KR100305694B1 - Apparatus for controlling concentration of acids separated from circulation tanks in pickling line - Google Patents

Apparatus for controlling concentration of acids separated from circulation tanks in pickling line Download PDF

Info

Publication number
KR100305694B1
KR100305694B1 KR1019970034840A KR19970034840A KR100305694B1 KR 100305694 B1 KR100305694 B1 KR 100305694B1 KR 1019970034840 A KR1019970034840 A KR 1019970034840A KR 19970034840 A KR19970034840 A KR 19970034840A KR 100305694 B1 KR100305694 B1 KR 100305694B1
Authority
KR
South Korea
Prior art keywords
acid
valve
nitric acid
acids
circulation
Prior art date
Application number
KR1019970034840A
Other languages
Korean (ko)
Other versions
KR19990011659A (en
Inventor
전장일
배윤수
김영환
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR1019970034840A priority Critical patent/KR100305694B1/en
Publication of KR19990011659A publication Critical patent/KR19990011659A/en
Application granted granted Critical
Publication of KR100305694B1 publication Critical patent/KR100305694B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G3/00Apparatus for cleaning or pickling metallic material
    • C23G3/02Apparatus for cleaning or pickling metallic material for cleaning wires, strips, filaments continuously
    • C23G3/027Associated apparatus, e.g. for pretreating or after-treating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/36Regeneration of waste pickling liquors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PURPOSE: An apparatus for controlling a concentration of acids separated from circulation tanks in a pickling line is provided which prevents deterioration of surface quality of products due to the change of a surface material by removing scale which is a compound of a black and hard iron film and oxygen, thereby producing products of high quality. CONSTITUTION: The apparatus for controlling a concentration of acids separated from circulation tanks in a pickling line is characterized in that first and second circulation tanks(18,19) are installed so that acids passing through nitric acid, hydrofluoric acid and reproduction flow rate meters(2,3,4) are supplied into the first and second circulation tanks(18,19) through respective nitric acid, hydrofluoric acid and reproduction supplying valves(5,6,7,8,9,10), waste acid tanks are installed so that waste acids are discharged into the waste acid tanks through respective waste acid discharging valves(13,14), counters(42,43,44) are connected to separation integrators(27¯32) so that the countered signals together with control signals of input amount setters(21¯26) of each acids are integrated in the respective separation integrators(27¯32) before being outputted after flow rate sensing signals by the flow rate meters(2,3,4) are countered in each of counters(42,43,44), valve separators(35¯37) are connected to valve outputters(39¯41) so that integrating control signals of each of the respective acids are impressed to the valve outputters(39¯41) through the valve separators(35¯37), and the acid supply valves(5,6,7,8,9,10) are connected so that the acid supply valves(5,6,7,8,9,10) of the first and second circulation tanks(18,19) are controlled by selective open/close control signals by the valve outputters(39¯41) of each of the acids.

Description

산세 설비의 순환조 분리 산 농도 제어장치Acid concentration control device for circulation tank separation in pickling facility

본 발명은 제강 및 연주공정을 거친 슬라브를 열간압연후 연속소둔 과정을 거칠 때 발생되는 검고 단단한 피막의 철(Fe)과 산소의 화합물인 스케일을 제거하여 표면재질의 변화로 인한 제품의 표면품질 저하를 방지함으로써 양질의 제품을 생산할 수 있게 하는 산세 설비의 순환조 분리 산농도 제어장치를 제안한다.The present invention is to reduce the surface quality of the product due to the change of the surface material by removing the scale, which is a compound of iron (Fe) and oxygen of the black and hard film generated during the continuous annealing process after hot-rolling the slab subjected to steelmaking and playing process We propose a separate acid concentration control device for the circulation tank of a pickling plant that can produce high quality products by preventing the

스케일층의 두께는 로의 분위기 가스, 산소 함유량, 노의 통과시간 등 작업조건에 따라 다르며 일반적으로 온도가 높을수록 스케일 생산량이 많아진다.The thickness of the scale layer depends on the working conditions such as the atmosphere gas of the furnace, the oxygen content and the passage time of the furnace. In general, the higher the temperature, the larger the scale production.

표면재질의 변화로 제품의 표면품질의 저하요인을 제거하여 양질의 제품을 생산하기 위하여는 혼산(H제3(질산)+HF(불산))을 사용하여 화학반응에 의해 스트립표면의 산소 화합물, 즉 스케일을 제거한다.In order to change the surface of the material by removing the deterioration of the surface quality of the product to produce a quality product is oxygen The compounds of the strip surface by a chemical reaction with the mixed acid (H 3 (nitrate) + HF (hydrofluoric acid)), That is, remove the scale.

이때의 화학반응은 아래와 같다.The chemical reaction at this time is as follows.

Figure kpo00000
Figure kpo00000

스케일층을 제거하기 위하여 설계된 산세설비의 가장 핵심적은 순환조(HF +H제3)의 산 농도관리에 있어서 HNO3(질산)용액은 직접적인 스케일 용해성은 없고 Fe2O3가 HF(불산)용액에 용해되지 못하므로 2가인 Fe를 3가인 Fe로 환원시키는 작용을 하고 Cr2O3층을 용해시킨다.In the acid concentration control of the circulating tank (HF + H 3 ), which is the core of pickling equipment designed to remove scale layer, HNO 3 (nitric acid) solution has no direct scale solubility and Fe 2 O 3 is HF (fluoric acid) solution. Because it is not dissolved in the divalent Fe is reduced to trivalent Fe to act to dissolve the Cr 2 O 3 layer.

또한 HF는 질산과의 매개체로서 독성이 강하고 질산과 혼합시 수소가 발생되어 스케일 박리성이 양호하고 금석과 접촉시 FeF3가 형성되어 산화층을 용해시키므로 지철표면에 잔존하는 FeO, Or2O3를 제거함으로써 양호한 산세 효과를 얻는다.In addition, HF is a FeO, Or 2 O 3, which is a nitric acid and mixed in Hydrogen generated a strong toxicity as a mediator of the nitrate scale releasability is good and is formed geumseok and contact with FeF 3 because dissolve the oxide layer remains on the base steel surface A good pickling effect is obtained by removing.

산세작업은 산의종류 및 강종에 따라 산세액의 농도, 온도 및 철분(Metal) 함유량이 적정기준에 맞도록 설정되어야 하며 이를 충족하지 못한 경우에는 산세불량으로 표면결함을 유발 표면품질 향상에 크게 영향을 미치게 된다.The pickling operation should be set up to meet the appropriate standards for the concentration, temperature and iron content of the pickling solution depending on the type of acid and the type of steel. If this is not met, it will cause surface defects due to pickling defects. Get mad.

또한 철분 함유량이 ≒50g/ℓ이상에서는 폐산의 응집현상 및 산회수를 통한 재산처리 불가능을 초래하므로 종래의 산세설비의 산 농도 제어방식인 연동식에서는 산 농도 및 철분농도가 각 순환조별로 균등될 수 없으므로 산세불량으로 인한 표면결함 발생 및 산회수 설비에서의 폐산 처리 불가능 현상을 유발시킨다.In addition, when the iron content is more than ≒ 50g / ℓ, it causes the coagulation phenomenon of waste acid and the property treatment through acid recovery, so that the acid concentration and iron concentration can be equalized in each circulation tank in the linkage type, which is the acid concentration control method of the conventional pickling equipment. This can lead to surface defects due to poor pickling and the inability to treat waste acid in the acid recovery plant.

종래의 순환조 산 농도 방식인 연동식은 도 1에서 보이고 있는 것처럼, 제2 순환조(19)의 질산 유량을 질산밸브(8)을 조절하여 질산유량계(2)의 검출된 양으로 투입되고 불산 유량은 불산밸브(9)을 조절하여 불산유량계(3)의 검출된 양으로 투입된다.As shown in FIG. 1, the peristaltic system, which is a conventional circulation acid concentration method, is injected into the detected amount of the nitric acid flow meter 2 by adjusting the nitrate valve 8 to adjust the nitric acid flow rate of the second circulation tank 19. Is adjusted to the detected amount of the hydrofluoric acid flowmeter 3 by adjusting the hydrofluoric acid valve 9.

재생산은 재생산밸브(10)을 조절하여 재생산유량계(4)의 검출된 양으로 재생산이 투입되어 스트립 산세조 펌프(12)에서 스트립 산세조(1)로 공급되며 산세조(1)에서 스트립을 산세한 혼산은 다시 산 드레인 라인(11)을 통해 제2 순환조(19)로 재 순환된다.The regeneration is controlled by the regeneration valve 10, and the regeneration is input to the detected amount of the regeneration flowmeter 4, and the strip pickling pump 12 is supplied to the strip pickling tank 1, and the pickling strip 1 is pickled. One mixed acid is again circulated through the acid drain line 11 to the second circulation tank 19.

이렇게 스트립을 산세한 혼산은 제2 순환조(19)의 레벨제어에 의해 제2 순환조의 연동밸브(15)를 통해 제1 순환조(18)로 이송되어져서 제2 순환조와 같은 방법으로 스트립 산세조 펌프(12)에서 스트립 산세조로 공급되며 산세조에서 스트립를 산세한 혼산은 다시 산 드레인 라인(11)을 통해 제1 순환조(18)로 재 순환되고 제1 순환조의 레벨제어에 의한 폐산배출 밸브(16)를 통해 아래 표 1의 스테인레스 산세설비의 일반적인 산 농도 및 금속농도 관리 기준이에 따라 제어 처리된다.The mixed acid in which the strip is pickled is transferred to the first circulation tank 18 through the peristaltic valve 15 of the second circulation tank by the level control of the second circulation tank 19, and the strip pickling is performed in the same manner as the second circulation tank. The mixed acid which is supplied from the tank pump 12 to the strip pickling tank and pickled the strip in the pickling tank is recirculated back to the first circulation tank 18 through the acid drain line 11 and the waste acid discharge valve by the level control of the first circulation tank. Through (16), the general acid and metal concentration control standards for stainless pickling equipment in Table 1 below are controlled according to this standard.

농 도 별Concentration 관 리 치Guan Li 실 적 치Performance 제1 순환조The first circulation 제2 순환조2nd circulation HNO3HNO3 180±20g/ℓ180 ± 20g / ℓ 160±20g/ℓ160 ± 20g / ℓ 190±20g/ℓ190 ± 20g / ℓ HFHF 30± 5g/ℓ30 ± 5g / 25± 5g/ℓ25 ± 5g / 35± 5g/ℓ35 ± 5g / ℓ HNO3HNO3 30± 5g/ℓ30 ± 5g / 45±10g/ℓ45 ± 10g / ℓ 30± 5g/ℓ30 ± 5g / ℓ

이와같은 제1 순환조와 제2 순환조 연동식 산 농도제어 방식에서는 항상 제1 순환조에는 산농도 저하 및 금속(철) 농도가 증가되고, 제2 순환조에는 산 농도 증가 및 금속 농도가 감소하는 악 순환이 계속 되어 진다는 문제점을 가지고 있다.In such a first circulation tank and a second circulation tank-type acid concentration control method, the acid concentration decreases and the metal (iron) concentration increases in the first circulation tank, and the acid concentration increases and the metal concentration decreases in the second circulation tank. There is a problem that the evil cycle continues.

본 발명의 목적은 제1, 제2 순환조를 가진 산세설비에서 각각의 순환조의 산 농도 및 금속 농도 관리를 균등하게 함으로써 산 농도 불량으로 인한 생산 제품에 대한 표면 품질 결함을 방지하고 금속 농도 증가에 따른 폐산 응집을 방지함과 동시에 산 소모량을 절감할 수 있게하는 산세 설비의 순환조 분리 산농도 제어장치를 제공하는데 있다.An object of the present invention is to equalize the acid concentration and metal concentration management of each circulation tank in a pickling facility having first and second circulation tanks, thereby preventing surface quality defects on the produced product due to poor acid concentration and increasing the metal concentration. It is to provide a separate acid concentration control device for the circulation tank of the pickling plant to prevent the acid condensation and reduce the acid consumption.

본 발명의 특징은 혼산을 사용하여 화학반응에 의해 스트립 표면의 스케일을 제거하기 위하여 설계된 산세설비의 가장 핵심적인 순환조의 산 농도관리에 있어 제1 순환조와 제2 순환조의 산 농도가 균등해지도록 제1 순환조와 제2 순환조의 산 농도를 개별적으로 관리하여 각 순환조의 산 농도 및 금속 농도를 균일하게 유지시킴으로써 산 소모량 감소 및 산 회수의 효과를 증대시킬 수 있는 제어장치에 있다.The present invention is characterized in that the acid concentrations of the first and second circulation tanks are equalized in the acid concentration management of the most essential circulation tank of the pickling plant designed to remove the scale of the strip surface by chemical reaction using mixed acid. The present invention provides a control device capable of increasing the effect of reducing acid consumption and acid recovery by maintaining acid concentrations and metal concentrations in each circulation tank separately by separately managing the acid concentrations of the first circulation tank and the second circulation tank.

도 1은 종래의 연동식 산 농도 제어장치의 구성도이다.1 is a block diagram of a conventional peristaltic acid concentration control device.

도 2는 본 발명에 따른 순환조 분리 산 농도 제어장치의 구성도이다.2 is a block diagram of the circulation tank separated acid concentration control apparatus according to the present invention.

도 3은 본 발명의 동작과정을 설명하기 위한 유량 분리 적산 제어단계의 흐름도이다.3 is a flow chart of a flow separation integration control step for explaining the operation of the present invention.

도 4는 본 발명의 설명을 위한 타임챠트이다.4 is a time chart for explaining the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

1: 스트립 산세조 2: 질산유량계1: strip pickling bath 2: nitrate flowmeter

3: 불산 유량계 4: 재생산 유량계3: hydrofluoric acid flow meter 4: regeneration flow meter

5: 제1 순환조 질산 공급밸브 6: 제1 순환조 불산 공급밸브5: 1st circulation tank nitric acid supply valve 6: 1st circulation tank hydrofluoric acid supply valve

7: 제1 순환조 재생산 공급밸브 8: 제2 순환조 질산 공급밸브7: 1st circulation tank regeneration supply valve 8: 2nd circulation tank nitric acid supply valve

9: 제2 순환조 불산 공급밸브 10: 제2 순환조 재생산 공급밸브9: second circulation tank hydrofluoric acid supply valve 10: second circulation tank reproduction valve

11: 드레인 라인 12: 펌프11: drain line 12: pump

13: 제1 순환조 배출밸브 14: 제2 순환조 배출밸브13: 1st circulation tank discharge valve 14: 2nd circulation tank discharge valve

15: 제2 순환조 연동밸브 16: 제1 순환조 연동 배출밸브15: 2nd circulation tank peristaltic valve 16: 1st circulation tank peristaltic discharge valve

17: 산 농도 제어 장치 18: 제1 순환조 탱크레벨계17: acid concentration control device 18: first circulation tank level gauge

19: 제2 순환조 탱크레벨계19: second circulation tank level gauge

이하에서는 첨부한 도면을 참고로하여 본 발명을 설명한다.Hereinafter, with reference to the accompanying drawings will be described the present invention.

본 발명은 스테인레스 소둔산세공장 및 일반 산세공장 산세설비의 산농도 및 금속 농도 관리를 각 순환조별로 관리하는 산세설비의 순환조 분리 산 농도 제어장치이다.The present invention is a circulating tank separated acid concentration control device of the pickling facility for managing the acid concentration and metal concentration management of the stainless annealing pickling plant and the general pickling plant pickling equipment for each circulation tank.

도 2의 제1 순환조(18)에는 질산 유량을 제어하는 질산 공급밸브(5), 불산 유량을 제어하는 불산 공급밸브(6), 재생산 유량을 제어하는 재생산 공급밸브(7), 폐산을 제어하는 폐산 배출밸브(13)가 제1 순환조의 산농도 및 금속농도 관리를 목적으로 설치된다.The first circulation tank 18 of FIG. 2 has a nitric acid supply valve 5 for controlling the nitric acid flow rate, a hydrofluoric acid supply valve 6 for controlling the hydrofluoric acid flow rate, a regeneration supply valve 7 for controlling the regeneration flow rate, and waste acid control. The waste acid discharge valve 13 is installed for the purpose of managing the acid concentration and the metal concentration of the first circulation tank.

제2 순환조(19)에는 질산 유량을 제어하는 질산 공급밸브(8), 불산 유량을 제어하는 불산 공급밸브(9), 재생산 유량을 제어하는 재생산 공급밸브(10), 폐산을 제어하는 폐산 배출밸브(14)가 제2 순환조의 산농도 및 금속 농도 관리를 목적으로 설치된다.The second circulation tank 19 has a nitric acid supply valve 8 for controlling the nitric acid flow rate, a hydrofluoric acid supply valve 9 for controlling the hydrofluoric acid flow rate, a regeneration supply valve 10 for controlling the regeneration flow rate, and waste acid discharge controlling the waste acid. The valve 14 is provided for the purpose of acid concentration and metal concentration management of the second circulation tank.

또한 각 산의 유량을 검출하는 질산 유량계(2), 불산유량계(3), 재생산 유량계(4)는 각 순환조(18,19)의 유량을 측정하는 수단으로 제공된다.In addition, the nitric acid flowmeter 2, the hydrofluoric acid flowmeter 3, and the regeneration flowmeter 4 which detect the flow volume of each acid are provided as a means for measuring the flow volume of each circulation tank 18,19.

제1,2 순환조(18,19)에는 질산,불산,재생산 유량계(2,3,4)를 통한 산들이 각각의 질산,불산,재생산 공급용 밸브(5.6.7),(8,9,10)를 통해 공급되게 설치하고 폐산저장탱크에는 각각의 폐산 배출용 밸브(13),(14)를 통해 폐산이 배출되게 설치한다.In the first and second circulation tanks 18 and 19, acids through nitric acid, hydrofluoric acid, and reflow flowmeters 2, 3, and 4 are respectively applied to nitric acid, hydrofluoric acid, and reproducing supply valves (5.6.7), (8, 9, 10) is installed to be supplied through the waste acid storage tank is installed so that the waste acid is discharged through each of the waste acid discharge valves (13), (14).

상기 유량계(2,3,4)에 의한 유량감지 신호는 각각의 적산계(42,43,44)에서 적산처리된후 각 산들의 투입량 설정기(21-26)의 제어신호와 함께 각각의 분리 적산기(27-32)에서 적산 처리되어 출력되게 연결한다.The flow rate detection signals by the flow meters (2, 3, 4) are integrated in each of the totalizers (42, 43, 44), and then separately separated together with the control signals of the input amount setters 21-26 of each acid. The devices 27-32 are integrated and connected to output.

각 산들의 적산제어 신호들은 밸브분리기(35-37)르 통하여 밸브 출력기(39-41)로 인가되게 연결한다.Integration control signals of the respective mountains are connected to the valve output unit 39-41 via the valve separator 35-37.

상기 각 산의 밸브 출력기들에 의한 선택적인 오픈/클로즈 제어신호에 의해 상기 제1,2 순환조(18,19)의 산 공급용 밸브(5.6.7),(8,9,10)가 제어되게 연결하여 산세 설비의 순환조 분리 산농도 제어장치를 구성한다.The acid supply valves (5.6.7), (8, 9, 10) of the first and second circulation tanks (18, 19) are controlled by an optional open / close control signal by the valve outputs of the respective mountains. It is connected to form an acid concentration control device separate from the circulation tank of the pickling facility.

이와 같은 본 발명 장치에서의 질산 투입방법에 대한 설명을 도 4의 타임챠트에 참조하여 설명한다.Such a description of the nitric acid input method in the present invention will be described with reference to the time chart of FIG. 4.

제1 질산 투입량 설정기(21)에 설정된 량과 제2 질산투입량설정기(22)에 설정된 량은 제1질산분리적산기(27) 및 제2 질산분리적산기(27) 및 제2질산분리적산기(28)에 설정값으로 처리된 후 투입시간설정부(33)의 설정값을 인지하고 질산적산계(42), 제1질산적산계(45) 및 제2질산적산계(46)를 초기화 시킨 후 질산밸브분리기(35)에 제공되며 투입시간지령부(34)는 투입시간을 자동적으로 계산한다.The amount set in the first nitric acid input setter 21 and the amount set in the second nitric acid input setter 22 are separated by the first nitric acid separate accumulator 27 and the second nitric acid separate accumulator 27 and the second nitric acid separator. After processing the setting value in the integrator 28 and recognizing the setting value of the input time setting unit 33 and initializing the nitrate accumulator 42, the first nitrate accumulator 45 and the second nitrate accumulator 46, It is provided to the nitric acid valve separator 35 and the input time command unit 34 automatically calculates the input time.

이에따라 질산밸브분리기(35)는 밸브 투입시간 설정부(38)의 설정값을 인지하고 질산밸브분리기(35)의 선택에 의해 질산밸브출력기(39)는 제1질산밸브(5) 및 제2질산밸브(8)을 오픈시키고 클로즈시킨다.Accordingly, the nitric acid valve separator 35 recognizes the set value of the valve closing time setting unit 38, and the nitric acid valve output unit 39 selects the first nitric acid valve 5 and the second nitric acid by the selection of the nitric acid valve separator 35. Open and close valve (8).

질산밸브 분리기(35)의 선택에 의해 제1 질산밸브(5)가 오픈되면 질산분리 적산기(27,28)는 제1 질산적산계(45)에 질산유량계(2)에서 검출된 유량을 질산적산계(42)을 통하여 적산하기 시작한다.When the first nitric acid valve 5 is opened by the selection of the nitric acid valve separator 35, the nitric acid separation accumulators 27 and 28 adjust the flow rate detected by the nitric acid flow meter 2 to the first nitric acid accumulator 45. Integration begins at 42.

이때 제1 질산적산계(45)는 적산되고 있는 량을 제1 질산분리기(27)로 피드백 시킴으로서 제1 질산분리기(27)는 연속적으로 제1 질산 투입량 설정기(21)와 적산량을 비교한다.At this time, the first nitric acid totalizer 45 feeds the accumulated amount back to the first nitric acid separator 27 so that the first nitric acid separator 27 continuously compares the integrated amount with the first nitric acid input setter 21.

만약에 설정량과 투입량이 같아지면 제1 질산 분리기(21)와 적산량을 비교한다.If the set amount and the input amount are the same, the first nitric acid separator 21 and the integrated amount are compared.

만약에 설정량과 투입량이 같아지며 제1 질산 분리기(27)는 연속적으로 제1질산 투입량 설정기(21)와 적산량을 비교한다.If the set amount is equal to the input amount, the first nitric acid separator 27 continuously compares the integrated amount with the first nitric acid input amount setter 21.

만약에 설정량과 투입량이 같아지면 제1 질산분리기(27)는 질산밸브 분리기(35)에 지령하여 밸브 투입시간 설정값(38)에 관계없이 제1 질산밸브(5)를 클로즈시킨다.If the set amount and the input amount are the same, the first nitric acid separator 27 instructs the nitric acid valve separator 35 to close the first nitric acid valve 5 regardless of the valve input time set value 38.

만약에 설정량이 투입량보다 클 경우 질산밸브 분리기(35)는 밸브 투입시간설정값(38)을 처리한 후 제1 질산밸브(5)를 클로즈 시킨다.If the set amount is larger than the input amount, the nitric acid valve separator 35 closes the first nitric acid valve 5 after processing the valve input time set value 38.

이에따라 질산분리 적산기(27, 28)는 제1 질산적산계(45)의 적산을 멈추게 하고 질산적산계(42)를 초기화 시키며 제1 질산적산계(45)는 현재의 적산값을 그대로 유지시킨다.Accordingly, the nitric acid splitting accumulators 27 and 28 stop the integration of the first nitric acid accumulator 45 and initialize the nitric acid accumulator 42 and the first nitric acid accumulator 45 maintains the current integrated value.

질산밸브 분리기(35)의 선택에 의해 제2 질산밸브(8)가 오픈되면 질산분리적산기(27, 28)는 제2 질산적산계(46)에 질산유량계(2)에서 검출된 유량을 초기화된 질산적산계(42)을 통하여 적산하기 시작한다.When the second nitric acid valve 8 is opened by selection of the nitric acid valve separator 35, the nitric acid separation accumulators 27 and 28 initialize the flow rate detected by the nitric acid flowmeter 2 to the second nitric acid accumulator 46. Integration is started through the nitric acid totalizer 42.

이때에도 제1 질산적산계(45)와 같이 제2 질산적산계(46)는 적산되고 있는 량을 제2 질산분리기(28)로 피드백 시킴으로 제2 질산분리기(28)는 연속적으로 제2 질산투입량 설정기(22)와 적산량을 비교한다.In this case, like the first nitric acid totalizer 45, the second nitric acid totalizer 46 feeds back the accumulated amount to the second nitric acid separator 28, so that the second nitric acid separator 28 continuously sets the second nitric acid input amount setter. (22) and accumulated amount are compared.

만약에 설정량과 투입량이 같아지면 제2 질산분리기(28)는 질산밸브 분리기(35)에 지령하여 밸브 투입시간 설정값(38)에 관계없이 제2 질산밸브(5)를 클로즈시킨다.If the set amount and the input amount are the same, the second nitric acid separator 28 commands the nitric acid valve separator 35 to close the second nitric acid valve 5 regardless of the valve input time set value 38.

만약에 설정량이 투입량보다 클 경우 질산밸브 분리기(35)는 밸브투입시 설정값(38)을 처리한 후 제2 질산밸브(8)를 클로즈 시킨다.If the set amount is larger than the input amount, the nitrate valve separator 35 closes the second nitrate valve 8 after processing the set value 38 when the valve is turned on.

이에따라 질산분리 적산기(27, 28)는 제2 질산적산계(46)의 적산을 멈추게 하고 질산적산계(42)를 초기화 시키며 제2 질산적산계(46)는 현재의 적산값을 그대로 유지시킨다.Accordingly, the nitric acid splitting accumulators 27 and 28 stop the integration of the second nitric acid accumulator 46 and initialize the nitric acid accumulator 42 and the second nitric acid accumulator 46 maintains the current integrated value.

이와같이 질산분리 적산기(27, 28)는 투입시간 지령부(34)에서 지령한 시간동안 제1 질산적산계(45) 및 제2 질산적산계(46)를 관리하며, 또한 질산분리기(27, 28)는 항상 질산투입량 설정부(21, 22)와 적산량을 비교하여 설정량과 투입량이 같아지면 투입시간 지령부(34)에서 지령한 시간과 관계없이 질산밸브분리기(35)를 제어하여 제1질산밸브(5) 및 제2질산밸브(8)를 제어한다.In this way, the nitric acid separating accumulators 27 and 28 manage the first nitric acid accumulator 45 and the second nitric acid accumulator 46 for the time commanded by the input time command unit 34, and also the nitric acid separators 27 and 28. Always compares the integrated amount with the nitric acid input amount setting unit (21, 22), and if the set amount and the input amount are the same, the first nitric acid is controlled by controlling the nitric acid valve separator (35) regardless of the time commanded by the input time command unit (34). The valve 5 and the second nitric acid valve 8 are controlled.

또한 질산분리 적산기(27, 28)는 투입시간 지령부(34) 및 밸브 투입시간 설정부(38)의 값을 인지하면서 제1 질산밸브(5) 및 제2 질산밸브(8)를 오픈/클로즈 함으로써 제1 질산적산계(45) 및 제2 질산적산계(46)의 적산값을 유지 및 증가시켜 질산량 투입설정기(21, 22)에서 요구하는 질산량만큼 각 순환조에 투입시킨다.In addition, the nitric acid separation accumulators 27 and 28 open / close the first nitric acid valve 5 and the second nitric acid valve 8 while recognizing values of the input time command part 34 and the valve input time setting part 38. By closing, the integrated values of the first and second nitric acid accumulators 45 and 46 are maintained and increased, and the amount of nitric acid required by the nitric acid amount input setters 21 and 22 is added to each circulation tank.

재생산 투입 방법은 재생산투입에 필요한 제1 재생산 투입량 설정기(25), 제2 재생산 투입량 설정기(26), 제1 재생산 분리 적산기(31), 제2 재생산 적산계(32), 재생산 밸브 분리기(37), 재생산 밸브 출력기(41), 재생산 적산계(44), 제1 재생산 적산계(49), 제2 재생산 적산계(50), 재생산 유량계(4), 제1 재생산 밸브(7), 제2 재생산 밸브(10)가 질산투입 방법과 같은 방식으로 제어되며, 불산투입 방법도 불산투입에 필요한 제1 불산 투입량 설정기(23), 제2 불산투입량 설정기(24), 제1 불산분리 적산기(29), 제2 불산 분리 적산기(30), 불산 밸브 분리기(36), 불산 밸브 출력기(40), 불산 적산계(43), 제1 불산 적산계(47), 제2 불산 적산계(48), 불산 유량계(3), 제1 불산 밸브(6), 제2 불산밸브(9)가 질산투입방법과 같은 방식으로 각 혼산조에 투입된다.The regeneration input method includes a first regeneration input amount setter 25, a second regeneration input amount selector 26, a first regeneration separate accumulator 31, a second regenerator totalizer 32, and a regeneration valve separator ( 37, the regeneration valve output unit 41, the reproduction totalizer 44, the first reproduction totalizer 49, the second reproduction totalizer 50, the reproduction flow meter 4, the first reproduction valve 7, the second reproduction valve (10) is controlled in the same manner as the nitric acid input method, and the hydrofluoric acid input method also includes a first hydrofluoric acid input amount setter 23, a second hydrofluoric acid input amount setter 24, and a first hydrofluoric acid separate accumulator 29 ), The second hydrofluoric acid totalizer 30, the hydrofluoric acid valve separator 36, the hydrofluoric acid valve output unit 40, the hydrofluoric acid totalizer 43, the first hydrofluoric acid totalizer 47, the second hydrofluoric acid totalizer 48, the hydrofluoric acid flow meter (3), the first hydrofluoric acid valve 6 and the second hydrofluoric acid valve 9 are introduced into each mixing tank in the same manner as the nitric acid injection method.

투입시간 설정부(33)는 질산, 불산, 재생산의 투입시간을 관리하며, 투입시간이 완료되면 질산분리적산기(27, 28), 불산분리적산기(29, 30), 재생산분리적산기(31, 32), 투입시간지령부(34) 및 모든적산계(45, 46, 47, 48, 49, 50)를 초기화 시키고 분리적산기(27, 28, 29, 30, 31, 32)에 지령하여 이와같은 방식으로 다시 제어 한다.The input time setting unit 33 manages the input time of nitric acid, hydrofluoric acid, and regeneration, and when the input time is completed, the nitric acid separate accumulators 27 and 28, the hydrofluoric acid separate accumulators 29 and 30, and the regeneration separate accumulator ( 31, 32), input time commander 34 and all totalizers (45, 46, 47, 48, 49, 50) are initialized and commanded to separate totalizers (27, 28, 29, 30, 31, 32). Control again in this way.

도 3은 본 발명 장치의 순환조별 산투입 및 선택과정을 설명하는 흐름도로서, 여기에서 참고되는 바와 같이 산의 수동투입을 선택한 경 제1순환조 및 제2순환조에 수동으로 산을 투입시킬 수 있으며 이 경우 제1질산밸브(5), 제2질산밸브(8)가 동시에 오픈되면 질산유량계(2)에서 검출된 유량을 질산적산계(42)을 통하여 질산분리적산기(27, 28)의 제어에 의해(ⓓ) 제1질산적산계(45), 제2질산적산계(46)에 양분되어 적산되므로 각 순환조에 투입된 적산량을 알 수 있다.Figure 3 is a flow chart illustrating the acid input and selection process for each cycle of the apparatus of the present invention, the acid can be manually added to the first circulation tank and the second circulation tank when the manual injection of the acid is selected as referred to here In this case, when the first nitric acid valve 5 and the second nitric acid valve 8 are open at the same time, the flow rate detected by the nitric acid flowmeter 2 is controlled by the nitric acid accumulator 42 to control the nitric acid separation accumulators 27 and 28. By (ⓓ) the first nitrate totalizer 45, the second nitrate totalizer 46 is bisected and integrated, it is possible to know the amount of integration put into each circulation tank.

재생산 및 불산도 위와같은 방식으로 각각 적산되어지며 그 양을 쉽게 파악할 수 있다.Reproduction and hydrofluoric acid are also integrated in the above manner and the amount can be easily identified.

또한 각 순환조의 폐산배출 밸브(13),(14)는 각 순환조의 레벨제어에 의해 산 투입된 양 만큼 폐산 저장 탱크로 보내어져 상호 간섭없이 산 투입 및 배출이 이루어져 산세설비의 순환조 분리 산 농도제어 및 레벨 제어가 행하여지게 되는 것이다.In addition, the waste acid discharge valves 13 and 14 of each circulation tank are sent to the waste acid storage tank by the amount of acid input by the level control of each circulation tank, and acid input and discharge are performed without mutual interference, so that the separate acid concentration control of the circulation tank of the pickling facility is performed. And level control is performed.

또한 도 3에서 수동/자동 투입을 선택한후 자동투입일 경우 각 순환조의 산투입량을 설정하면 제1 순환조에 질산 및 재생산을 투입하고 제2 순환조에서는 불산을 투입한다.In addition, in the case of automatic input after selecting manual / automatic input in FIG. 3, when the acid input amount of each circulation tank is set, nitric acid and regeneration are introduced into the first circulation tank, and hydrofluoric acid is introduced into the second circulation tank.

제1 순환조에 질산이 투입될때는 절대로 불산은 투입되지 않으며, 또한 제1 순환조에 불산이 투입될 때는 절대로 질산이 투입되지 못한다.When nitric acid is introduced into the first circulation tank, hydrofluoric acid is never added, and when hydrofluoric acid is introduced into the first circulation tank, nitric acid is never input.

이것은 각 순환조의 레벨관리 및 질산, 불산의 화학적 반응관계가 있으므로 투입하지 않으며 재생산은 예외로 된다.This is not related to the level control of each circulation tank and the chemical reaction of nitric acid and hydrofluoric acid, and reproduction is an exception.

이상에서 설명한 바와 같은 본 발명의 산세설비의 순환조 산 분리 제어장치 는 종래의 연동식 산 제어방식에서의 산 농도 및 금속 농도 불균등으로 인한 생산 제품에 대한 표면 품질 결함을 방지하고 또한 폐산 응집을 방지할 수 있게 됨에따라 산 회수를 통한 재산처리 불가능 문제를 방지하고 산 소모량 감소 및 산회수의 효과를 증대시킬 수 있다.As described above, the circulating acid separation control device of the pickling plant of the present invention prevents surface quality defects on the produced product due to acid and metal concentration inequality in the conventional interlocking acid control method and also prevents waste acid aggregation. By doing so, it is possible to prevent the problem of property disposal through acid recovery and to increase the effect of reducing acid consumption and recovery.

Claims (1)

제1,2 순환조(18,19)에는 질산,불산,재생산 유량계(2,3,4)를 통한 산들이 각각의 질산,불산,재생산 공급용 밸브(5.6.7),(8,9,10)를 통해 공급되게 설치하고 폐산저장탱크에는 각각의 폐산 배출용 밸브(13),(14)를 통해 폐산이 배출되게 설치하고, 상기 유량계(2,3,4)에 의한 유량감지 신호는 각각의 적산계(42,43,44)에서 적산처리된후 각 산들의 투입량 설정기(21-26)의 제어신호와 함께 각각의 분리 적산기(27-32)에서 적산 처리되어 출력되게 연결하고, 각 산들의 적산제어 신호들은 밸브분리기(35-37)르 통하여 밸브 출력기(39-41)로 인가되게 연결하고, 상기 각 산의 밸브 출력기들에 의한 선택적인 오픈/클로즈 제어신호에 의해 상기 제1,2 순환조(18,19)의 산 공급용 밸브(5.6.7),(8,9,10)가 제어되게 연결하여 구성한 것을 특징으로 하는 산세 설비의 순환조 분리 산농도 제어장치.In the first and second circulation tanks 18 and 19, acids through nitric acid, hydrofluoric acid, and reflow flowmeters 2, 3, and 4 are respectively applied to nitric acid, hydrofluoric acid, and reproducing supply valves (5.6.7), (8, 9, 10) and installed in the waste acid storage tank so that the waste acid is discharged through each of the waste acid discharge valves 13 and 14, and the flow rate detection signals by the flow meters 2, 3 and 4 are respectively After the integrated process in the totalizer 42, 43, 44 of the integrated with the control signal of the input amount setter (21-26) of each acid is integrated in each separate accumulator (27-32) and connected to each other, The integration control signals of the mountains are connected to the valve outputs 39-41 via the valve separators 35-37, and the first, the open and close control signals by the valve outputs of the respective mountains. 2. A circulation tank separate acid concentration control device for a pickling plant, characterized in that the acid supply valves (5.6.7) and (8, 9, 10) of the circulation tanks (18, 19) are controlled and connected.
KR1019970034840A 1997-07-25 1997-07-25 Apparatus for controlling concentration of acids separated from circulation tanks in pickling line KR100305694B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970034840A KR100305694B1 (en) 1997-07-25 1997-07-25 Apparatus for controlling concentration of acids separated from circulation tanks in pickling line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970034840A KR100305694B1 (en) 1997-07-25 1997-07-25 Apparatus for controlling concentration of acids separated from circulation tanks in pickling line

Publications (2)

Publication Number Publication Date
KR19990011659A KR19990011659A (en) 1999-02-18
KR100305694B1 true KR100305694B1 (en) 2001-10-19

Family

ID=37530172

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970034840A KR100305694B1 (en) 1997-07-25 1997-07-25 Apparatus for controlling concentration of acids separated from circulation tanks in pickling line

Country Status (1)

Country Link
KR (1) KR100305694B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100478660B1 (en) * 2000-12-28 2005-03-23 주식회사 포스코 HCl concentration reducing apparatus by dehumidifing of exhausting gas of acid recycling plant

Also Published As

Publication number Publication date
KR19990011659A (en) 1999-02-18

Similar Documents

Publication Publication Date Title
CN114941055A (en) Method for manufacturing ultra-high cleanliness stainless steel seamless tube for integrated circuit and IC industry manufacturing device, and stainless steel seamless tube
KR100305694B1 (en) Apparatus for controlling concentration of acids separated from circulation tanks in pickling line
CN113361798B (en) Reservoir flood control scheduling method, system and storage medium based on pre-discharge index
CN114774617B (en) Ladle bottom argon blowing control method, device, equipment and medium
CN108823357A (en) A kind of degassing system and its degassing method based on flexible mechanical vacuum pump group
CN116522592A (en) Simulation analysis method and system for determining stage number of multistage countercurrent washing system
CN104775006A (en) Furnace gas analysis model-based decarburization control method of vacuum oxygen decarburization refining
CN113584498B (en) Hot-rolled stainless steel annealing and pickling process and pickling equipment
CN114807596B (en) Batching control method and device for ore heap
CN115232918A (en) Production control method suitable for low-carbon aluminum killed steel
JPH07185586A (en) Batch type sewage treatment device and instrument for measuring concentration of activated sludge
KR100358941B1 (en) Automatic Control of Acid Concentration in Steel Plate Pickling Process
CN113061899A (en) Rinsing system and rinsing method for cold-rolled strip steel acid pickling
US4436289A (en) Method and apparatus for controlling the atmosphere in a carburizing furnace utilizing a cascaded valving system
JPH06126322A (en) Acid concentration control method for jet pickling equipment
KR20010049082A (en) Direct pressure equalizing method of hopper using in blast furnace rising gas
JP2985643B2 (en) Method of estimating carbon concentration in molten steel using RH type vacuum chamber
JP2763967B2 (en) Method and apparatus for controlling acid concentration in jet pickling equipment
JP7405312B1 (en) Vacuum degassing treatment state estimation method, operation method, molten steel manufacturing method, and vacuum degassing treatment state estimation device
JPS6057398B2 (en) Demineralizer group operation status display device
KR19980044846A (en) Pickling solution concentration automatic control device
CN113549924A (en) Strip steel continuous pickling process and pickling equipment
CN117070861A (en) Ultra-low oxygen high-purity austenitic stainless steel and preparation process thereof
KR20010056651A (en) Fast returning method of mill-oil of tendem cold mill
KR100267269B1 (en) The control method of pressure difference

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee