JPH09127617A - Linear light source - Google Patents

Linear light source

Info

Publication number
JPH09127617A
JPH09127617A JP7283107A JP28310795A JPH09127617A JP H09127617 A JPH09127617 A JP H09127617A JP 7283107 A JP7283107 A JP 7283107A JP 28310795 A JP28310795 A JP 28310795A JP H09127617 A JPH09127617 A JP H09127617A
Authority
JP
Japan
Prior art keywords
light
light source
led
light emitting
emitting elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7283107A
Other languages
Japanese (ja)
Inventor
Yoshinobu Suehiro
好伸 末広
Koji Uchida
浩二 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP7283107A priority Critical patent/JPH09127617A/en
Publication of JPH09127617A publication Critical patent/JPH09127617A/en
Pending legal-status Critical Current

Links

Landscapes

  • Facsimile Heads (AREA)
  • Led Device Packages (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Light Sources And Details Of Projection-Printing Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a LED linear light source which is nearly equal in the length of an effective illumination region to the size of a main scanning direction. SOLUTION: A light transparent resin 11 for sealing LED elements 10 is subjected to mirror finishing not only at curved reflection surfaces 12 but at flanks 15 and 16 at both ends as well, by which lateral reflection surfaces are formed. These surfaces are equiv. to the LED elements existing at the mirror image point with respect to the lateral reflection surfaces 15 (or 16) of the LED elements 10. The incident light rays on the lateral reflection surfaces 15, 16 among the light rays emitted from the LED elements 10 existing near the lateral reflection surfaces 15 of the LED wire-shaped light source are reflected at these surfaces and are cast in the final from the radiation surfaces 13 to light receiving surfaces 14. Then, the light rays which are heretofore radiated outside from the flanks at the ends and are not utilized as light sources are effectively utilized by providing the wireshaped light source with the lateral reflection surfaces 15 (or 16).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、複写機やファクシ
ミリの画像読み取り用光源等として用いられるLED線
状光源に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an LED linear light source used as a light source for image reading of a copying machine or a facsimile.

【0002】[0002]

【従来の技術】複写機やファクシミリ等の画像読み取り
用の光源として、従来よりハロゲンランプ等が使用され
ていた。しかし、ハロゲンランプ等を使用した場合は、
発熱量が大きくなる。また、ハロゲンランプを光源とし
てカラー画像の読み取りを行う場合は、光学フィルタを
用いて三原色を取り出す必要があるため、光源に対して
直接電気的に各色の調整や処理を行うことができないと
いった問題がある。このため、最近では、上記のような
欠点のない発光ダイオード(LED)を直線状に配置し
たLED線状光源が、複写機やファクシミリ等の画像読
み取り用光源として使用されている。
2. Description of the Related Art A halogen lamp or the like has been conventionally used as a light source for reading an image in a copying machine or a facsimile. However, when using a halogen lamp etc.,
Generates a large amount of heat. Further, when a color image is read using a halogen lamp as a light source, it is necessary to take out the three primary colors using an optical filter, so there is a problem in that each color cannot be directly electrically adjusted or processed with respect to the light source. is there. For this reason, recently, an LED linear light source in which light emitting diodes (LEDs) having the above-mentioned drawbacks are linearly arranged has been used as a light source for image reading of a copying machine, a facsimile, or the like.

【0003】図7は、従来のLED線状光源を軸に垂直
な面で切った断面図であり、図8は、同じLED線状光
源を軸に平行な面で切った断面図である。従来のLED
線状光源は、図7及び図8に示すように、発光面を同じ
方向に向けて一列に配列した複数の発光素子71と、複
数の発光素子の各々に対応するように設けられた、発光
素子71に電力を供給する複数の一対のリード72a,
72bと、光透過性材料73と、複数の発光素子71の
配列方向を中心軸とする柱面状の反射面74と、複数の
発光素子71の背面側に設けられた放射面75と、を有
する。各発光素子71は、対応するリード72a上に導
電性接着材(不図示)を介して載置されている。また、
各発光素子71は、ワイヤ(不図示)により、対応する
もう一方のリード72bと電気的に接続されている。複
数の一対のリード72a,72bは、光透過性材料73
の両側面方向へ交互に引き出されている。複数の発光素
子71と、複数の一対のリード72a,72bの先端部
とは、光透過性材料73により一体的に封止されてい
る。反射面74及び放射面75は、光透過性材料73の
表面に形成されている。
FIG. 7 is a sectional view of a conventional LED linear light source taken along a plane perpendicular to the axis, and FIG. 8 is a sectional view of the same LED linear light source taken along a plane parallel to the axis. Conventional LED
As shown in FIGS. 7 and 8, the linear light source includes a plurality of light emitting elements 71 arranged in a line with their light emitting surfaces facing in the same direction, and a light emitting element provided corresponding to each of the plurality of light emitting elements. A plurality of pairs of leads 72a for supplying electric power to the element 71,
72b, a light-transmissive material 73, a cylindrical reflecting surface 74 having a central axis in the arrangement direction of the plurality of light emitting elements 71, and a radiation surface 75 provided on the back side of the plurality of light emitting elements 71. Have. Each light emitting element 71 is mounted on the corresponding lead 72a via a conductive adhesive (not shown). Also,
Each light emitting element 71 is electrically connected to the corresponding other lead 72b by a wire (not shown). The plurality of pairs of leads 72a and 72b are made of the light transmissive material 73.
Are pulled out alternately in the direction of both sides. The plurality of light emitting elements 71 and the tips of the plurality of pairs of leads 72a and 72b are integrally sealed with a light transmissive material 73. The reflecting surface 74 and the emitting surface 75 are formed on the surface of the light transmissive material 73.

【0004】上記構成の従来の発光ダイオードは、複数
の発光素子71が発した光の略全光束を柱面状の反射面
74で反射して放射面75から前方へ放射する。上記構
成の従来の発光ダイオードによれば、光の放射方向は、
柱面状の反射面74によって制御されるので、発光素子
が発した光をスポット状(ここでは細い線幅の線状)に
集光したときに、集光効率を高めることができる。した
がって、高い照射光量密度を得ることができる。尚、発
光素子の発光面側に設けられたレンズ面で、光の放射方
向を制御する所謂レンズ型発光ダイオードでも、発光素
子が発した光をスポット状に集光することができるが、
集光効率が低く、したがって高い照射光量を得ることが
できない。
In the conventional light emitting diode having the above-described structure, substantially the entire luminous flux of the light emitted from the plurality of light emitting elements 71 is reflected by the cylindrical reflecting surface 74 and emitted forward from the emitting surface 75. According to the conventional light emitting diode having the above configuration, the light emitting direction is
Since it is controlled by the columnar reflecting surface 74, the light collecting efficiency can be improved when the light emitted from the light emitting element is condensed into a spot shape (here, a linear shape with a narrow line width). Therefore, a high irradiation light quantity density can be obtained. In addition, with a lens surface provided on the light emitting surface side of the light emitting element, a so-called lens type light emitting diode that controls the emission direction of light can also collect the light emitted by the light emitting element in a spot shape.
The light collection efficiency is low, and thus a high irradiation light amount cannot be obtained.

【0005】[0005]

【発明が解決しようとする課題】ところで、LED線状
光源を使用した場合、受光面の任意の位置には、その点
に最も近いLED素子からの光だけでなく、この近傍の
LED素子からの光も照射される。このため、近傍のL
ED素子が少なくなるLED線状光源の端部では、中央
部に比較して照度が低下する。図9は、LED線状光源
の端部における照度が低下する様子を示した図である。
同図において、縦軸は照度、横軸はLED線状光源の主
走査方向xの位置を示す。複写機やファクシミリ等で良
好な画像読み取りを行うためには、照度が中央部の最大
照度Lmax の90%程度以上となる範囲(有効照度領
域)mで使用することが望ましい。このような両端部に
おける照度の低下のため、LED線状光源の有効照度領
域の長さは、LED線状光源の主走査方向の寸法aより
も短くなる。言い換えると、予め決められた長さの有効
照度領域mを得るには、LED線状光源の主走査方向x
における寸法aを、その有効照度領域よりも長くしなけ
ればならない。このことは、小型化、軽量化の要請が強
い複写機やファクシミリ等では望ましくない。
By the way, when an LED linear light source is used, not only the light from the LED element closest to that point, but also from the LED elements in the vicinity of this point, is generated at an arbitrary position on the light receiving surface. Light is also emitted. Therefore, the L
At the end of the LED linear light source where the number of ED elements is small, the illuminance is lower than at the center. FIG. 9 is a diagram showing how the illuminance at the end of the LED linear light source decreases.
In the figure, the vertical axis represents the illuminance and the horizontal axis represents the position of the LED linear light source in the main scanning direction x. In order to perform good image reading with a copying machine, a facsimile or the like, it is desirable to use the illuminance within a range (effective illuminance area) m in which the illuminance is about 90% or more of the maximum illuminance Lmax in the central portion. Due to such a decrease in illuminance at both ends, the length of the effective illuminance region of the LED linear light source becomes shorter than the dimension a of the LED linear light source in the main scanning direction. In other words, in order to obtain the effective illuminance area m having a predetermined length, the main scanning direction x of the LED linear light source is obtained.
The dimension a at must be longer than its effective illumination area. This is not desirable in copying machines, facsimiles, etc., where there is a strong demand for downsizing and weight reduction.

【0006】本発明は、上記事情に基づいてなされたも
のであり、有効照度領域の長さが主走査方向の寸法とほ
ぼ等しいLED線状光源を提供することを目的とするも
のである。
The present invention has been made under the above circumstances, and an object thereof is to provide an LED linear light source in which the length of the effective illuminance area is substantially equal to the dimension in the main scanning direction.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
めの請求項1記載の発明は、所定の間隔で直線状に配列
された複数の発光素子と、前記複数の発光素子を内部に
封止する光透過性樹脂と、前記複数の発光素子から発せ
られた光を反射して、放射面を通って外部の受光面上に
収束するように、前記光透過性樹脂の表面に前記複数の
発光素子の配列方向と平行に形成された柱面状反射面
と、前記発光素子の配列方向と垂直な両側の端部側面に
形成した側面反射面と、を有することを特徴とするもの
である。
According to a first aspect of the present invention for solving the above-mentioned problems, a plurality of light-emitting elements linearly arranged at a predetermined interval and a plurality of the light-emitting elements are sealed inside. The light-transmitting resin that stops and the light emitted from the plurality of light-emitting elements are reflected, and the plurality of light-transmitting resins are provided on the surface of the light-transmitting resin so as to be converged on the external light-receiving surface through the emission surface. It is characterized in that it has a cylindrical reflecting surface formed in parallel with the arrangement direction of the light emitting elements and side reflecting surfaces formed on end side surfaces on both sides perpendicular to the arrangement direction of the light emitting elements. .

【0008】請求項2記載の発明は、請求項1記載の発
明において、前記複数の発光素子を等間隔に配列したこ
とを特徴とするものである。請求項3記載の発明は、請
求項1記載の発明において、前記複数の発光素子を、端
部の間隔が中央部の間隔よりも小さくなるよう配列した
ことを特徴とするものである。
According to a second aspect of the invention, in the first aspect of the invention, the plurality of light emitting elements are arranged at equal intervals. A third aspect of the present invention is characterized in that, in the first aspect of the invention, the plurality of light emitting elements are arranged such that an interval between end portions is smaller than an interval between central portions.

【0009】請求項4記載の発明は、請求項1記載の発
明おいて、前記放射面は平坦面であり、前記柱面状反射
面は、前記放射面における界面屈折を考慮して設計され
たものであることを特徴とするものである。
According to a fourth aspect of the invention, in the first aspect of the invention, the radiation surface is a flat surface, and the cylindrical reflecting surface is designed in consideration of interface refraction on the radiation surface. It is characterized by being a thing.

【0010】[0010]

【作用】本発明は、前記のように、線状光源の光透過性
樹脂の両側の端部側面に側面反射面を形成することによ
って、これらが設けられていない場合に、利用されない
まま端部側面から外部へ放射されていた光が、側面反射
面によって反射されて光透過性樹脂の内部に戻される。
この光は、その後に放射面を通って、或いは、柱面状反
射面で反射されたあとに放射面を通って、外部の受光面
に到達する。したがって、発光素子から発せられた光
は、最終的にほとんどが放射面から放射され、光が有効
に利用される。
As described above, according to the present invention, by forming the side reflection surfaces on the end side surfaces on both sides of the light-transmitting resin of the linear light source, when these are not provided, the end portions are left unused. The light emitted from the side surface to the outside is reflected by the side surface reflecting surface and returned to the inside of the light transmissive resin.
This light then reaches the external light receiving surface through the emitting surface, or after passing through the emitting surface after being reflected by the cylindrical reflecting surface. Therefore, most of the light emitted from the light emitting element is finally emitted from the emission surface, and the light is effectively used.

【0011】また、端部近傍における発光素子の間隔を
中央部よりも小さくすることによって、側面反射面の反
射率が100%に達しないことによる端部の照度の低下
を少なくすることができる。
Further, by making the distance between the light emitting elements in the vicinity of the end portion smaller than that in the central portion, it is possible to reduce a decrease in illuminance at the end portion due to the reflectance of the side reflection surface not reaching 100%.

【0012】[0012]

【発明の実施の形態】以下に図面を参照して、本発明の
一実施形態について説明する。図1は、第一の実施形態
であるLED線状光源の放射面側から見た概略正面図、
図2は、このLED線状光源の概略端部側面図、図3
は、同じくこのLED線状光源の概略長手方向側面図で
ある。図1〜図3に示すLED線状光源は、全長bが約
150mmであり、直線状に多数配列されたLED素子1
0は、約0.3mm角であり、それぞれのLED素子間の
間隔dは2.54mm(0.1インチ)である。各LED
素子10は、電極を兼ねたリード10a上に載置されて
いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic front view of the LED linear light source according to the first embodiment as seen from a radiation surface side,
FIG. 2 is a schematic end side view of this LED linear light source, and FIG.
FIG. 3 is a schematic longitudinal side view of this LED linear light source. The LED linear light source shown in FIGS. 1 to 3 has a total length b of about 150 mm, and has a large number of linearly arranged LED elements 1.
0 is about 0.3 mm square, and the distance d between the respective LED elements is 2.54 mm (0.1 inch). Each LED
The element 10 is mounted on the lead 10a which also serves as an electrode.

【0013】柱面状の反射面12及び放射面13は、正
面から見たときに長手方向の中心軸に沿って略半分近く
が切り欠かれた形状となっている。また、LED素子1
0は、その発光面が柱面状の反射面12の頂部に対向す
るように配置されている。光透過性樹脂11の反射面1
2は、金属蒸着による鏡面加工によって反射面が形成さ
れたものである。この柱面状反射面12によって、LE
D素子10から発せられた光は反射され、放射面13か
ら放射される。放射面13から所定距離(例えば1cm)
だけ離間した位置には、放射面に対向するように読み取
り原稿の受光面14が配置される。この受光面14上に
放射された光が略直線状に収束するように、柱面状反射
面12の曲面形状を設計する。例えば柱面状反射面12
の軸方向に垂直な断面を楕円状とし、その焦点にLED
素子10を配置することができる。但し、このように楕
円状とした場合、放射面と外界との界面における界面屈
折により、収束光を完全なスポット状とすることはでき
ない。したがって、光をスポット状に収束させる必要が
ある用途では、断面形状を界面屈折を考慮した多次曲面
とすることが望ましい。このように、柱面状反射面12
の曲面形状を適当に設計することによって光を収束させ
ることができるので、LED素子10と受光面14の間
に円柱状レンズを設ける必要がないという利点がある。
The cylindrical reflecting surface 12 and the emitting surface 13 have a shape in which approximately half of them are cut out along the central axis in the longitudinal direction when viewed from the front. In addition, the LED element 1
0 is arranged such that its light emitting surface faces the top of the reflecting surface 12 having a columnar shape. Reflective surface 1 of light transmitting resin 11
2 has a reflecting surface formed by mirror finishing by metal deposition. With this columnar reflecting surface 12, LE
The light emitted from the D element 10 is reflected and emitted from the emission surface 13. Predetermined distance from the emitting surface 13 (eg 1 cm)
A light receiving surface 14 of the read document is arranged so as to face the radiation surface at a position spaced apart from each other. The curved surface shape of the cylindrical reflecting surface 12 is designed so that the light emitted on the light receiving surface 14 converges in a substantially linear shape. For example, the cylindrical reflecting surface 12
The cross section perpendicular to the axial direction of the
The element 10 can be arranged. However, in the case of such an elliptical shape, the converged light cannot be made into a perfect spot due to the interface refraction at the interface between the radiation surface and the outside world. Therefore, in applications where it is necessary to converge light in a spot shape, it is desirable that the cross-sectional shape be a multi-dimensional curved surface in consideration of interface refraction. In this way, the cylindrical reflecting surface 12
Since the light can be converged by appropriately designing the curved surface shape, there is an advantage that it is not necessary to provide a cylindrical lens between the LED element 10 and the light receiving surface 14.

【0014】本実施形態では、更に、光透過性樹脂11
の両端の側面15及び16にも柱面状反射面12と同様
の鏡面加工が施され、側面反射面とされている。尚、図
2及び図3に記載した斜線は、柱面状反射面12及び側
面反射面15,16に鏡面加工が施されていることを示
す。次に、本実施形態のLED線状光源の製造方法につ
いて説明する。まず、一方の電極を兼ねたリード10a
に乗せて固定し、他方の電極10bにワイヤボンディン
グした多数のLED素子10を、主走査方向に直線状に
配列し、相互の相対位置を固定する。これを所定の金型
にセットし、上金型と下金型をしめて光透過性を有する
熱硬化性樹脂を充填する。これを加圧した状態で160
°C程度にし、数分間加熱すことによってモールドす
る。その後、硬化した内部の樹脂を放射面13の側より
金型から取り出す。このとき、金型の端部には、モール
ドしたあとの樹脂を金型から取り出し易くするために、
3〜5°程度のテーパーを付けておく。その後、このテ
ーパー部を切削して、両端面15、16を軸と垂直とな
るように加工し、更に研磨して平滑化する。最後に、L
ED素子10の発光面に対向する曲面、及び平滑化した
端面に金属薄膜を蒸着して鏡面とし、柱面状反射面12
及び側面反射面15,16を形成する。したがって、側
面反射面15,16を形成するための特別の工程は必要
とせず、作業工程が増えることはない。
In the present embodiment, the light transmissive resin 11 is further added.
The side surfaces 15 and 16 at both ends are also subjected to the same mirror finishing as the cylindrical reflection surface 12 to form side reflection surfaces. The diagonal lines shown in FIGS. 2 and 3 indicate that the cylindrical reflecting surface 12 and the side reflecting surfaces 15 and 16 are mirror-finished. Next, a method for manufacturing the LED linear light source of this embodiment will be described. First, the lead 10a also serving as one of the electrodes
A large number of LED elements 10 which are mounted on and fixed to the other electrode and wire-bonded to the other electrode 10b are arranged linearly in the main scanning direction, and their relative positions are fixed. This is set in a predetermined mold, the upper mold and the lower mold are closed, and a thermosetting resin having light transparency is filled. 160 with this pressed
Mold by heating to about ° C and heating for several minutes. After that, the cured resin inside is taken out of the mold from the side of the radiation surface 13. At this time, at the end of the mold, in order to make it easier to take out the resin after molding from the mold,
A taper of about 3 to 5 ° is attached. Then, the tapered portion is cut, both end surfaces 15 and 16 are processed so as to be perpendicular to the axis, and further polished and smoothed. Finally, L
A metal thin film is vapor-deposited on the curved surface facing the light emitting surface of the ED element 10 and the smoothed end surface to form a mirror surface, and the columnar reflecting surface 12
And side reflection surfaces 15 and 16 are formed. Therefore, no special process is required to form the side reflection surfaces 15 and 16, and the number of working processes does not increase.

【0015】図4は、本実施形態のLED線状光源に側
面反射面15(及び16)を設けたことによる効果を説
明するための図である。LED線状光源の側面反射面1
5の近傍に位置するLED素子10から発せられた光の
うち、図4(a)の矢印で示す方向に向かう光は、柱面
状反射面12で反射されたあと側面反射面15へ向か
い、ここで更に反射されて、放射面13から放射され、
受光面14に達する。一方、LED素子10から発せら
れた光のうち、図4(b)の矢印で示す方向に向かう光
は、側面反射面15で反射されたあと、柱面状反射面1
2へ向かい、ここで更に反射されて、放射面13から放
射され、受光面14に達する。これは、丁度、LED素
子10の側面反射面15(又は16)についての鏡像点
にLED素子10’が存在することと等価となる。この
ように、従来は、端部側面から外部へ放射され、光源と
して利用されなかった光が、側面反射面15(又は1
6)を設けることによって、最終的に放射面13から受
光面14へ到達し、受光面を照射する光として有効に利
用される。
FIG. 4 is a diagram for explaining the effect of providing the side surface reflecting surfaces 15 (and 16) in the LED linear light source of this embodiment. Side reflection surface 1 of LED linear light source
Of the light emitted from the LED element 10 located in the vicinity of 5, the light traveling in the direction indicated by the arrow in FIG. 4A is reflected by the columnar reflecting surface 12 and then travels to the side reflecting surface 15. Here it is further reflected and emitted from the emitting surface 13,
It reaches the light receiving surface 14. On the other hand, of the light emitted from the LED element 10, the light traveling in the direction indicated by the arrow in FIG. 4B is reflected by the side reflection surface 15 and then the cylindrical reflection surface 1
2 where it is further reflected and emitted from the emitting surface 13 to reach the light receiving surface 14. This is equivalent to the presence of the LED element 10 'at the mirror image point of the side reflection surface 15 (or 16) of the LED element 10. As described above, conventionally, the light emitted from the end side surface to the outside and not used as the light source is the side reflection surface 15 (or 1).
By providing 6), the light finally reaches the light receiving surface 14 from the emitting surface 13 and is effectively used as light for irradiating the light receiving surface.

【0016】図5は、LED線状光源の両端部における
照度分布を模式的に示した図であり、実線は本実施形態
のように側面反射面15,16を設けた場合であり、点
線は側面反射面を設けない場合である。尚、いずれの場
合も有効照度領域mが同じになるように示してある。従
来のLED線状光源では、有効照度領域をmとするため
には、端部において照度が緩やかに低下するため、主走
査方向の寸法を同図のaまで長くしなければならなかっ
た。これに対して、本実施形態のように側面反射面15
及び16を設けることによって、端部近傍に設けられた
LED素子から発せられた光のほぼすべてが放射面13
から受光面14へ放射されるので、図5に実線で示すよ
うに、照度分布は、端部にいたるまでほぼ均一となる。
その結果、有効照度領域の長さmとLED線状光源の主
走査方向の長さbとがとほぼ等しくなる。したがって、
これを利用した各種機器の寸法の小型化・軽量化を図る
ことができる。
FIG. 5 is a diagram schematically showing the illuminance distribution at both ends of the LED linear light source. The solid line shows the case where the side reflecting surfaces 15 and 16 are provided as in the present embodiment, and the dotted line shows. This is the case where the side reflection surface is not provided. In each case, the effective illuminance area m is shown to be the same. In the conventional LED linear light source, in order to set the effective illuminance region to m, the illuminance gradually decreases at the end, so the dimension in the main scanning direction must be increased to a in the same figure. On the other hand, as in this embodiment, the side reflection surface 15
By providing 16 and 16, almost all of the light emitted from the LED elements provided near the ends is emitted from the emitting surface 13.
Since the light is radiated from the light receiving surface 14 to the light receiving surface 14, the illuminance distribution becomes substantially uniform up to the end as shown by the solid line in FIG.
As a result, the length m of the effective illuminance area and the length b of the LED linear light source in the main scanning direction become substantially equal to each other. Therefore,
It is possible to reduce the size and weight of various devices using this.

【0017】図6は、本発明の第二の実施形態のLED
線状光源を示す概略長手方向側面図であり、第一の実施
形態を示す図2に対応する図である。本実施形態では、
端部におけるLED素子10の配列間隔を中央部よりも
密に配置する。図2及び図3に示す第一の実施形態のよ
うに、LED線状光源の両端に側面反射面15,16を
設けることによって側面に射出しようとする光を内部に
戻し、光を有効に利用することが可能となる。しかし、
これでも端部の照度が十分でない場合がある。この場合
は、端部におけるLED素子10を密に配置することに
よって、端部の照度低下を補償することができる。
FIG. 6 shows an LED according to the second embodiment of the present invention.
It is a schematic longitudinal side view which shows a linear light source, and is a figure corresponding to FIG. 2 which shows 1st embodiment. In this embodiment,
The LED elements 10 at the end portions are arranged closer to each other than the central portion. As in the first embodiment shown in FIGS. 2 and 3, by providing the side surface reflecting surfaces 15 and 16 at both ends of the LED linear light source, the light to be emitted to the side surface is returned to the inside and the light is effectively used. It becomes possible to do. But,
Even in this case, the illuminance at the edge may not be sufficient. In this case, by arranging the LED elements 10 at the ends densely, it is possible to compensate for the decrease in illuminance at the ends.

【0018】尚、本発明は上記の各実施形態に限定され
るものではなく、その要旨の範囲内で種々の変更が可能
である。例えば、上記実施形態では、単色のLED素子
を備えたLED線状光源について説明したが、例えば、
LED素子の間隔を1mm程度にして、赤色(R)、緑色
(G)、青色(B)のLEDを順番に繰り返し配列する
ことによって、カラー画像の読み取りを容易にする線状
光源とすることも可能である。また、上記実施形態で
は、複写機やファクシミリの読み取り用光源として利用
されるLED線状光源について説明したが、本発明は、
これ以外にも、例えば光を照射して記憶内容を消去する
EPROMのイレーサーとして利用することも可能であ
る。
The present invention is not limited to the above-mentioned embodiments, and various modifications can be made within the scope of the gist thereof. For example, in the above embodiment, the LED linear light source including the monochromatic LED element has been described.
A linear light source that facilitates the reading of a color image may be obtained by sequentially arranging red (R), green (G), and blue (B) LEDs in order with the LED elements arranged at intervals of about 1 mm. It is possible. In the above embodiment, the LED linear light source used as the reading light source of the copying machine or the facsimile has been described.
Other than this, for example, it can be used as an eraser for an EPROM that erases stored contents by irradiating light.

【0019】[0019]

【発明の効果】以上説明したように、本発明によれば、
直線状に配列されたLED素子の発光面に対向する柱面
状反射面の他に、光透過性樹脂の両側の端部にも側面反
射面を設けたことにより、従来はこの側面から外部へ放
射され、利用されることのなかった光がこの側面反射面
で反射されて内部に戻され、最終的に本来の放射面から
放射されて受光面に到達する。これにより、端部におけ
る照度の低下が抑えられ、有効照度領域がLED線状光
源の端部まで延び、その結果、主走査方向の寸法を有効
照度領域と同程度まで短くすることができるので、かか
るLED線状光源を利用する各種機器の寸法の小型化・
軽量化を図ることができる。
As described above, according to the present invention,
In addition to the columnar reflecting surface facing the light emitting surface of the linearly arranged LED elements, side reflecting surfaces are also provided at both ends of the light transmissive resin. The light that has been emitted and has not been used is reflected by the side reflection surface and returned to the inside, and finally emitted from the original emission surface and reaches the light receiving surface. As a result, a decrease in illuminance at the end is suppressed, the effective illuminance region extends to the end of the LED linear light source, and as a result, the dimension in the main scanning direction can be shortened to the same extent as the effective illuminance region. Miniaturization of the size of various devices using such LED linear light source
The weight can be reduced.

【0020】また、本発明によれば、端部におけるLE
D素子の配列間隔を中央部よりも小さくすることによっ
て、端部における照度の低下をより軽減でき、したがっ
て、端部の照度をより均一に維持できるLED線状光源
を提供することができる。
Further, according to the present invention, the LE at the end is
By making the arrangement interval of the D elements smaller than that in the central portion, it is possible to further reduce the decrease in the illuminance at the end portion, and thus it is possible to provide the LED linear light source that can maintain the illuminance at the end portion more uniform.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施形態であるLED線状光源
の放射面側から見た概略正面図である。
FIG. 1 is a schematic front view of an LED linear light source that is a first embodiment of the present invention as seen from a radiation surface side.

【図2】本発明の第一の実施形態であるLED線状光源
の概略端部側面図である。
FIG. 2 is a schematic end side view of the LED linear light source that is the first embodiment of the present invention.

【図3】本発明の第一の実施形態であるLED線状光源
の概略長手方向側面図である。
FIG. 3 is a schematic longitudinal side view of the LED linear light source that is the first embodiment of the present invention.

【図4】LED線状光源に側面反射面を設けたことによ
る効果を説明するための図である。
FIG. 4 is a diagram for explaining an effect obtained by providing a side surface reflecting surface on the LED linear light source.

【図5】LED線状光源の両端部における照度分布を示
した図である。
FIG. 5 is a diagram showing an illuminance distribution at both ends of an LED linear light source.

【図6】本発明の第二の実施形態であるLED線状光源
の概略長手方向側面図である。
FIG. 6 is a schematic longitudinal side view of an LED linear light source that is a second embodiment of the present invention.

【図7】従来のLED線状光源の概略横方向断面図であ
る。
FIG. 7 is a schematic lateral sectional view of a conventional LED linear light source.

【図8】従来のLED線状光源の概略縦方向断面図であ
る。
FIG. 8 is a schematic vertical sectional view of a conventional LED linear light source.

【図9】LED線状光源の端部における照度が低下する
様子を示した図である。
FIG. 9 is a diagram showing how the illuminance at the end of the LED linear light source decreases.

【符号の説明】[Explanation of symbols]

10,71 LED素子 10a,10b,72a,72b リード 11,73 光透過性樹脂 12,52 柱面状反射面 13,75 放射面 14 受光面 15,16 側面反射面 74 反射面 m 有効照度領域 10,71 LED element 10a, 10b, 72a, 72b Lead 11,73 Light transmissive resin 12,52 Columnar reflecting surface 13,75 Radiating surface 14 Light receiving surface 15,16 Side reflecting surface 74 Reflecting surface m Effective illuminance area

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 所定の間隔で直線状に配列された複数の
発光素子と、 前記複数の発光素子を内部に封止する光透過性樹脂と、 前記複数の発光素子から発せられた光を反射して、放射
面を通って外部の受光面上に収束するように、前記光透
過性樹脂の表面に前記複数の発光素子の配列方向と平行
に形成された柱面状反射面と、 前記発光素子の配列方向と垂直な両側の端部側面に形成
した側面反射面と、 を有することを特徴とする線状光源。
1. A plurality of light emitting elements linearly arranged at a predetermined interval, a light-transmissive resin that seals the plurality of light emitting elements inside, and reflects light emitted from the plurality of light emitting elements. Then, a columnar reflecting surface formed on the surface of the light transmissive resin parallel to the arrangement direction of the plurality of light emitting elements so as to converge on the external light receiving surface through the emission surface, and the light emission. A linear light source having: a side reflection surface formed on both end side surfaces perpendicular to the element array direction;
【請求項2】 前記複数の発光素子を等間隔に配列した
ことを特徴とする請求項1記載の線状光源。
2. The linear light source according to claim 1, wherein the plurality of light emitting elements are arranged at equal intervals.
【請求項3】 前記複数の発光素子を、端部の間隔が中
央部の間隔よりも小さくなるよう配列したことを特徴と
する請求項1記載の線状光源。
3. The linear light source according to claim 1, wherein the plurality of light emitting elements are arranged so that an interval between end portions is smaller than an interval between central portions.
【請求項4】 前記放射面は平坦面であり、前記柱面状
反射面は、前記放射面における界面屈折を考慮して設計
されたものであることを特徴とする請求項1記載の線状
光源。
4. The linear surface according to claim 1, wherein the emitting surface is a flat surface, and the cylindrical reflecting surface is designed in consideration of interface refraction on the emitting surface. light source.
JP7283107A 1995-10-31 1995-10-31 Linear light source Pending JPH09127617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7283107A JPH09127617A (en) 1995-10-31 1995-10-31 Linear light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7283107A JPH09127617A (en) 1995-10-31 1995-10-31 Linear light source

Publications (1)

Publication Number Publication Date
JPH09127617A true JPH09127617A (en) 1997-05-16

Family

ID=17661318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7283107A Pending JPH09127617A (en) 1995-10-31 1995-10-31 Linear light source

Country Status (1)

Country Link
JP (1) JPH09127617A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017952A (en) * 2004-06-30 2006-01-19 Ricoh Co Ltd Document illuminating device, image reading unit, and image forming apparatus
JP2008089279A (en) * 2006-10-05 2008-04-17 Matsushita Electric Ind Co Ltd Refrigerator
JP2010212819A (en) * 2009-03-09 2010-09-24 Murata Machinery Ltd Method for determining position of led array, and led array

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017952A (en) * 2004-06-30 2006-01-19 Ricoh Co Ltd Document illuminating device, image reading unit, and image forming apparatus
JP2008089279A (en) * 2006-10-05 2008-04-17 Matsushita Electric Ind Co Ltd Refrigerator
JP2010212819A (en) * 2009-03-09 2010-09-24 Murata Machinery Ltd Method for determining position of led array, and led array

Similar Documents

Publication Publication Date Title
TWI461636B (en) Light source device
US5639158A (en) Led-array light source
US5418384A (en) Light-source device including a linear array of LEDs
US5969343A (en) Linear illumination device
US6268600B1 (en) Linear illumination device
US6351594B1 (en) Linear beam irradiator having a varying cross-sectional size
JP2001343531A (en) Illumination device, image sensor having this illumination device and image reader and information processing system using this image sensor
JP2010238492A (en) Lighting device
JPH11136439A (en) Image sensor and information processor using the same
JP3987838B2 (en) Linear lighting device
JP2002185708A (en) Illuminator, image sensor unit and image reader provided with the same
WO2005001529A9 (en) Light guide and line illuminator
JPH09127617A (en) Linear light source
JPH10150526A (en) Linear illuminator
JP6150020B2 (en) Light guide, light source device and image reading device
JP2019079765A (en) Line light source and optical line sensor unit provided with the same
JP4096421B2 (en) Image reading device
JP2785758B2 (en) Linear light source
JP2006295810A (en) Light source device and lighting device using same
JP2001119530A (en) Linear image sensor
JP6087069B2 (en) Document scanner
JP2004177851A (en) Image reader
JP3932068B2 (en) Image reading device
JP3664187B2 (en) Light emitting diode array
KR200435780Y1 (en) Improved structure of lighting source for led

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050330