JP2785758B2 - Linear light source - Google Patents

Linear light source

Info

Publication number
JP2785758B2
JP2785758B2 JP7230100A JP23010095A JP2785758B2 JP 2785758 B2 JP2785758 B2 JP 2785758B2 JP 7230100 A JP7230100 A JP 7230100A JP 23010095 A JP23010095 A JP 23010095A JP 2785758 B2 JP2785758 B2 JP 2785758B2
Authority
JP
Japan
Prior art keywords
light
light source
curved surface
linear
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7230100A
Other languages
Japanese (ja)
Other versions
JPH0983734A (en
Inventor
一郎 藤枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP7230100A priority Critical patent/JP2785758B2/en
Publication of JPH0983734A publication Critical patent/JPH0983734A/en
Application granted granted Critical
Publication of JP2785758B2 publication Critical patent/JP2785758B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Light Sources And Details Of Projection-Printing Devices (AREA)
  • Image Input (AREA)
  • Facsimile Scanning Arrangements (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は線状光源に係り、特
にファクシミリやハンディスキャナ等の画像入力装置に
搭載される発光ダイオードによる線状光源に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a linear light source, and more particularly, to a linear light source using a light emitting diode mounted on an image input device such as a facsimile or a handy scanner.

【0002】[0002]

【従来の技術】ファクシミリやハンディスキャナ等の画
像入力装置に搭載される線状光源には、線状の領域を均
一に効率良く照射することが要求され、そのために従来
よりチップ型発光ダイオードを線状に配列した構成の線
状光源が知られている(特公平3−40551号公
報)。
2. Description of the Related Art A linear light source mounted on an image input device such as a facsimile or a handy scanner is required to uniformly and efficiently irradiate a linear area. A linear light source having a configuration arranged in a shape is known (Japanese Patent Publication No. 3-40551).

【0003】図6はこの従来の線状光源の一例の外観
図、図7(A)、(B)は図6のA−A’線、B−B’
線に沿う断面図をそれぞれ示す。図6及び図7におい
て、線状光源は、プリント基板1と、プリント基板1の
上に設けられた反射枠2と、反射枠2に取り付けられた
棒状レンズ3と、プリント基板1の上に線状に配列され
たチップ型の発光ダイオード(LED)6とから構成さ
れている。LED6はリード線7に接続されている。
FIG. 6 is an external view of an example of this conventional linear light source, and FIGS. 7A and 7B are lines AA 'and BB' in FIG.
The sectional views along the line are shown. 6 and 7, the linear light source includes a printed board 1, a reflection frame 2 provided on the printed board 1, a rod-shaped lens 3 attached to the reflection frame 2, and a line on the printed board 1. And light emitting diodes (LEDs) 6 of a chip type arranged in a matrix. The LED 6 is connected to the lead wire 7.

【0004】ここで、反射枠2は図7(B)に示すよう
に断面が半円の曲面を有する形状以外に、図8(A)に
示すような断面が斜めの傾斜を持つ平面形状や、図8
(B)に示すような断面が楕円形の曲面を有する形状、
図8(C)に示すような断面が放物線の曲面を有する形
状などが従来より知られている(特開昭59−1431
45号公報)。
Here, the reflection frame 2 has a semi-circular curved surface as shown in FIG. 7 (B), and a flat shape having an obliquely inclined cross section as shown in FIG. 8 (A). , FIG.
(B) a cross section having an elliptical curved surface,
A cross section having a parabolic curved surface as shown in FIG. 8C is conventionally known (Japanese Patent Laid-Open No. 59-1431).
No. 45).

【0005】次に、図6乃至図8の従来の線状光源の動
作について説明する。LED6から四方に放射された光
の一部は、棒状レンズ3に直接入射してその進路を変え
られ、棒状レンズ3から一定の距離の場所にある図6に
示す原稿5の上に、幅の狭い線状の領域(光照射面4)
を照射する。また、LED6から四方に放射された光の
一部は、図8に示すように、反射枠2で反射された後
に、同様に棒状レンズ3に入射して光照射面4に達す
る。この場合、図7(B)、図8(B)及び(C)に示
すように、反射枠2を曲面状の反射面を有するように構
成する方が、LED6から放射される光を効率良く集光
することができる。
Next, the operation of the conventional linear light source shown in FIGS. 6 to 8 will be described. A part of the light emitted from the LED 6 in all directions is directly incident on the rod-shaped lens 3 to change its course, and is placed on the original 5 shown in FIG. Narrow linear area (light irradiation surface 4)
Is irradiated. In addition, as shown in FIG. 8, a part of the light emitted from the LED 6 in all directions is reflected by the reflection frame 2 and then similarly enters the rod-shaped lens 3 and reaches the light irradiation surface 4. In this case, as shown in FIGS. 7 (B), 8 (B), and 8 (C), when the reflecting frame 2 is configured to have a curved reflecting surface, the light radiated from the LED 6 can be efficiently emitted. Light can be collected.

【0006】ここで、通常、ファクシミリやハンディス
キャナ等の画像入力装置に搭載する線状光源は、4mm
〜5mm程度離れた位置に、幅1mm程度の光照射面4
を形成するように設計されている。LED6は一辺が
0.3mm程度の立方体状のチップ型が使用され、直径
4mm〜5mm程度の棒状レンズ3と組み合わされて使
用される。従って、線状光源全体の厚さは、6mm〜8
mm程度、線状光源から光照射領域までの全長は10m
m〜13mm程度になる。
Here, a linear light source mounted on an image input device such as a facsimile or a handy scanner is usually 4 mm.
A light irradiation surface 4 having a width of about 1 mm is positioned at a distance of about 5 mm.
It is designed to form The LED 6 is a cubic chip type having a side of about 0.3 mm, and is used in combination with the rod-shaped lens 3 having a diameter of about 4 mm to 5 mm. Therefore, the thickness of the entire linear light source is 6 mm to 8 mm.
mm, the total length from the linear light source to the light irradiation area is 10 m
m to about 13 mm.

【0007】[0007]

【発明が解決しようとする課題】ファクシミリやハンデ
ィスキャナ等の画像入力装置の更なる小型化のために
は、これに搭載される線状光源自体の大きさを小さくす
ると共に、線状光源からより近い場所をより狭い幅で照
射する必要がある。しかるに、図6及び図7に示した従
来の線状光源では、棒状レンズ3の直径と、隣り合う2
つの反射枠2の間の距離をそれぞれ小さくすることで、
直接棒状レンズ3に入射する光を狭い領域に集光させる
ことはできるが、反射枠2で反射された光は別の場所に
集められるので、光の利用効率が悪くなる。
In order to further reduce the size of an image input device such as a facsimile or a handy scanner, the size of the linear light source itself mounted on the image input device is reduced, and the size of the linear light source is increased. It is necessary to irradiate a closer place with a narrower width. However, in the conventional linear light source shown in FIG. 6 and FIG.
By reducing the distance between the two reflection frames 2,
Although the light directly incident on the rod-shaped lens 3 can be condensed in a narrow area, the light reflected by the reflection frame 2 is collected at another place, so that the light use efficiency is deteriorated.

【0008】仮に、棒状レンズ3と反射枠2を相似的に
小さくすると、光の利用効率を犠牲にすることなく線状
光源の小型化をある程度実現することはできる。しか
し、隣り合う2つの反射枠2のLED6側の分離幅をL
ED6の幅以上には狭くできないという構成上の制約が
あるため、利用できる棒状レンズ3のサイズに最小値が
あり、最小値以下にはできない。
If the rod-shaped lens 3 and the reflection frame 2 are made smaller in a similar manner, it is possible to reduce the size of the linear light source to some extent without sacrificing light use efficiency. However, the separation width on the LED 6 side between two adjacent reflection frames 2 is L
Since there is a structural restriction that the size of the rod lens 3 cannot be narrowed beyond the width of the ED 6, there is a minimum value for the size of the rod-shaped lens 3 that can be used, and the size cannot be reduced below the minimum value.

【0009】このように、従来の線状光源では、設計の
自由度が小さいという課題がある。例えば、線状光源か
ら1mm〜2mm程度離れた場所に1mm以下の幅で照
射する線状光源を、厚さ5mm以下で実現することは困
難である。以上説明したように、従来の線状光源は、使
用する棒状レンズ3のサイズに制約があるため、十分な
小型化が困難である。
As described above, the conventional linear light source has a problem that the degree of freedom in design is small. For example, it is difficult to realize a linear light source with a thickness of 5 mm or less that irradiates a place of about 1 mm to 2 mm away from the linear light source with a width of 1 mm or less. As described above, in the conventional linear light source, the size of the rod-shaped lens 3 to be used is limited, so that it is difficult to sufficiently reduce the size.

【0010】本発明は上記の点に鑑みなされたもので、
反射枠と発光ダイオードの配置に係る構成上の制約を解
消し、より小型な形状の線状光源を提供することを目的
とする。
[0010] The present invention has been made in view of the above points,
An object of the present invention is to provide a linear light source with a smaller shape by eliminating the structural restriction on the arrangement of the reflection frame and the light emitting diodes.

【0011】また、本発明の他の目的は、光の利用効率
の高い線状光源を提供することにある。
It is another object of the present invention to provide a linear light source having high light use efficiency.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は基板上に直線状に複数配列された発光素子
と、基板上に設けられた反射層と、発光素子を反射面で
ある内側曲面により離間して覆うように基板上に設けら
れた、内側曲面の断面形状が凹面状の反射手段と、反射
手段の一部に形成された開口に固定支持され、発光素子
から発光された光が直接に入射されると共に、反射手段
及び反射層で反射された光が入射され、これらの光を一
定距離離れた位置の線状の照射領域に集光照射する屈折
手段とを具備する構成としたものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a light emitting device having a plurality of light emitting elements arranged linearly on a substrate, a reflective layer provided on the substrate, and a light emitting element on a reflective surface. Reflection means provided on the substrate so as to be spaced apart by a certain inner curved surface and having a concave cross-sectional shape of the inner curved surface, fixedly supported by an opening formed in a part of the reflection means, and emitted from the light emitting element. And the refraction means for receiving the light reflected directly by the reflection means and the reflection layer and condensing and irradiating the light to a linear irradiation area at a position separated by a certain distance. It is configured.

【0013】また、本発明は上記の目的を達成するた
め、透明基板上に複数配列された発光素子と、発光素子
を反射面である内側曲面により離間して覆うように透明
基板上に設けられた、内側曲面の断面形状が凹面状の反
射手段と、透明基板上の前記反射手段と反対側の面に設
けられ、発光素子から発光されて透明基板を透過した光
が入射され、この光を一定距離離れた位置の線状の照射
領域に集光照射する屈折手段とを具備する構成としたも
のである。
According to another aspect of the present invention, there is provided a light-emitting device having a plurality of light-emitting elements arranged on a transparent substrate and provided on the transparent substrate so as to cover the light-emitting elements with an inner curved surface which is a reflection surface. In addition, a reflecting means having a concave cross section of an inner curved surface is provided on a surface of the transparent substrate opposite to the reflecting means, and light emitted from the light emitting element and transmitted through the transparent substrate is incident thereon. And a refraction means for converging and irradiating a linear irradiation area at a position separated by a certain distance.

【0014】更に、本発明は、上記の透明基板上の反射
手段及び屈折手段に代えて、発光素子を反射面である内
側曲面により離間して覆うと共に、内側曲面の断面形状
が楕円形でその焦点の一方に前記発光素子が配置される
ように、透明基板上に設けられた集光手段を設け、集光
手段の内側曲面の楕円形の断面の焦点の他方の位置に線
状の照射領域を形成するようにしたものである。
Further, according to the present invention, in place of the reflecting means and the refracting means on the transparent substrate, the light emitting element is separately covered by an inner curved surface which is a reflecting surface, and the inner curved surface has an elliptical cross section. A light-collecting means provided on a transparent substrate is provided so that the light-emitting element is arranged at one of the focal points, and a linear irradiation region is provided at the other position of the focal point of the elliptical cross section of the inner curved surface of the light-collecting means. Is formed.

【0015】本発明では、内側曲面の断面形状が凹面状
の反射手段により発光素子を覆うようにしたため、反射
枠に発光素子を搭載していた従来光源のような、反射枠
(反射手段)と発光素子の配置に関する構成上の制限を
解消できる。
In the present invention, since the light emitting element is covered by the reflecting means having a concave curved inner surface, the light emitting element is mounted on a reflecting frame (reflecting means) such as a conventional light source in which the light emitting element is mounted on the reflecting frame. It is possible to eliminate restrictions on the configuration of the arrangement of the light emitting elements.

【0016】また、本発明では、発光素子から直接に屈
折手段に入射する光の他に、発光素子を覆うように内側
曲面の断面形状が凹面状の反射手段と反射層により多重
反射された光も屈折手段に入射するため、屈折手段に入
射する光量を増加することができる。
According to the present invention, in addition to the light directly incident on the refraction means from the light emitting element, the light reflected multiplely by the reflection means and the reflection layer having a concave inner curved surface so as to cover the light emitting element. Since the light also enters the refracting means, the amount of light incident on the refracting means can be increased.

【0017】また、本発明では、透明基板上の複数の発
光素子を、断面形状が凹面状の内側曲面により離間して
覆う反射手段を透明基板上に設けるか、断面形状が楕円
形状の内側曲面により離間して覆う集光手段を透明基板
上に設けるようにしたため、反射枠に発光素子を搭載し
ていた従来光源のような、反射枠(反射手段)と発光素
子の配置に関する構成上の制限を解消できる。
According to the present invention, a reflecting means for covering a plurality of light emitting elements on the transparent substrate with a concave inner curved surface in cross section is provided on the transparent substrate, or an inner curved surface having an elliptical cross sectional shape is provided. Is provided on the transparent substrate so that the light-collecting means is spaced apart from the light-emitting element. Therefore, there is a limitation on the arrangement of the reflection frame (reflection means) and the light-emitting element as in the conventional light source in which the light-emitting element is mounted on the reflection frame. Can be eliminated.

【0018】[0018]

【発明の実施の形態】次に、本発明の実施の形態につい
て図面と共に説明する。図1において、線状光源は、プ
リント基板11と、プリント基板11上に線状に設けら
れた立方体状の複数の発光ダイオード(LED)16
と、プリント基板11上にLED16をある距離離れて
覆うように設けられた反射手段12と、反射手段12の
中央部に取り付けられた丸棒状の屈折手段13とから構
成されている。LED16はリード線17を介してプリ
ント基板11に接続されている。
Next, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, a linear light source includes a printed board 11 and a plurality of cubic light emitting diodes (LEDs) 16 linearly provided on the printed board 11.
And a reflecting means 12 provided on the printed circuit board 11 so as to cover the LED 16 at a certain distance, and a round bar-shaped refracting means 13 attached to a central portion of the reflecting means 12. The LED 16 is connected to the printed circuit board 11 via a lead 17.

【0019】図2(A)はプリント基板11の平面図を
示す。同図に示すように、プリント基板11の上には複
数の第1のパッド14と複数の第2のパッド15とが互
いに離間して規則的に配列されている。それぞれの第1
のパッド14上に、かつ、プリント基板11の長手方向
の線状にLED16が搭載されており、これらのLED
16が第2のパッド15上に接続されている。ここで、
第1のパッド14と第2のパッド15は、銀メッキ、半
田メッキ等により、光の反射率が高く設定されているも
のとする。
FIG. 2A is a plan view of the printed circuit board 11. As shown in FIG. 1, a plurality of first pads 14 and a plurality of second pads 15 are regularly arranged on the printed circuit board 11 while being separated from each other. The first of each
The LEDs 16 are mounted on the pads 14 and in a linear shape in the longitudinal direction of the printed circuit board 11.
16 is connected on the second pad 15. here,
The first pad 14 and the second pad 15 are set to have a high light reflectance by silver plating, solder plating, or the like.

【0020】図2(B)は反射手段12と屈折手段13
とLED16等の位置関係を示す図1の断面図である。
同図に示すように、中空半円筒状の反射手段12はプリ
ント基板11上に搭載され、LED16に面する内側曲
面の光の反射率が高く設定されている。反射手段12は
中空半楕円状、半放物線状曲面あるいは平面状反射面を
有する構成でもよい。なお、本明細書ではこれらの曲面
を総称して凹面状というものとする。
FIG. 2B shows the reflection means 12 and the refraction means 13.
FIG. 2 is a cross-sectional view of FIG.
As shown in the figure, a hollow semi-cylindrical reflecting means 12 is mounted on a printed circuit board 11, and the reflectance of light on an inner curved surface facing the LED 16 is set high. The reflecting means 12 may have a hollow semi-elliptical, semi-parabolic curved surface or a planar reflecting surface. In the present specification, these curved surfaces are collectively referred to as concave surfaces.

【0021】また、この反射手段12は部分的に開口を
有し、例えば棒状レンズのような屈折手段13を固定・
支持する。屈折手段13の断面形状はこの実施の形態で
は円形であるが、円形に限定されるものではない。ま
た、反射手段12と屈折手段13とを別々に作成して組
み合わせたが、反射手段12と屈折手段13とを、光学
プラスチック材料の射出成型等の工法で一体化して製造
してもよい。
Further, the reflecting means 12 has an opening partially, and fixes the refracting means 13 such as a rod-shaped lens.
To support. The cross-sectional shape of the refracting means 13 is circular in this embodiment, but is not limited to a circular shape. Further, although the reflecting means 12 and the refracting means 13 are separately formed and combined, the reflecting means 12 and the refracting means 13 may be integrally manufactured by a method such as injection molding of an optical plastic material.

【0022】次に、この第1の実施の形態の動作につい
て説明する。LED16のボンディング面から四方に放
射された光の一部は、屈折手段13に直接入射されてあ
る程度集光され、屈折手段13から一定の距離の場所に
ある原稿(図示せず)を照射する。また、LED16の
ボンディング面から四方に放射された光の他の一部は、
反射手段12で反射された後、プリント基板11上のパ
ッド14、15で再び反射されて光路が変えられて屈折
手段13に入射され、これより前記原稿上に照射され
る。従って、反射手段12とパッド14及び15との間
での多重反射の結果、屈折手段13に入射される光量が
増加され、光利用率を犠牲にすることなく線状光源の小
型化を実現できる。
Next, the operation of the first embodiment will be described. A part of the light radiated from the bonding surface of the LED 16 in all directions is directly incident on the refracting means 13 and is collected to some extent, and irradiates a document (not shown) located at a certain distance from the refracting means 13. Another part of the light emitted from the bonding surface of the LED 16 in all directions is:
After being reflected by the reflection means 12, the light is reflected again by the pads 14 and 15 on the printed circuit board 11, the optical path is changed, and the light is incident on the refraction means 13 and is irradiated onto the original. Therefore, as a result of the multiple reflections between the reflection means 12 and the pads 14 and 15, the amount of light incident on the refraction means 13 is increased, and the linear light source can be reduced in size without sacrificing the light utilization rate. .

【0023】次に、この第1の実施の形態の線状光源の
照度について、図6に示した従来の線状光源の照度とを
対比して図3と共に説明する。ここで、図6に示した従
来の線状光源は、プリント基板1上に一辺約300μm
の立方体状のLED(発光ピーク波長565nm)を
2.8mmピッチで配列したものに、直径Dが4.4m
mの棒状レンズ3を組み合わせて構成されている。
Next, the illuminance of the linear light source according to the first embodiment will be described with reference to FIG. 3 in comparison with the illuminance of the conventional linear light source shown in FIG. Here, the conventional linear light source shown in FIG.
Are arranged at a pitch of 2.8 mm, and the diameter D is 4.4 m.
It is configured by combining m rod-shaped lenses 3.

【0024】一方、図1の第1の実施の形態の線状光源
では、上記従来の線状光源の棒状レンズ3と反射枠2と
を取り除き、今回試作した光学系を装着して製作した。
今回試作した光学系とは、半円筒状の反射枠に開口を設
け、直径Dが2.0mmの円柱ガラスを組み合わせたも
のである。この反射枠は、ガス配管用の汎用チューブ
(内径4.0mm、外径6.4mm)を縦に半分に切断
し、円柱ガラスを固定する場所に開口を設けて試作し
た。
On the other hand, the linear light source according to the first embodiment shown in FIG. 1 is manufactured by removing the rod-shaped lens 3 and the reflection frame 2 of the above-mentioned conventional linear light source, and mounting the optical system produced this time.
The optical system prototyped this time is one in which an opening is provided in a semi-cylindrical reflection frame and a cylindrical glass having a diameter D of 2.0 mm is combined. This reflective frame was produced by cutting a general-purpose tube for gas piping (inner diameter 4.0 mm, outer diameter 6.4 mm) in half vertically and providing an opening at a place where the cylindrical glass was fixed.

【0025】これらの2種類の線状光源からある距離H
離れた場所に電荷転送素子(CCD)を用いた撮像素子
を設置し、この撮像素子により撮像される光量分布を観
察し、そのピーク光量のレンズ−CCD(撮像素子)間
の距離依存性を調べた結果を示したのが図3である。
A distance H from these two types of linear light sources
An image sensor using a charge transfer device (CCD) is installed at a distant place, and the distribution of the amount of light captured by the image sensor is observed. FIG. 3 shows the results.

【0026】同図において、本実施の形態の線状光源の
光量分布は黒丸で示し、図6の構造の線状光源の光量分
布は白丸で示しており、距離Hが1.0mmにおいて本
実施の形態の線状光源の方が、図6の従来の線状光源に
比べて約2.4倍の光量が得られることがわかる。
In the same figure, the light quantity distribution of the linear light source according to the present embodiment is indicated by black circles, and the light quantity distribution of the linear light source having the structure of FIG. 6 is indicated by white circles. It can be seen that the linear light source of the embodiment can obtain about 2.4 times the amount of light as compared with the conventional linear light source of FIG.

【0027】レンズ(屈折手段13)に近い場所での照
度増加は、レンズ直径Dが小さいことによる集光能力の
向上と、反射構造による光線損失の低減による。また、
照射幅は半値幅で3.2mmから0.6mmに狭くなっ
た。更に、線状光源の厚さは従来の6.5mmから4.
0mmに減少でき、厚さ方向の小型化が実現できた。
The increase in the illuminance near the lens (refraction means 13) is due to the improvement of the light condensing ability due to the small lens diameter D and the reduction of the light loss due to the reflection structure. Also,
The irradiation width was narrowed from 3.2 mm to 0.6 mm in half width. Further, the thickness of the linear light source is increased from the conventional 6.5 mm to 4.0.
The thickness can be reduced to 0 mm, and downsizing in the thickness direction can be realized.

【0028】次に、本発明の第2の実施の形態について
図4及び図5と共に説明する。図4は本発明になる線状
光源の第2の実施の形態の斜視図、図5(A)は図4の
断面図を示す。図4に示す線状光源は、透明基板21
と、透明基板21上に線状に設けられた複数の発光ダイ
オード(LED)26と、透明基板21上にLED26
を離間して覆うように設けられた内側曲面の断面形状が
凹面状の反射手段22と、透明基板21上で反射手段2
2とは反対側の面に取り付けられた屈折手段23とから
構成されている。
Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 4 is a perspective view of a second embodiment of the linear light source according to the present invention, and FIG. 5A is a sectional view of FIG. The linear light source shown in FIG.
A plurality of light emitting diodes (LEDs) 26 linearly provided on the transparent substrate 21;
Reflection means 22 having a concave cross-sectional shape of an inner curved surface provided so as to cover the transparent substrate and the reflection means 2 on the transparent substrate 21.
2 and refraction means 23 attached to the surface on the opposite side.

【0029】図5(A)は図4の線状光源を透明基板2
1の長手方向に直交する方向に切断したときの断面図
で、これらに示されるように、透明基板21上の第1の
パッド24にLED26が接続され、更にリード線27
により透明基板21上の第2のパッド25に接続されて
いる。パッド24及び25は金属材料で小さく形成して
もよいが、透明導電膜で形成してもよい。
FIG. 5A shows the linear light source shown in FIG.
1 is a cross-sectional view when cut in a direction orthogonal to the longitudinal direction of the LED. As shown in these figures, the LED 26 is connected to the first pad 24 on the transparent substrate 21,
Is connected to the second pad 25 on the transparent substrate 21. The pads 24 and 25 may be formed small using a metal material, or may be formed using a transparent conductive film.

【0030】次に、この実施の形態の動作について説明
する。LED26から四方に放射された光は、図5
(A)に示すように、内側曲面が反射面に形成されてい
る反射手段22の内側曲面(この断面形状は放物線状で
ある)により反射され、透明基板21を透過して屈折手
段23に入射され、ここで屈折されて屈折手段23から
一定の距離にある原稿(図示せず)の幅狭い領域に集光
照射される。
Next, the operation of this embodiment will be described. The light emitted from the LED 26 in all directions is shown in FIG.
As shown in FIG. 3A, the inner curved surface is reflected by the inner curved surface (the cross-sectional shape is parabolic) of the reflecting means 22 formed on the reflecting surface, passes through the transparent substrate 21, and enters the refracting means 23. Then, the light is refracted and condensed and radiated onto a narrow area of a document (not shown) at a certain distance from the refraction means 23.

【0031】ここで、反射手段22はLED26を覆う
ように配置されているので、LED26が放射する光の
殆どすべてを屈折手段23に導くことができる。また、
反射手段22の内側曲面の断面の形状は放物線であるの
で、LED26の一点から四方へ放射された光は、反射
手段22により反射されることにより平行光となる。こ
れが透明基板21を透過した後に必要に応じて屈折手段
23により集光される。これにより、この実施の形態も
従来に比べて厚さ方向の小型化を実現できる。
Here, since the reflection means 22 is arranged so as to cover the LED 26, almost all of the light emitted by the LED 26 can be guided to the refraction means 23. Also,
Since the cross-sectional shape of the inner curved surface of the reflection means 22 is a parabola, light emitted from one point of the LED 26 in all directions becomes parallel light by being reflected by the reflection means 22. This light is condensed by the refraction means 23 as necessary after transmitting through the transparent substrate 21. Thereby, this embodiment can also realize a reduction in the thickness direction as compared with the related art.

【0032】なお、本発明の線状光源の第2の実施の形
態において、反射手段22の代わりに図5(B)に示す
ように、LED26を覆う曲面の断面形状が楕円形で、
その楕円形の焦点の一つにLED26を配置した集光手
段28を設けるようにしてもよい。この場合は、LED
26から四方へ放射された光は集光手段28により集光
手段28の楕円形断面のもう一方の焦点に集められる。
従って、この場合は、上記の楕円形の形状を制御して照
射領域を最適化できるので、屈折手段23を不要にでき
る。従って、図5(B)に示す変形例も従来に比べて厚
さ方向の小型化を実現できる。
In the second embodiment of the linear light source of the present invention, instead of the reflecting means 22, as shown in FIG.
At one of the elliptical focal points, a condensing means 28 having an LED 26 may be provided. In this case, LED
Light emitted in four directions from 26 is collected by the light condensing means 28 at the other focal point of the elliptical cross section of the light condensing means 28.
Therefore, in this case, since the irradiation area can be optimized by controlling the elliptical shape, the refraction means 23 can be eliminated. Therefore, the modification shown in FIG. 5B can also be downsized in the thickness direction as compared with the conventional example.

【0033】なお、本発明は以上の実施の形態や変形例
に限定されるものではなく、例えばLED16、26に
代えてランプ等の他の点状光源を構成する発光素子も原
理的に使用可能である。
It should be noted that the present invention is not limited to the above-described embodiments and modified examples. For example, in place of the LEDs 16 and 26, light emitting elements constituting other point light sources such as lamps can be used in principle. It is.

【0034】[0034]

【発明の効果】以上説明したように、本発明によれば、
内側曲面の断面形状が凹面状の反射手段により発光素子
を覆うことで、反射枠に発光素子を搭載していた従来光
源のような、反射枠(反射手段)と発光素子の配置に関
する構成上の制限を解消するようにしたため、従来光源
に比べて厚さ方向の小型化を実現できる。
As described above, according to the present invention,
By covering the light emitting element with the reflecting means having a concave cross section of the inner curved surface, the arrangement regarding the arrangement of the reflecting frame (reflecting means) and the light emitting element as in the conventional light source in which the light emitting element is mounted on the reflecting frame. Since the limitation is eliminated, downsizing in the thickness direction can be realized as compared with the conventional light source.

【0035】また、本発明によれば、発光素子から直接
に屈折手段に入射する光の他に、発光素子を覆うように
内側曲面の断面形状が凹面状の反射手段と反射層により
多重反射された光も屈折手段に入射するようにした場合
は、屈折手段に入射する光量を増加することができるた
め、光の利用率を従来光源に比し向上できる。
According to the present invention, in addition to the light directly incident on the refracting means from the light emitting element, the light is reflected by the reflecting means and the reflective layer having a concave inner curved surface so as to cover the light emitting element. When the refracted light is also incident on the refraction means, the amount of light incident on the refraction means can be increased, so that the light utilization rate can be improved as compared with the conventional light source.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態の斜視図である。FIG. 1 is a perspective view of a first embodiment of the present invention.

【図2】図1の各部の平面図と断面図である。FIG. 2 is a plan view and a cross-sectional view of each part of FIG.

【図3】図1の線状光源の性能を従来の光源と対比して
示す図である。
FIG. 3 is a diagram showing the performance of the linear light source of FIG. 1 in comparison with a conventional light source.

【図4】本発明の第2の実施の形態の斜視図である。FIG. 4 is a perspective view of a second embodiment of the present invention.

【図5】図4の断面図変形例の断面図である。FIG. 5 is a sectional view of a modification of the sectional view of FIG. 4;

【図6】従来の線状光源の一例の外観図である。FIG. 6 is an external view of an example of a conventional linear light source.

【図7】図6のA−A’線、B−B’線に沿う断面図で
ある。
FIG. 7 is a sectional view taken along lines AA ′ and BB ′ in FIG. 6;

【図8】従来の線状光源の反射枠の反射面形状の各例を
示す図である。
FIG. 8 is a diagram showing each example of a reflection surface shape of a reflection frame of a conventional linear light source.

【符号の説明】[Explanation of symbols]

11 プリント基板 12、22 反射手段 13、23 屈折手段 14、24 第1のパッド 15、25 第2のパッド 16、26 発光ダイオード(LED) 17、27 リード線 28 集光手段 DESCRIPTION OF SYMBOLS 11 Printed circuit board 12,22 Reflecting means 13,23 Refracting means 14,24 First pad 15,25 Second pad 16,26 Light emitting diode (LED) 17,27 Lead wire 28 Light collecting means

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上に直線状に複数配列された発光素
子と、 前記基板上に設けられた反射層と、 前記発光素子を反射面である内側曲面により離間して覆
うように前記基板上に設けられた、該内側曲面の断面形
状が凹面状の反射手段と、 前記反射手段の一部に形成された開口に固定支持され、
前記発光素子から発光された光が直接に入射されると共
に、前記反射手段及び反射層で反射された光が入射さ
れ、これらの光を一定距離離れた位置の線状の照射領域
に集光照射する屈折手段とを有することを特徴とする線
状光源。
A plurality of light-emitting elements arranged linearly on a substrate; a reflective layer provided on the substrate; and a light-emitting element disposed on the substrate so as to cover the light-emitting elements with an inner curved surface that is a reflection surface. Provided in the reflector, the cross-sectional shape of the inner curved surface is concave, and fixedly supported by an opening formed in a part of the reflector,
The light emitted from the light emitting element is directly incident, and the light reflected by the reflection means and the reflection layer is incident, and these lights are condensed and irradiated on a linear irradiation area at a position separated by a certain distance. A linear light source comprising:
【請求項2】 前記基板はプリント基板であり、前記反
射層は前記複数の発光素子のそれぞれが搭載された第1
のパッドと、前記発光素子にリード線を介して接続され
る第2のパッドからなることを特徴とする請求項1記載
の線状光源。
2. The method according to claim 1, wherein the substrate is a printed circuit board, and the reflective layer is a first substrate on which each of the plurality of light emitting elements is mounted.
The linear light source according to claim 1, comprising a second pad connected to the light emitting element via a lead wire.
【請求項3】 透明基板上に複数配列された発光素子
と、 前記発光素子を反射面である内側曲面により離間して覆
うように前記透明基板上に設けられた、該内側曲面の断
面形状が凹面状の反射手段と、 前記透明基板上の前記反射手段と反対側の面に設けら
れ、前記発光素子から発光されて前記透明基板を透過し
た光が入射され、この光を一定距離離れた位置の線状の
照射領域に集光照射する屈折手段とを有することを特徴
とする線状光源。
3. A plurality of light-emitting elements arranged on a transparent substrate, and a cross-sectional shape of the inner curved surface provided on the transparent substrate so as to cover the light-emitting elements at a distance from each other by an inner curved surface serving as a reflection surface. A concave reflecting means, provided on a surface of the transparent substrate on the side opposite to the reflecting means, light emitted from the light emitting element and transmitted through the transparent substrate is incident, and the light is separated by a predetermined distance. And a refraction means for converging and irradiating the linear irradiation area.
【請求項4】 透明基板上に複数配列された発光素子
と、 前記発光素子を反射面である内側曲面により離間して覆
うと共に、該内側曲面の断面形状が楕円形でその焦点の
一方に前記発光素子が配置されるように、前記透明基板
上に設けられた集光手段とを有し、前記発光素子から発
光され前記集光手段を介して前記透明基板を透過した光
により、前記集光手段の前記内側曲面の楕円形の断面の
焦点の他方の位置に線状の照射領域を形成することを特
徴とする線状光源。
4. A plurality of light-emitting elements arranged on a transparent substrate, the light-emitting elements are separately covered by an inner curved surface that is a reflection surface, and the inner curved surface has an elliptical cross-sectional shape and is provided at one of its focal points. Light-collecting means provided on the transparent substrate so that the light-emitting element is disposed, and the light-collecting means emits light from the light-emitting element and transmits through the transparent substrate through the light-collecting means. A linear light source, wherein a linear irradiation area is formed at the other position of the focal point of the elliptical cross section of the inner curved surface of the means.
【請求項5】 前記発光素子は、発光ダイオードである
ことを特徴とする請求項1乃至4のうちいずれか一項記
載の線状光源。
5. The linear light source according to claim 1, wherein the light emitting element is a light emitting diode.
JP7230100A 1995-09-07 1995-09-07 Linear light source Expired - Fee Related JP2785758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7230100A JP2785758B2 (en) 1995-09-07 1995-09-07 Linear light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7230100A JP2785758B2 (en) 1995-09-07 1995-09-07 Linear light source

Publications (2)

Publication Number Publication Date
JPH0983734A JPH0983734A (en) 1997-03-28
JP2785758B2 true JP2785758B2 (en) 1998-08-13

Family

ID=16902561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7230100A Expired - Fee Related JP2785758B2 (en) 1995-09-07 1995-09-07 Linear light source

Country Status (1)

Country Link
JP (1) JP2785758B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4170818B2 (en) 2003-04-11 2008-10-22 株式会社リコー Lighting device, document reading device, image forming device
US7009213B2 (en) * 2003-07-31 2006-03-07 Lumileds Lighting U.S., Llc Light emitting devices with improved light extraction efficiency
JP2005070463A (en) * 2003-08-25 2005-03-17 Minolta Co Ltd Image reader
JP2007325883A (en) * 2006-06-09 2007-12-20 Aruze Corp Game machine and display device for game machine
JP2007325879A (en) * 2006-06-09 2007-12-20 Aruze Corp Game machine

Also Published As

Publication number Publication date
JPH0983734A (en) 1997-03-28

Similar Documents

Publication Publication Date Title
TWI461636B (en) Light source device
US7953312B2 (en) Light guiding member and bifurcated linear light source apparatus
US7431480B2 (en) Optical element, compound optical element, and illuminating apparatus
US8018630B2 (en) Compound curved concentrator based illuminator
JPH11134918A (en) Linear lighting system
KR19980079882A (en) Onboard beam exit device
JP2002314137A (en) Reflection type light emitting diode
JP2005537665A5 (en)
JP2004312753A (en) Linear illumination apparatus
KR20060023571A (en) Light guide and image reader
JP2785758B2 (en) Linear light source
JP4717835B2 (en) Illumination device and imaging device
JP2725650B2 (en) LED array light source
JP2008083269A (en) Linear light source device
JP3792807B2 (en) Linear lighting device
US9435509B2 (en) Linear light source apparatus and image reading apparatus
JP3431673B2 (en) Line illumination device and line reader
JP2000307807A (en) Linear light source unit
JP2004253477A (en) Light emitting diode array light source
JPH0415457B2 (en)
JP2013074600A (en) Light guide body, and illumination device and image reader
JP2012059493A (en) Light source device
JPH05103157A (en) Lighting device for image reader
JP5110044B2 (en) Image reader
JP2000114603A (en) Light emitting device and image reading device using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090529

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100529

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110529

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110529

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 15

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 15

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees