FK sensor 5 is electrically connected to a control unit 30 that controls the operation of the reproducing device, and inputs a detection signal to the control unit 30. The control unit 30 is configured by, for example, a microcomputer as a main part, and in addition to the FK sensor 5, a load cell 11a in the water meter 11 and water injection control valves 18 and 19 are connected so that signals can be exchanged. The detection signal of the load cell 11a is input to the control unit 30, and a control signal is output from the control unit 30 to the water injection control valves 18 and 19.
Although not specifically shown, the control unit 3
In addition to the above, 0 is, for example, a detection signal from the load cell of the weighing hopper 2, a supply line Ls of the water supply device 10.
Various signals such as the water temperature detection signal are input respectively, and, for example, valves such as the vacuum shutoff valve 22 and the atmosphere release valve 26, or devices such as pumps such as the supply pump 12 and the vacuum pump 23 are input. , Various control signals are output respectively.

【0021】以上のような構成を備えた上記鋳物砂再生
装置の作動について、図3のタイムチャートを参照しな
がら説明する。まず、制御ユニット30からの制御信号
に基づいて、鋳物砂回収ステーション(不図示)側から
所定量の高温の回収砂が計量ホッパ2に搬送・投入され
る。また、必要に応じて新砂が新砂供給ステーション
(不図示)から搬送・投入される。更に、ベントナイト
供給装置(不図示)から所定量のベントナイトが供給・
投入される。そして、これらが、真空ミキサー1内で所
定時間だけ予備混合される。このとき、上記真空ミキサ
ー1内はまだ真空引きされておらず、ミキサー1内は大
気圧状態である。
The operation of the foundry sand recycling apparatus having the above-mentioned structure will be described with reference to the time chart of FIG. First, based on a control signal from the control unit 30, a predetermined amount of high-temperature recovered sand is conveyed and introduced into the weighing hopper 2 from the casting sand recovery station (not shown) side. In addition, fresh sand is transported and loaded from a fresh sand supply station (not shown) as needed. Furthermore, a specified amount of bentonite is supplied from a bentonite supply device (not shown).
It is thrown in. Then, these are premixed in the vacuum mixer 1 for a predetermined time. At this time, the inside of the vacuum mixer 1 has not yet been evacuated, and the inside of the mixer 1 is in an atmospheric pressure state.

【0022】この予備混合が終わると、FKセンサ5が
ミキサー1内の砂(主として回収砂)の温度と含水量と
を測定し、その検出信号を制御ユニット30に入力す
る。該制御ユニット30では、後で詳しく説明するよう
に、予め設定された再生砂の砂強度の目標値に対して、
FKセンサ5で検出された真空混練前のミキサー1内の
鋳物砂の温度に基づいて再生砂の含水量を設定し、この
設定された目標含水量とFKセンサ5で検出された真空
混練前の鋳物砂の含水量とに基づいて、添加すべき水分
量を演算し、更に、この水分量を混練用の1次水と冷却
用の2次水とに振り分ける演算が行われる。そして、こ
の演算値に基づいて1次水量が定められ、1次注水制御
弁18に制御信号が出力されて該弁18が所定時間だけ
開かれ、ミキサー1内に所定量の1次水が投入される。
When this premixing is completed, the FK sensor 5 measures the temperature and water content of the sand (mainly recovered sand) in the mixer 1 and inputs the detection signal to the control unit 30. In the control unit 30, as will be described later in detail, with respect to a preset target value of the sand strength of the reclaimed sand,
The water content of the reclaimed sand is set based on the temperature of the foundry sand in the mixer 1 before vacuum kneading detected by the FK sensor 5, and the set target water content and the before-vacuum kneading detected by the FK sensor 5 are set. Based on the water content of the foundry sand, the amount of water to be added is calculated, and the amount of water is further divided into primary water for kneading and secondary water for cooling. Then, the amount of primary water is determined based on this calculated value, a control signal is output to the primary water injection control valve 18, the valve 18 is opened for a predetermined time, and a predetermined amount of primary water is poured into the mixer 1. To be done.

【0023】次に、上記1次注水を終えると、真空ミキ
サー1内に通じる各経路に設けられたゲートバルブ等の
バルブ類が閉じられた上で、真空遮断弁22が開かれる
とともに真空ポンプ23が駆動され、これによりミキサ
ー1内が所定の真空度(本実施例では、例えば74hp
a(ヘクトパスカル))まで真空引きされる。尚、この
74hpaでは、水の沸騰点は40℃となる。真空度が
この値に達すると、真空混練が開始される。そして、こ
の真空混練の途中(より好ましくは、真空混練工程の前
半)に、冷却用の2次水の投入が行われる。すなわち、
制御ユニット30からの制御信号に基づいて、2次注水
制御弁19が所定時間だけ開かれ、ミキサー1内に所定
量の2次水が投入される。前述したように、この2次水
が蒸発することにより、ミキサー1内の砂が設定温度
(本実施例では、例えば40℃以下)にまで急速に冷却
される。
Next, when the above-mentioned primary water injection is completed, the valves such as the gate valve provided in each path leading to the inside of the vacuum mixer 1 are closed, the vacuum shutoff valve 22 is opened, and the vacuum pump 23 is opened. Is driven, so that the inside of the mixer 1 has a predetermined degree of vacuum (in this embodiment, for example, 74 hp).
Vacuum is drawn up to a (hectopascal). At 74 hpa, the boiling point of water is 40 ° C. When the degree of vacuum reaches this value, vacuum kneading is started. Then, during the vacuum kneading (more preferably, in the first half of the vacuum kneading step), secondary water for cooling is added. That is,
Based on the control signal from the control unit 30, the secondary water injection control valve 19 is opened for a predetermined time, and a predetermined amount of secondary water is poured into the mixer 1. As described above, by evaporating the secondary water, the sand in the mixer 1 is rapidly cooled to the set temperature (for example, 40 ° C. or less in this embodiment).

【0024】上記真空混練工程が終了すると、真空遮断
弁22が閉じられるとともに大気開放弁26が開かれ
て、ミキサー1内が大気圧状態となる。そして、真空遮
断弁22が開かれる前に閉じられた各ゲートバルブが開
かれ、大気圧下で所定時間だけ混練が行われる。この大
気圧混練が終了すると、ミキサー1の排出口1aから、
予め設定された量の水分を含む(従って、予め設定され
た砂強度の)再生された鋳物砂(再生砂)が排出され、
再び鋳型の造形に供される。このようにして、1サイク
ル(本実施例では180秒)の再生処理が行われるよう
になっている。
When the vacuum kneading step is completed, the vacuum shutoff valve 22 is closed and the atmosphere opening valve 26 is opened to bring the inside of the mixer 1 to the atmospheric pressure state. Then, each gate valve that is closed before the vacuum shutoff valve 22 is opened is opened, and kneading is performed for a predetermined time under atmospheric pressure. When this atmospheric pressure kneading is completed, from the outlet 1a of the mixer 1,
Reclaimed foundry sand (reclaimed sand) containing a preset amount of water (and thus of preset sand strength) is discharged,
It is again used for molding. In this way, one cycle (180 seconds in this embodiment) of reproduction processing is performed.

【0025】本実施例では、上述のように、予め設定さ
れた再生砂の砂強度の目標値に対して、FKセンサ5で
検出された真空混練前のミキサー1内の鋳物砂(主とし
て回収砂)の温度に基づいて再生砂の含水量を設定し、
この設定された目標含水量とFKセンサ5で検出された
真空混練前のミキサー1内の鋳物砂の含水量とに基づい
て、添加すべき水分量を演算し、更に、この水分量を混
練用の1次水と冷却用の2次水とに振り分けて、添加水
量を調整するようにしている。以下、この添加水量の調
整について説明する。尚、本実施例では、真空混練時、
新砂を加えることなく、鋳物砂としては回収砂のみを計
量ホッパ2内に投入して混練を行った。
In the present embodiment, as described above, the casting sand (mainly recovered sand) in the mixer 1 before vacuum kneading detected by the FK sensor 5 with respect to the preset target value of the sand strength of the regenerated sand is set. ) Set the water content of the reclaimed sand based on the temperature of
Based on the set target water content and the water content of the molding sand in the mixer 1 before vacuum kneading detected by the FK sensor 5, the water content to be added is calculated, and this water content is used for kneading. The amount of added water is adjusted by distributing the primary water and the secondary water for cooling. Hereinafter, the adjustment of the amount of added water will be described. In this example, during vacuum kneading,
Only the recovered sand was cast into the weighing hopper 2 as the casting sand and kneading was performed without adding new sand.

【0026】まず、再生砂の砂強度(つまり、再生砂で
造形した生型の抗圧力)の目標値を予め設定する。本実
施例では、この抗圧力の目標値を、例えば2.0kgf
/cm2に設定した。尚、実際には、1.8Kgf/cm
2程度の抗圧力があれば鋳込みには十分である。この抗
圧力の目標値に対して、真空混練前のミキサー1内の鋳
物砂(本実施例では回収砂)の温度に基づいて再生砂の
含水量を設定する。
First, the target value of the sand strength of the recycled sand (that is, the coercive pressure of the green mold formed from the recycled sand) is set in advance. In this embodiment, the target value of the coercive pressure is, for example, 2.0 kgf.
/ Cm 2 . Actually, 1.8 Kgf / cm
A coercive pressure of about 2 is sufficient for casting. With respect to this target value of the coercive pressure, the water content of the reclaimed sand is set based on the temperature of the foundry sand (recovered sand in this embodiment) in the mixer 1 before vacuum kneading.

【0027】すなわち、図5のグラフに関連して上述し
たところから明らかなように、真空混練した場合には、
混練後の再生砂の含水量が同じでも、真空混練前の槽内
の鋳物砂の温度が高くなるほど生型の抗圧力は高くなる
のであるが、図5のグラフと同様のデータを、真空混練
前の槽内の鋳物砂(回収砂)の温度を一定の刻みで種々
変えて基礎データとして採取しておき、FKセンサ5で
上記温度を検出して上記基礎データと対照することによ
り、この検出温度に応じて混練後の再生砂の含水量の目
標値を設定することができる。
That is, as is apparent from the above description with reference to the graph of FIG. 5, when vacuum kneading is performed,
Even if the water content of the reclaimed sand after kneading is the same, the coercive pressure of the green mold becomes higher as the temperature of the foundry sand in the tank before vacuum kneading becomes higher. The temperature of the foundry sand (recovered sand) in the previous tank is variously changed at fixed intervals and collected as basic data, and the FK sensor 5 detects the temperature and compares it with the basic data to detect the temperature. A target value of the water content of the reclaimed sand after kneading can be set according to the temperature.

【0028】そして、この設定した含水量の目標値を制
御ユニット30に入力する。尚、この代わりに、上記基
礎データを予め制御ユニット30内のメモリに入力して
記憶させておき、制御ユニット30へ入力する目標値と
しては再生砂の抗圧力の目標値を入力し、FKセンサ5
の検出温度と上記基礎データとの対照、および再生砂の
含水量の目標値の設定を制御ユニット30内で自動的に
行わせることもできる。該制御ユニット30は、上記の
ように設定された再生砂の含水量の目標値と、FKセン
サ5で検出された真空混練前の槽内の鋳物砂(回収砂)
の含水量とから、真空ミキサー1内に添加すべき水の総
量を演算する。
Then, the target value of the set water content is input to the control unit 30. Instead of this, the basic data is input and stored in advance in the memory of the control unit 30, and the target value of the coercive pressure of the reclaimed sand is input as the target value to be input to the control unit 30. 5
It is also possible to automatically set the target value of the water content of the reclaimed sand in the control unit 30 by contrasting the detected temperature with the basic data. The control unit 30 controls the target value of the water content of the reclaimed sand set as described above and the casting sand (recovered sand) in the tank before vacuum kneading detected by the FK sensor 5.
Then, the total amount of water to be added to the vacuum mixer 1 is calculated from the water content.

【0029】真空ミキサー1での冷却温度を設定すれば
(換言すれば、真空混練時のミキサー1内の真空度を設
定すれば)真空混練前の槽内の鋳物砂(回収砂)の温度
と冷却用として添加すべき2次水(冷却水)の添加率と
の間には一定の関係がある。この両者の関係の一例を図
4に示す。図4の直線Aで示すグラフは、真空ミキサー
1内での冷却温度を40℃に設定(つまり、真空ミキサ
ー1内の真空度を74hpaに設定)した場合のもので
あり、この設定値を種々変更することにより、直線Aに
平行な一群のグラフが得られる。尚、2次水として添加
すべき冷却水量の計算式(つまり、冷却処理前後のエネ
ルギ式)を以下に示す。
By setting the cooling temperature in the vacuum mixer 1 (in other words, by setting the degree of vacuum in the mixer 1 at the time of vacuum kneading), the temperature of the foundry sand (recovered sand) in the tank before vacuum kneading and There is a certain relationship with the addition rate of secondary water (cooling water) to be added for cooling. An example of the relationship between the two is shown in FIG. The graph indicated by the straight line A in FIG. 4 is a case where the cooling temperature in the vacuum mixer 1 is set to 40 ° C. (that is, the degree of vacuum in the vacuum mixer 1 is set to 74 hpa). By changing, a group of graphs parallel to the straight line A is obtained. The calculation formula of the amount of cooling water to be added as secondary water (that is, the energy formula before and after the cooling treatment) is shown below.

【0030】P・t+Ms・Cps・T1+Mw,X1・C
w・T1+Mw,△X・Cw・Tw+Mw,k・Cw・Tw=
Ms・Cps・T2+Mw,X2・Cw・T2+Mw,△X・
Cw・T2+Mw,k・(Cw・Tsa+△Hv(Ts
a))+Qab 上式において、各符号はそれぞれ以下の事項を表してい
る。 ・Kw :ミキサー動力 ・P :ミキサーモータに加えられるエネルギ ・t :混練時間 ・M :回収砂重量 ・X1 :回収砂水分値 ・Ms :回収砂乾燥重量[M・(1−X1/10
0)] ・Cps:砂の比熱 ・T1 :回収砂温度 ・Mw,X1:回収砂水分重量[M・X1/100] ・Cw :水の比熱 ・X2 :目標水分値 ・Mw,△X:加湿水重量[X2/100・M−Mw,X
1] ・Tw :加湿水温度 ・Mw,k:冷却水重量 ・T2 :目標砂温度 ・Tsa:平均蒸発温度[(T1+T2)/2] ・△Hv:蒸発潜熱[蒸発温度の関数] ・Qab:ミキサーよりの放熱量
P • t + Ms • Cps • T1 + Mw, X1 • C
w ・ T1 + Mw, △ X ・ Cw ・ Tw + Mw, k ・ Cw ・ Tw =
Ms ・ Cps ・ T2 + Mw, X2 ・ Cw ・ T2 + Mw, △ X ・
Cw ・ T2 + Mw, k ・ (Cw ・ Tsa + ΔHv (Ts
a)) + Qab In the above equation, each symbol represents the following items. -Kw: mixer power-P: energy applied to the mixer motor-t: kneading time-M: recovered sand weight-X1: recovered sand moisture value-Ms: recovered sand dry weight [M- (1-X1 / 10
0)]-Cps: Specific heat of sand-T1: Temperature of recovered sand-Mw, X1: Weight of recovered sand moisture [M · X1 / 100] -Cw: Specific heat of water-X2: Target moisture value-Mw, ΔX: Humidification Water weight [X2 / 100 ・ M-Mw, X
1] -Tw: Humidification water temperature-Mw, k: Cooling water weight-T2: Target sand temperature-Tsa: Average evaporation temperature [(T1 + T2) / 2] -Hv: Latent heat of evaporation [function of evaporation temperature] -Qab: Heat dissipation from mixer

【0031】従って、FKセンサ5で検出された回収砂
の温度と上記データとから、2次水として添加すべき冷
却水の量が演算できる。そして、添加すべき水の総量と
この冷却水量とから、混練用として添加すべき2次水の
量が演算される。このようにして、添加すべき水の総量
と、この水の混練用(1次水)および冷却用(2次水)
への割り振りを最適に調整することができるのである。
Therefore, the amount of cooling water to be added as secondary water can be calculated from the temperature of the recovered sand detected by the FK sensor 5 and the above data. Then, the amount of secondary water to be added for kneading is calculated from the total amount of water to be added and this cooling water amount. In this way, the total amount of water to be added, as well as for kneading this water (primary water) and for cooling (secondary water)
Can be optimally adjusted.

【0032】以上、説明したように、本実施例によれ
ば、再生砂の含水量と砂強度との関係データ,目標冷却
温度における真空混練前の槽内の鋳物砂(回収砂)の温
度と冷却水添加量との関係データおよび真空混練前の槽
内の鋳物砂(回収砂)の含水量に基づいて、上記水供給
装置10による真空ミキサー1内への水の供給量を制御
することができる。すなわち、真空混練前の槽内の鋳物
砂(回収砂)の温度を添加水量調整時の制御ファクタと
して取り込むことができ、単に、含水量と砂強度との関
係に基づいて添加水量を設定していた従来に比べて、再
生砂の品質をより安定したものとすることができる。こ
の結果、鋳型(生型)強度をより均一に維持することが
でき、鋳造時の欠陥の減少および鋳造品の寸法精度の向
上に寄与することができる。また、添加すべき水の総量
と、この水の混練用および冷却用への割り振りを最適に
調整することができるのである。
As described above, according to this embodiment, the relational data between the water content of the reclaimed sand and the sand strength, the temperature of the casting sand (recovered sand) in the tank before the vacuum kneading at the target cooling temperature, and It is possible to control the amount of water supplied to the vacuum mixer 1 by the water supply device 10 based on the relational data with the amount of cooling water added and the water content of foundry sand (recovered sand) in the tank before vacuum kneading. it can. That is, the temperature of the foundry sand (recovered sand) in the tank before vacuum kneading can be taken in as a control factor when adjusting the amount of added water, and the amount of added water is simply set based on the relationship between water content and sand strength. In addition, the quality of the reclaimed sand can be made more stable than in the past. As a result, the strength of the mold (green mold) can be maintained more uniformly, which can contribute to reduction of defects during casting and improvement of dimensional accuracy of the cast product. Further, the total amount of water to be added and the allocation of this water for kneading and cooling can be optimally adjusted.

【0033】尚、本発明は、以上の実施態様に限定され
るものではなく、その要旨を逸脱しない範囲において、
種々の改良あるいは設計上の変更が可能であることは言
うまでもない。
The present invention is not limited to the above-described embodiment, but may be modified without departing from the scope of the invention.
It goes without saying that various improvements or design changes are possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例に係る鋳物砂再生装置の全体
構成を概略的に示す説明図である。
FIG. 1 is an explanatory view schematically showing an overall configuration of a foundry sand reclamation apparatus according to an embodiment of the present invention.

【図2】 上記再生装置の真空ミキサー及び水の供給制
御を示す拡大説明図である。
FIG. 2 is an enlarged explanatory diagram showing a vacuum mixer and water supply control of the regeneration device.

【図3】 上記再生装置の作動を説明するためのタイム
チャートである。
FIG. 3 is a time chart for explaining the operation of the playback device.

【図4】 回収砂の温度と冷却水の添加率との関係を示
すグラフである。
FIG. 4 is a graph showing the relationship between the temperature of recovered sand and the addition rate of cooling water.

【図5】 再生砂の含水量と生型の抗圧力との関係をを
示すグラフである。
FIG. 5 is a graph showing the relationship between the water content of reclaimed sand and the coercive pressure of green mold.

【符号の説明】[Explanation of symbols]

1…真空ミキサー 5…FKセンサ 10…水供給装置 30…制御ユニット 1 ... Vacuum mixer 5 ... FK sensor 10 ... Water supply device 30 ... Control unit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 真空混練槽内に回収鋳物砂を投入し、水
および粘結剤を添加して混練することにより上記回収鋳
物砂を再生する鋳物砂の再生方法であって、 再生砂の砂強度の目標値を予め設定し、該目標値に対
し、真空混練前の槽内の鋳物砂の温度に基づいて水の添
加量を調整することを特徴とする鋳物砂の再生方法。
1. A method for reclaiming foundry sand by throwing recovered foundry sand into a vacuum kneading tank, adding water and a binder and kneading the reclaimed foundry sand. A method for reclaiming a molding sand, wherein a target value of strength is set in advance, and the amount of water added is adjusted based on the temperature of the molding sand in the tank before vacuum kneading.
【請求項2】 上記水の添加量は、再生砂の含水量と砂
強度との関係データ,目標冷却温度における真空混練前
の槽内の鋳物砂の温度と冷却水添加量との関係データお
よび真空混練前の槽内の鋳物砂の含水量に基づいて調整
されることを特徴とする請求項1記載の鋳物砂の再生方
法。
2. The amount of water added is the relational data between the water content of the reclaimed sand and the sand strength, the relational data between the temperature of the molding sand in the tank before vacuum kneading at the target cooling temperature and the amount of cooling water added, and The method for reclaiming foundry sand according to claim 1, wherein the method is adjusted based on the water content of the foundry sand in the tank before vacuum kneading.
【請求項3】 内部を所定の真空度に維持した状態で混
練を行い得る真空混錬槽と、該真空混錬槽内に所定量の
回収鋳物砂を供給する回収砂供給装置と、真空混練槽内
に所定量の粘結剤を供給する粘結剤供給装置と、真空混
錬槽内に所定量の水を供給する水供給装置と、真空混練
前の槽内の鋳物砂の温度を検出する温度検出手段と、真
空混練前の槽内の鋳物砂の含水量を検出する含水量検出
手段とを備えるとともに、再生砂の含水量と砂強度との
関係データ,目標冷却温度における真空混練前の槽内の
鋳物砂の温度と冷却水添加量との関係データおよび真空
混練前の槽内の鋳物砂の含水量に基づいて、上記水供給
装置による真空混練槽内への水の供給量を制御する制御
手段を備えたことを特徴とする鋳物砂の再生装置。
3. A vacuum kneading tank capable of kneading while maintaining the inside at a predetermined vacuum degree, a recovered sand supply device for supplying a predetermined amount of recovered molding sand into the vacuum kneading tank, and vacuum kneading A binder supply device that supplies a specified amount of binder into the tank, a water supply device that supplies a specified amount of water into the vacuum kneading tank, and the temperature of the foundry sand in the tank before vacuum kneading is detected. Temperature detection means and water content detection means for detecting the water content of the foundry sand in the tank before vacuum kneading, and the relationship data between the water content of the reclaimed sand and the sand strength, before the vacuum kneading at the target cooling temperature Based on the relationship data between the temperature of the molding sand in the tank and the amount of cooling water added and the water content of the molding sand in the tank before vacuum kneading, the amount of water supplied to the vacuum kneading tank by the water supply device was adjusted. A reclaiming device for foundry sand, comprising a control means for controlling.
JP14873695A 1994-09-30 1995-06-15 Casting sand recycling method and apparatus Expired - Lifetime JP3752269B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP14873695A JP3752269B2 (en) 1995-06-15 1995-06-15 Casting sand recycling method and apparatus
US08/529,758 US5816312A (en) 1994-09-30 1995-09-18 Method of and apparatus for reclaiming foundry sand
KR1019950032012A KR100362782B1 (en) 1994-09-30 1995-09-27 Recycling method and apparatus for casting sand
DE19536803A DE19536803B4 (en) 1994-09-30 1995-10-02 Process and device for the treatment of foundry sand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14873695A JP3752269B2 (en) 1995-06-15 1995-06-15 Casting sand recycling method and apparatus

Publications (2)

Publication Number Publication Date
JPH091283A true JPH091283A (en) 1997-01-07
JP3752269B2 JP3752269B2 (en) 2006-03-08

Family

ID=15459471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14873695A Expired - Lifetime JP3752269B2 (en) 1994-09-30 1995-06-15 Casting sand recycling method and apparatus

Country Status (1)

Country Link
JP (1) JP3752269B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10249482A (en) * 1997-03-10 1998-09-22 Mazda Motor Corp Method for regenerating molding sand

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10249482A (en) * 1997-03-10 1998-09-22 Mazda Motor Corp Method for regenerating molding sand

Also Published As

Publication number Publication date
JP3752269B2 (en) 2006-03-08

Similar Documents

Publication Publication Date Title
JP3030260B2 (en) Casting sand recycling method and apparatus
JP2004219408A5 (en)
JPWO2016199498A1 (en) Mold sand regeneration method and equipment
US4234448A (en) Method and apparatus for treating radioactive waste
CN103934411A (en) PEPSET resin moulding and sand cyclic utilization clean casting technology
US5816312A (en) Method of and apparatus for reclaiming foundry sand
JP3705627B2 (en) Casting sand recycling method and apparatus
JPH091283A (en) Method for reconditioning molding sand and apparatus therefor
CN104587796A (en) Device for recycling organic solvent from industrial waste gas
JP5076250B2 (en) Bean roasting cooling method and apparatus
US2607199A (en) Method of cooling and conveying material
CZ140398A3 (en) Process and apparatus for cold dressing of moulding sand
JP2982629B2 (en) Method and apparatus for adjusting kneading of foundry sand
JP4353596B2 (en) Casting sand kneading adjustment method
EP0404838A1 (en) Method and apparatus for evaporative pattern casting
JPS5815710B2 (en) Waste heat recovery device in sintering equipment
JP4948729B2 (en) Pretreatment method for casting sand for casting and apparatus therefor
JP5361495B2 (en) Foundry sand processing method and foundry sand processing apparatus
JP2933775B2 (en) Coal dust humidification equipment during preheating drying
JP2011194451A (en) System for and method of managing system sand
JP2849674B2 (en) Concrete pre-cooling method
JP3129615B2 (en) Sand casting device for recovered castings
JPH021658B2 (en)
KR100305694B1 (en) Apparatus for controlling concentration of acids separated from circulation tanks in pickling line
JP2002103000A (en) Treatment method for main mold green sand and device therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20050712

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20050715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051212

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term